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PREFACE

A differential equation is an equation in mathematics that relates a function to its
derivatives. The study of differential equations will always be important because it plays
a central role in describing phenomena that change over time. When we wish to predict
the future based on some knowledge of a current observable event, differential equations
can help us to understand how that particular phenomenon evolves as a function of time.
Differential equations play a prominent role in many disciplines including engineering,
physics, economics, and biology.

Our goal in writing this text was to provide students at State College of Florida with both
an introduction to and a survey of methods, applications, and theories of this beautiful
and powerful mathematical tool. As a first course in differential equations, the book is
intended for science and engineering majors who have completed two semesters of the
calculus sequence, but not necessarily multivariable calculus. (Topics from multivariable
calculus are introduced as needed.)

The many exciting and unanswered questions found in the theory of differential equa-
tions make it a popular field of study for graduate students. At the introductory level,
however, it may seem like a collection of tricks that must be mastered. The beauty lies in
the opportunity to challenge one’s ability to analyze a problem and evaluate the known
facts while forming a solution. Often the question in differential equations is not how to
solve a problem but how best to solve a problem.

We encourage students to work their way through the examples with pencil and paper
before attempting the exercises on their own. The examples outline the necessary
procedures for each section but only with practice can one expect to learn the nuances of
each approach in order to weigh the advantages of one technique over another when
presented with a particular situation. Some time for reflection will be needed at the
end of the course to contrast and compare the variety of methods available for solving
differential equations.
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CHAPTER 1

INTRODUCTION

Complete disorder is impossible.

Theodore Motzkin

IN THIS CHAPTER we begin our study of differential equations.
SECTION 1.1 introduces basic concepts and definitions related to differential equations.

SECTION 1.2 presents some applications that require differential equations in the con-
struction of their mathematical models.

SECTION 1.3 analyzes solution curves without solving the corresponding differential
equation.

1.1 BASIC CONCEPTS AND DEFINITIONS

The derivative dy/dx of a function y = f(x) is itself another function. For example,
the exponential functiony = e is differentiable for all real numbers x and has first
derivative dy/dx = 6xe3*”. We can replace 3 on the right-hand side of the previous
equation by the symbol y so that the equation for the derivative becomes
% = 6xy. (1.1.1)
Now imagine you handed (1.1.1) to your differential equations instructor and asked
them what function was represented by the symbol y. Without any knowledge of
how the equation was constructed, your instructor could easily recover the original
exponential function.
Equations such as (1.1.1) that contain one or more derivatives of an unknown function
are referred to as differential equations. Of course, there are many uses for these types
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2 Chapter 1 Introduction

of equations outside of the classroom, too. Assumptions made about real-life systems
frequently involve the rate of change of one or more of the variables being studied.
This means that in order to construct a mathematical model to provide a mathematical
description of the system, a differential equation or a system of differential equations
may be required.

Much of calculus is devoted to learning mathematical techniques that are applied
in later courses in mathematics and the sciences. However, you wouldn’t have time
to learn much calculus if you insisted on seeing a specific application of every topic
covered in the course. Similarly, much of this book is devoted to methods that can
be applied in later courses. Only a relatively small part of the book is devoted to the
derivation of specific differential equations from mathematical models, or to relating the
differential equations that we study to specific applications. In this section, we examine
an application that you have probably encountered in a previous math course and then
discuss some basic definitions and terminology; in the next section, we will discuss a
few more applications.

It is rare for a mathematical model of an applied problem to capture every nuance
of the situation being studied. This is because simplifying assumptions are usually
required to obtain a mathematical problem that can be solved. If the results predicted by
the model do not agree with physical observations, the underlying assumptions of the
model must be revised until a satisfactory agreement is obtained.

To summarize, a good mathematical model is a balance between two important
properties.

e It is simple enough for the mathematical problem to be solved.

* It is complex enough to represent the actual situation well enough for the solu-
tion to the mathematical problem to predict outcomes within a useful degree of
accuracy.

Population Growth and Decay

Let us consider a mathematical model that represents population growth and decay. The
number of members of a population (people in a given country, bacteria in a laboratory
culture, wildflowers in a forest, etc.) at any given time t must be an integer. However, for
this mathematical model using differential equations to describe the growth and decay
of populations, we will use the simplifying assumption that the number of members
of the population can be regarded as a differentiable function P = P(t). (In particular,
recall that a differentiable function must be continuous.) We can achieve a good model
for population growth by assuming that the differential equation takes the form

P’ = aP, (1.1.2)

where a is a constant. This is referred to as the Malthusian model due to the work of
Thomas Robert Malthus, which he published in 1798 as An Essay on the Principle of
Population. The model assumes that the numbers of births and deaths per unit time are
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proportional to the size of the population. (If the constant of proportionality for the birth
rate is b and the constant of proportionality for the death rate is d, then P’ = bP — dP.
Simplified, a is the birth rate minus the death rate.)

You learned in calculus that for any nonzero real number c,

P =ce®t (1.1.3)

satisfies (1.1.2). This means that a single differential equation can possess an infinite
number of solutions corresponding to an unlimited number of choices for the parameter
c. A particular solution is one that is free of parameters. To find the particular solution,
we would need to know the population Py at an initial time, say t = 0. Setting t = 0 in
(1.1.3) yields P(0) = c, so if we relabel c as Py the particular solution would be

P(t) = Poeat.
Notice that
. oo ifa>0,
tlgxgoP(t) o { 0 ifa<O0;

that is, this model predicts that the population will approach infinity if the birth rate
exceeds the death rate and that it will approach zero if the death rate exceeds the birth
rate.

To better understand the limitations of the Malthusian model, suppose we model
the population of a country starting from a time t = 0 when the birth rate exceeds
the death rate (so a > 0). If we know that the country’s resources in terms of space,
food supply, and other necessities of life can support the existing population, then the
prediction P = Pye®t will be reasonably accurate as long as it remains within the limits
that the country’s future resources can support. However, the model must inevitably
lose validity when the prediction exceeds these limits. (If nothing else, eventually there
won’t be enough space for the predicted population!)

This flaw in the Malthusian model suggests the need for a revised model that accounts
for limitations of space and resources. Indeed, more complex models for population
growth have been designed that better agree with physical observations of human
populations. However, at the time of its publication, the Malthusian model turned out
to be a reasonably accurate prediction of the United States population during the first
half of the nineteenth century. The Malthusian model is still used today to predict the
growth of small populations over short intervals of time.

The equation created in the opening discussion (1.1.1) and the Malthusian model
of population growth (1.1.2) are both differential equations with solutions involving
exponential functions. Naturally, there are differential equations that are much more
complicated! Just as a student in an algebra course learns to solve equations such as
x2 4 3x+ 1 = 0 to determine the unknown number ¥, a student in a differential equations
course learns to solve equations such as y” + 3y’ + 1 = 0 to determine the unknown
function y. Let us begin the journey with some useful definitions and terminology.

The order of a differential equation is the order of the highest derivative that it contains.
A differential equation is an ordinary differential equation if it involves an unknown func-
tion of only one variable, or a partial differential equation if it involves partial derivatives
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of a function of more than one variable. For now we’ll consider only ordinary differential
equations, and we’ll just call them differential equations. In this text, all variables and
constants are real unless stated otherwise.

The simplest differential equations are first order equations of the form

dy

dx
where f can be solved explicitly as a function of x. (The notation on the left is referred
to as Leibniz notation, and the one on the right is referred to as prime notation, Lagrange
notation.) We already know from calculus how to find many functions that satisfy this
kind of equation. For example, if

f(x) which can also be written as, y’ = f(x),

then
. x4
yJ'xddel—i—c,

where c is an arbitrary constant. For higher order differential equations where n > 1 we
can find functions y that satisfy equations of the form

y™ = f(x) (1.1.4)

by repeated integration. Again, this is a calculus problem. (Recall that y(™) denotes the
ntM derivative of y.)

Except for illustrative purposes in this section, there’s no need to revisit differential
equations like (1.1.4). Instead, we'll usually consider differential equations that can be
written in the normal form

y™ =Fx,y,y’,..,ym), (1.1.5)
Here are some examples:
dy X2 =0 (first order),
dx
d
d—g +2xy? = —2 (first order),
d? d
d—xg + Qd—g +y = 2x (second order),
xy” +y? = sinx (third order),
y™axy' +3y = x (nt" order).

Although none of these equations is written as in (1.1.5), all of them can be written in
this form:

Yy = x2

y/ = _2_2Xy2a

Yy’ = 2x—-2y' -y,
" Sinx—92

Y = T

y™ = x—xy’—3y.
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Solutions of Differential Equations

A solution of a differential equation is a function that satisfies the differential equation on
some interval. When we think of the solution to a differential equation, we must always
simultaneously consider the interval on which it exists! The interval is called the domain
of the solution and can be an open interval with bounds such as (a, b), a closed interval
with bounds such as [a, b], an open interval that is unbounded such as (a, o), and so
on. For simplicity, we will refer to the domain of the solution as an open interval. More
precisely, y is a solution of (1.1.5) on (a, b) if y is n times differentiable on (a, b) and

y ™) = Fioyd,y (6, -y ()

for all x in the interval (a,b). (We will abuse the notation a bit and allow (a,b) to
represent intervals such as (0o, b), (a, 00), and (—o0, 00).)
Functions that satisfy a differential equation at isolated points are not interesting. For
example, y = x2 satisfies
xy’ +x% =3x

if and only if x = 0 or x = 1, but it’s not a solution of this differential equation because
it does not satisfy the equation on an open interval. Also uninteresting is any solution
that is identically zero on an interval; such a solution is said to be a trivial solution. For
example, the equation y” — 2y’ + y = 0 has the trivial solution y = 0 on the interval
(00, 00).

The graph of a solution y of a differential equation is a solution curve. Notice that y
must be continuous on the domain of the solution since it is known to be differentiable
there. This means there may be a difference between the graph of the function y and the
graph of the solution y. Again, the solution to a differential equation must always be
accompanied by the domain of the solution.

Example 1.1.1 Verify that

X
= — 4+ — 1.1.6
y=5+- (1.1.6)

is a solution of
xy' +y =x (1.1.7)

on (0, co0).

Solution Notice that y is not defined when x = 0. So although the domain of the
function y is the set of all real numbers other than 0, the domain of the solution y is
restricted to a single open interval that does not contain x = 0.

Now, substituting (1.1.6) and its derivative

, 2x 1

V=g



6 Chapter 1 Introduction

into (1.1.7) yields

3 x2 3

for all x # 0. This simplifies to x?, which is the right-hand side of (1.1.7). Therefore y
is a solution of (1.1.7) on (0, o). Alternatively, we could have taken the domain of the
solution to be (—o0, 0). In either case, we use the largest open interval possible for the
domain of the solution. |

Figure 1.1 shows the graph of (1.1.6). The portion of the graph on (0, o) is a solution
curve of (1.1.7), as is the part of the graph on (—o0, 0).

xy'(x) +y(x) =x <2X—1> + <X2—|—i>

10 1 o
y=7% T3
5 1
4 2 9 4
_5 1

2
1
Figure1.1y = % + X

Example 1.1.2 Show that if ¢; and ¢y are constants then

y=(cy+cox)e *+2x—4 (1.1.8)

is a solution of
y’'+2y +y=2x (1.1.9)

on (—oo, 00).

Solution Differentiating (1.1.8) twice yields
Yy ' =—(c1+cox)e X +coe X+ 2

and

y” = (c1 +cox)e ™ —2coe *.
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Substituting these into (1.1.9) gives us

X

y"+2y'+y = (c1+cax)e X —2coe”
+2 [—(01 +cox)e” * 4 coe X+ 2}
+(cp +eox)e ¥ +2x—4
= (1—24+1)(cy+cox)e ¥+ (—2+42)coe ¥

+442x —4
= 2x
for all values of x. Therefore y is a solution of (1.1.9) on (—oo, co). [ |

Example 1.1.3 Find all solutions of

ym) = e, (1.1.10)
Solution Integrating (1.1.10) yields
2x
U(n_l) = 67 + ki,

where k; is a constant. If n > 2, integrating again yields

e2x
y(“_m — T + k1x + ko.
If n > 3, repeatedly integrating yields
2x n—1 n—2
e X X
= ——+ki—— tk otk 1.1.11
Yo T T T T T (111D

where ki, ko, ..., kn are constants. This shows that every solution of (1.1.10) has the form

(1.1.11) for some choice of the constants ki, ko, ..., kn. On the other hand, differentiating

the function y in (1.1.11) n times shows that if ki, ko, ..., kn, are arbitrary constants, then

y satisfies (1.1.10). n
Since the constants ki, k, ..., kn in (1.1.11) are arbitrary, so are the constants

k1 Ko
m—1)"(n—=2)""

-k

Therefore Example 1.1.3 shows that all solutions of (1.1.10) can be written as

2x
O E A
Y= omn 1 2 n )
where we renamed the arbitrary constants in (1.1.11) to obtain a simpler form. Keep
in mind that two individuals correctly solving a differential equation may arrive at



8 Chapter 1 Introduction

dissimilar expressions for their answers. This can be due to constants that have been
relabeled, algebraic simplification, or application of trigonometric identities.

Initial Value Problems

In Example 1.1.3 we saw that the differential equation y(™ = e?* has an infinite family
of solutions that depend upon the n arbitrary parameters cy, co, ..., cn. In the absence of
additional conditions, there’s no reason to prefer one solution of a differential equation
over another. However, we'll often be interested in finding a solution of a differential
equation that satisfies one or more specific conditions. The next example illustrates this
using a process learned in calculus.

Example 1.1.4 Find a solution of

such thaty(1) = 2.

Solution From calculus, we know that the solutions of y’ = x? are
A
y="-+c (1.1.12)

To determine a value of ¢ such that y(1) = 2, we substitute x = 1 and y = 2 to obtain

Therefore the required solution is

=~

X 7
Tt
|

Figure 1.2 shows the graph of this solution. Recall from algebra that a nonzero value of
c in (1.1.12) results in a vertical translation of ¢ units. Imposing the condition y(1) = 2 is
equivalent to requiring the graph of y to pass through the point (1, 2), which determines
the specific vertical translation required.

We can rewrite the problem considered in Example 1.1.4 more succinctly as

y' =x" y)=2

This type of problem is referred to as an initial value problem, and the requirement y(1) = 2
is an example of an initial condition. Initial value problems can also be posed for higher
order differential equations. For example,

y"—2y'+3y=¢*, y(0)=1, y'(0)=2 (1.1.13)

is an initial value problem for a second order differential equation where y and y’ are
required to have specified values at the same point, in this case at x = 0. In general, an
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initial value problem for an n'" order differential equation requires y and its first n — 1
derivatives to have specified values at some point xo.

We’ll denote an initial value problem for a differential equation by writing the initial
conditions after the equation, as in (1.1.13). For example, we would write an initial value
problem for an nt™ order differential equation as

y ™ =f Y,y oy ) y(xe) =Ko,y (x0) =Ky ey (x0) = K
(1.1.14)
Consistent with our earlier definition of a solution of a differential equation, we say that
y is a solution of the initial value problem (1.1.14) on (a, b) if y is n times differentiable
on the interval (a, b) that contains xg,

y™(x) = flxyx),y' (%), ...,y (%)

for all x in the interval (a, b), and y satisfies the initial conditions in (1.1.14). The domain
of the solution is taken to be the largest open interval that contains xo on which y is
defined and satisfies the differential equation.

Example 1.1.5 In Example 1.1.4 we saw that

x4 T
4

is a solution of the initial value problem
y' =x% y)=2

Since the function y is defined for all x, the domain of the solution is (—oo, 00).
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| ]
Example 1.1.6 In Example 1.1.1 we verified that
1
Y= 3 X
is a solution of
' +y ="
on (0, 00) and on (—o0, 0). Now consider the initial value problem
/ 2 2
xy' +y=x7, y(-1)= —3 (1.1.15)

The domain of the solution of (1.1.15) is (—o0, 0), since this is the largest interval that
contains xg = —1 on which (1.1.15) is defined.



Section 1.1 Basic Concepts and Definitions

1.1 Exercises

11

1.

2.

State the order of the differential equation.

dy  _dy d’y

SY 10808 120
(a) 0 + o O +x
@y’ —y"=0

(b) y//
(d) y//y _

— 3y’ +2y=x"

(yH2=2

Verify that the function is a solution of the differential equation. Be sure to provide
an appropriate domain for the solution.

(a)
(b)
()
(d)
(e)
(f)

(g)
(h)

Y
Y

Y

y=(14ce>/2);(1—

Y

y = (c1 +cox)eX +sinx +x%;  y”
2

yzcle"+02x+;; (1—

y =

X

=ce?; y' =2y
—ﬁ—l-g' xy +y=x*
_3 X7 U y_

1 —x2 ’
:§+ce Yy 2xy =x

Ce—x2/2)—1

3
= tan < —|—c>; y =x*(1+y?

3

x1/2(c; sinx + co cosx) + 4x + 8;

1
2y” 4+ xy’ +( 4>y:4x3+8x2+3x—2

Find all solutions of the differential equation.

@ y' =-—x (b) y’' =—xsinx

(© y' =xlnx (d y” =xcosx

() y” =2xe® ) y” =2x+sinx+ e~
(g) y//,:—COSX (h) y/”:—X2+€X
i) y///:7e4x

Solve the initial value problem.

@ y'=-—xe*, y(0)=1

(b) y' =xsinx? vy <\/§> =1

(0 y’'=tanx, y(m/4)=3

@ y”=x' y@2=-1, y'(2)=-1

(e y” =xe*™, y(0)=7, y'(0)=1

) y” =—xsinx, y(0)=1, y’(0)=-3

® y” =x% y0)=1 y'(0)=-2 y"(0)=3
(h) y” :2+51n2x, y(0)=1, y’(0)=-6, y”(0)=
G0 y”=2x+1, y@2) =1, y'(2)=-4, y"(2) =7

2y’ +x(y?—-1)=0

— 2y’ +y =—2cosx +x? —4x +2
)y +xy’ —y=4(1—x—x})x3

3
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Verify that the function is a solution of the first order initial value problem.

Tt
(@ y=xcosx; Yy’ =cosx—ytanx, /4) = —=
Y Y ytanx, y(m/4) VG
_1+2lnx 1 ,_x2—2x2y+2 3
(b) Y=—nm T3 Y =3 9(1)—5
2
(©) y:tan<X2>; y' =x(1+y?), y(0)=0
2 —yly+1)
d y=——; y =32 1) =—2
@ y=_— Yy > 4

Verify that the function is a solution of the second order initial value problem.

3xy’ — 4

@ y=x*1+Inx); y”z%, y(e) =2¢%, y'(e) =5e

x2 x2—xy'+y+1 1 5
b) y="gtx—1 y' =" y)=g y)=

2 — 1)y —x(x*+ 1)y’
= 1 271/2 //:(X :1
© y=010+x)""% y 1) , y0) =1,
y’'(0)=0

x? " 2(X+9)(Xy/_y) /

@ y=7—13 y'= e . y(1/2)=1/2, y'(1/2)=3

Let a be a nonzero real number.

(@) Verify that if c is an arbitrary constant then

y=(x—0)° (A)

is a solution of

y' =ayle /e (B)

on (c, 00).

(b) Suppose a < 0 or a > 1. Can you think of a solution of (B) that isn’t of the

form (A)?

(@) Verify that if ¢ is any real number then

y=ci+ex+2c+1 (A)

satisfies

—(x4+2)+/x2+4x+ 4

on some open interval. Identify the open interval.
(b) Verify that
—x(x +4)

Y1 = 4

also satisfies (B) on some open interval, and identify the open interval. (Note
that y; can’t be obtained by selecting a value of c in (A); such an extra solution

is called a singular solution.)
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1.2 APPLICATIONS INVOLVING DIFFERENTIAL EQUATIONS

Differential equations can be used to model the behavior of a variety of real-life systems
found in fields such as economics, physics, medicine, and sociology. (The Malthusian
model discussed in the previous section is from a field referred to as political economy.)
In this section, we use differential equations to model dynamical systems that change or
evolve with the flow of time. In such applications, t is often used to represent time as
the independent variable. So if y is a function of t, y’ denotes the derivative of y with
respect to t; that is,
]
YT ar

For a dynamical system, a solution of its model gives the state of the system: different
values of the independent variable t give values for the dependent variable (or variables)
that describe the system in past, present, and future states. We will assume all variables
are defined over a continuous range of time.

Mathematical models of bodies in motion provide a good example of how the inde-
pendent variable t represents elapsed time. Construction of a mathematical model for
the motion of a falling object requires the use of a second order differential equation.
In this case, the initial conditions of the initial value problem are the position and the
velocity of the object at the start of the experiment.

Free Fall Under Constant Gravity

When an object falls under the influence of gravity near Earth’s surface, it can be assumed
that the magnitude of the acceleration due to gravity is a constant, g. To simplify the
model, we will assume that gravity is the only force acting on the object. If the altitude
and velocity of the object at time t = 0 are known, then the model takes the form of an
initial value problem.

Let’s denote the altitude of the object at time t as y(t). Since the acceleration of the
object has constant magnitude g and is in the downward (negative) direction, y satisfies

the second order equation
1"

Yy =-9,
where the prime notation indicates differentiation with respect to t. If yo and vy denote
the altitude and velocity when t = 0, then y is a solution of the initial value problem

1

y"=-g, y(0)=vyo, y'(0)=vo. (1.2.1)
Although the emphasis in this section is on creating mathematical models rather than

solving them, the solution to this initial value problem should be familiar from physics
and/or calculus. Integrating (1.2.1) twice yields

/

y = —gt+tc,
2

gt
y = —7+Clt+C2-
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By substituting the initial conditions y(0) = yo and y’(0) = v into these two equations,
we find that ¢; = vp and ¢z = yg. (Try it!) Therefore the solution of the initial value

problem (1.2.1) is
12

y :—97 +vot + yo.

This equation describes the altitude of the object as a function of time.
Spread of an Epidemic

An epidemic is a widespread occurrence of an infectious disease in a given community
at a particular time. Consider a contagious illness such as the flu that is spread by
interactions among different types of people: let x(t) denote the number of infected
people and let y(t) denote the number of people who are susceptible but not yet infected.
A reasonable model for the spread of a disease assumes that the number of people
infected changes at a rate proportional to the number of encounters between these two
groups of people; that is, assume the number of encounters is jointly proportional to
x(t) and y(t). In this case

= =k, (1.2.2)

where k is the constant of proportionality. Now suppose the community has a fixed
population of n people and that one infected person enters the community. This means
that x +y = n + 1 provides a relationship between the two groups of people. Solving
this relationship for y and then substituting this into equation (1.2.2) gives us the model

% =kx(n+1—x). (1.2.3)

This becomes an initial-value problem by noting the condition that x(0) = 1.

Radioactive Decay Combined with Growth

Experimental evidence shows that radioactive material decays at a rate proportional
to the mass of the material present. This means that the mass Q(t) of a radioactive
material present at time t can be represented mathematically by the same model as
the one we used for population growth. In this model, however, a negative constant
of proportionality must be used. (This value for a given radioactive material must be
determined by experimental observation.) For simplicity, we will replace the negative
constant with a positive number k that we will call the decay constant of the material. In
summary, if the mass of the material present at t = tg is Qo, the mass present at time t is
the solution of the initial value problem

Q'=-kQ, Qlto) =Qu.

Now suppose that the radioactive material is a drug administered intravenously at
a constant rate of a units of mass per unit time. Assuming that Q(0) = Qo, we can
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construct an initial value problem to model the mass Q(t) of the substance present at
time t. The basic concept is that

Q' = rate of increase of Q — rate of decrease of Q.

The rate of increase is the constant a. Since Q is radioactive with decay constant k, the
rate of decrease is kQ. Therefore

Q,:a_k'Qv

which is a first order differential equation. Rewriting it and imposing the initial condition
shows that Q is the solution of the initial value problem

Q' +kxQ=a, Q(0)=Qo. (1.2.4)

Mixing Problems

In mixing problems, a saltwater solution with a given concentration (weight of salt per
unit volume of solution) is added at a specified rate to a tank that initially contains
saltwater with a different concentration. The problem is to determine the quantity of
salt in the tank as a function of time. To construct a tractable mathematical model for
these systems, we can assume that the mixture is stirred in such a way that the salt is
always uniformly distributed throughout the mixture. We look at two scenarios where
the newly mixed solution is then drained from the second tank at a constant rate: in
the first scenario, the rate of water entering the tank is the same as the rate of water
leaving the tank; in the second scenario, the two rates differ. Keep in mind that we are
interested in the amount of salt present in the tank — not the rates at which solutions
enter and drain (although these rates are an important part of the model). Similar to the
previous discussion on radioactive decay combined with growth, we must account for
simultaneous rates of increase and decrease in the amount of salt present.

For the first scenario, suppose a tank initially contains 40 pounds of salt dissolved in
600 gallons of water. Starting at to = 0, water that contains 1/2 pound of salt per gallon
is poured into the tank at the rate of 4 gal/min while the mixture is drained from the
tank at the same rate. (See Figure 1.1.)

_]

4 gal/min
0.51b/gal ~ .

600 gal

— > 4gal/min

Figure 1.1 A mixing problem

To find a differential equation for the quantity Q(t) of salt in the tank at time t > 0, we
must use the given information to derive an expression for Q’. Here Q' is the rate of
change of the quantity of salt in the tank that changes with respect to time; thus, if rate in
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denotes the rate at which salt enters the tank and rate out denotes the rate by which it
leaves, then
Q' = rate in — rate out. (1.2.5)

The rate in is
(; lb/gal> x (4 gal/min) = 2 Ib/min.

Determining the rate out requires a little more thought. Dimensional analysis is useful

to see that
rateout = (concentration) x (rate of flow out)

= (Ib/gal) x (gal/min)

@ x 4.
600

In words, we’re removing 4 gallons of the mixture per minute, and there are always
600 gallons in the tank (since the amount of water coming in and the amount of water
going out are the same). Reduce the fraction to lowest terms to see that we’re removing
1/150 of the mixture per minute, and - since the salt is evenly distributed in the mixture -
we are also removing 1/150 of the salt per minute. Therefore, if there are Q(t) pounds
of salt in the tank at time t, the rate out at any time t is Q(t)/150. We can now rewrite
(1.2.5) as a first order differential equation with the initial condition Q(0) = 40.

/
Q
Q' =2 507 Q(0) =40 (1.2.6)
In the second scenario, we look at a mixing problem where the rate of water coming in
and the rate of water going out are different. The basic model, however, is still the same.
Suppose a 500-liter tank initially contains 10 grams of salt dissolved in 200 liters of
water. Starting at to = 0, water that contains 1/4 grams of salt per liter is poured into
the tank at the rate of 4 liters/min and the mixture is drained from the tank at the rate
of 2 liters/min. (See Figure 1.2.) The task is to find an initial value problem whose
solution describes the quantity Q(t) of salt in the tank at any time t prior to the time
when the tank overflows. (Notice that there is more water coming into the tank than
there is going out, so that the model is valid for only a certain period of time.)

4L/min J

0.25g/L .

2t+200L

—— 2L/min

-

Figure 1.2 Another mixing problem

We first determine the amount W(t) of solution in the tank at any time t prior to
overflow. Since W(0) = 200 and we're adding 4 liters/min while removing only 2
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liters/min, there’s a net gain of 2 liters/min in the tank; therefore,
W(t) = 2t + 200.

Since W(150) = 500 (the capacity of the tank is 500 liters), this formula is valid only
when 0 < t < 150.

Now let Q(t) be the number of grams of salt in the tank at time t, where 0 < t < 150.
As in the previous example,

Q' = rate in — rate out.

The rate in is
(i g/liter) x (4 liters/min ) = 1 g/min. (1.2.7)

To determine the rate out, we observe that since the mixture is being removed from the
tank at the constant rate of 2 liters/min and there are 2t 4+ 200 liters in the tank at time
t, the fraction of the mixture being removed per minute at time t is

2 1
2t +200 t+ 100

Since the salt is evenly distributed in the mixture, we’re removing this same fraction of
the salt per minute. Therefore, since there are Q(t) grams of salt in the tank at time t,

Q(t)

t t= .
rate out = 100

(1.2.8)

Substituting (1.2.7) and (1.2.8) into the basic model (1.2.5) and imposing the initial
condition Q(0) = 10 gives us the desired initial value problem.

. Q
t 4100’

Q =1 Q(0) = 10 (1.2.9)

The RLC Circuit

In an RLC series circuit, the letters R, L, and C represent resistance, inductance, and
capacitance, respectively. The values of R, L, and C are generally constants; the changing
quantities in the system are the current I(t) and the charge Q(t) on the capacitor. For
reference, refer to the schematic shown in Figure 1.3.

A switch is used to control the flow of current in an RLC circuit: nothing happens
while the switch is open, but current flows when the switch is closed to create a closed
circuit. The current flows in a closed circuit due to a difference in electrical potential, or
voltage. The battery or generator in Figure 1.3 creates a difference in electrical potential
between its two terminals, one of which is negative and one of which is positive. This
impressed voltage is represented by the function E = E(t). Differences in potential also
occur at the resistor, induction coil, and capacitor in Figure 1.3 and are referred to as
voltage drops. (Note that the two sides of each of these components are also identified
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Resistor R

AVAVAY,
Battery E(t) G) /> —— Capacitor C
la I

YOV
Induction Coil L
Figure 1.3 An RLC circuit

as positive and negative. The voltage drop across each component is defined to be the
potential on the positive side of the component minus the potential on the negative side.
This terminology is somewhat misleading, since “drop” suggests a decrease even though
changes in potential are signed quantities and therefore may be increases. Nevertheless,
we’ll go along with tradition and call them voltage drops.)

The voltage drop across the resistor in Figure 1.3 is given by

Vi = IR, (1.2.10)

where I is current and R is a positive constant that represents the resistance of the resistor.
The voltage drop across the induction coil is represented by Vi and is given by

L% =LI, (1.2.11)

where L is a positive constant that represents the inductance of the coil.
A capacitor stores electrical charge Q = Q(t), which is related to the current in the

circuit by the equation
t

Q1) = Qo +j I(x) dr, (12.12)

0
where Q) is the charge on the capacitor at the initial time t = 0. The voltage drop across
a capacitor is given by

Ve = (1.2.13)

C’
where C is a positive constant that represents the capacitance of the capacitor.
The table on Electrical Units lists the unit for each quantity needed to discuss an RLC
circuit. The units are defined so that
lvolt = 1lampere-1ohm
lvolt = lampere-lohm
= lhenry - 1ampere/second

= 1coulomb/ farad

and

lampere = 1coulomb/second.
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Electrical Units

Symbol Name Unit
E Impressed Voltage volt
I Current ampere
Q Charge coulomb
R Resistance ohm
L Inductance henry
C Capacitance farad

According to Kirchoff’s law, the sum of the voltage drops in a closed RLC circuit equals
the impressed voltage. Therefore, from (1.2.10), (1.2.11), and (1.2.13),

LI’ + RI+ éQ = E(t). (1.2.14)

This equation contains two unknowns, the current I in the circuit and the charge Q on
the capacitor. However, (1.2.12) implies that Q’ = I, so (1.2.14) can be converted into the
second order differential equation

LQ" +RQ"+ éQ = E(t). (1.2.15)

In summary, an initial value problem to represent an RLC circuit has the form

1Q"+RQ' + SQ=E(t), QO)=Q. Q0)=T, (1.2.16)

where Qg is the initial charge on the capacitor and Iy is the initial current in the circuit. To
find the current flowing in an RLC circuit, we solve (1.2.16) for Q and then differentiate
the solution to obtain I.

For example, suppose an RLC circuit has resistance R = 40 ohms, inductance L = .2
henrys, and capacitance C = 10~° farads. If we know that a current of 2 amperes flows
at time t = 0 and that the initial charge on the capacitor is 1 coulomb, we can create a
mathematical model to find the current flowing in the circuit at any time t > 0.

The equation for the charge Q is

%Q” +40Q" +10000Q = E(t).
Therefore, we must solve the initial value problem
%Q” +40Q’ +10000Q = E(t), Q(0)=1, Q'(0)=2.
The desired current is the derivative of the solution of this initial value problem.

1.2 Exercises
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Use the Malthusian model from Section 1.1 to set up a differential equation for
the population P(t) of a colony of rabbits where the birth rate, represented by the
constant b > 0, is ten times that of the death rate, represented by the constant
d>0.

Use the Malthusian model from Section 1.1 to set up a differential equation for
the population P(t) of a country where the birth rate b > 0 is proportional to the
population present at time t but the death rate d > 0 is proportional to the square
of the population present at time t.

Determine a differential equation for the population P(t) of a small country where
people immigrate into the country at a constant rate a > 0. (Use the Malthusian
model from Section 1.1.)

Determine a differential equation for the population P(t) of a large country where
people emigrate out of the country at a constant rate b > 0. (Use the Malthusian
model from Section 1.1.)

Suppose an object is launched from a point 320 feet above the earth with an initial
velocity of 128 ft/sec upward, and the only force acting on it thereafter is gravity.
(Use g = 32 ft/sec?.) Construct an initial value problem that models the motion of
the object.

Suppose a roofer accidentally drops a hammer from the roof of a two-story building
that is 8 meters above the earth, and the only force acting on it thereafter is gravity.
(Use g = 9.8 m/sec?.) Construct an initial value problem that models the motion
of the object.

After spring break, a student returns to campus infected with the flu. Suppose
there are 4000 students on campus, none of which have been exposed to this flu.
Construct an initial value problem for the number of people x(t) who become
infected if the rate at which the illness spreads is proportional to the number of
encounters between those students who have the flu and those who have not yet
been exposed to it.

A couple attends a large family reunion infected with Severe Acute Respiratory
Syndrome (SARS). Suppose there are 84 family members at the reunion, none
of which have been exposed to this airborne illness. Construct an initial value
problem for the number of people x(t) who become infected if the rate at which
the illness spreads is proportional to the number of encounters between those
family members who have SARS and those who have not yet been exposed to it.

An employee at a large company shares a private video by email with a co-worker,
and the video goes “viral”. Assume the company has a fixed population of n
employees, none of whom have previously seen the video. Construct an initial
value problem to represent the number of people x(t) who have seen the video if
we assume the rate at which the video is spread throughout the company is jointly
proportional to the number of people who have seen it and the number of people
y(t) who have not seen it.
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A pair of disgruntled employees begin a rumor about Company XYZ in the break
room one day. Assume the company has a fixed population of n employees, none
of whom have previously heard the rumor. Construct an initial value problem to
represent the number of people x(t) who have heard the rumor if we assume the
rate at which the rumor is spread throughout the company is jointly proportional
to the number of people who have heard it and the number of people y(t) who
have not heard it.

A candymaker makes 500 pounds of candy per week, while his large family eats
the candy at a rate equal to Q(t)/10 pounds per week, where Q(t) is the amount
of candy present at time t. Find an initial value problem whose solution is Q(t)
for t > 0 if the candymaker has 250 pounds of candy at time t = 0.

A wizard creates gold continuously at the rate of 1 ounce per hour, but an assistant
steals it continuously at the rate of 5% of however much is there per hour. Construct
an initial value problem whose solution is W(t), the number of ounces that the
wizard has at time t. Assume the wizard begins with 1 ounce of gold.

A process creates a radioactive substance at the rate of 1 gram per hour, and the
substance decays at an hourly rate equal to 1/10 of the mass present (expressed
in grams). Assuming that there are initially 20 grams, construct an initial value
problem to find the mass P(t) of the substance present at time t.

A tank initially contains 40 gallons of pure water. A water solution with 1 gram of
salt per gallon is added to the tank at 3 gal/min, and the resulting solution drains
out at the same rate. Find an initial value problem whose solution is the quantity
Q(t) of salt in the tank at time t > 0.

A tank initially contains a solution of 10 pounds of salt in 60 gallons of water.
Water with 1/2 pound of salt per gallon is added to the tank at 6 gal/min, and the
resulting solution drains at the same rate. Find an initial value problem whose
solution is the quantity Q(t) of salt in the tank at time t > 0.

A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A
salt solution with 1/4 pound of salt per gallon is added to the tank at 4 gal/min,
and the resulting mixture is drained out at 2 gal/min. Find an initial value problem
whose solution is the quantity Q(t) of salt in the tank any time before it overflows.
Be sure to include the domain of the solution.

A 1200 gallon tank initially contains 40 pounds of salt dissolved in 600 gallons of
water. Starting at to = 0, water that contains 1/2 pound of salt per gallon is added
to the tank at the rate of 6 gal/min and the resulting mixture is drained from the
tank at 4 gal/min. Find an initial value problem whose solution is the quantity
Q(t) of salt in the tank any time before it overflows. Be sure to include the domain
of the solution.

Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 3 ohms, L = .1 henrys, C = .01 farads, Q¢ = 0 coulombs,
and Iy = 2 amperes.
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19. Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 2 ohms, L = .05 henrys, C = .01 farads, Qo = 2
coulombs, and Iy = —2 amperes.

20. Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 6 ohms, L = .1 henrys, C = .004 farads, Qo = 3
coulombs, and Iy = —10 amperes.

21. Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 4 ohms, L = .05 henrys, C = .008 farads, Qo = —
coulombs, and Iy = 2 amperes.

1.3 ANALYZING SOLUTION CURVES WITHOUT SOLVING EQUATIONS

Some differential equations have no solutions; for others, it’s impossible to find explicit
formulas for solutions. Even if there are such formulas, they may be so complicated that
they’re useless. In such cases we may resort to graphical or numerical methods to get
some idea of how the solutions to the given equation behave.
The next chapter will address the question of the existence of solutions of a first order
equation
y' =f(x,y). (1.3.1)

In this section we'll simply assume that (1.3.1) has solutions and discuss graphical
methods for approximating them.

Direction Fields

Recall that a solution of (1.3.1) is a function y = y(x) such that

y'(x) = f(x,y(x))

for all values of x in some interval, and that the graph of y(x) is referred to as a solution
curve. In the more general case, we may be interested in a graph of the solution(s)
that need not be a function. Such a curve C is called an integral curve of a differential
equation: that is, every function y = y(x) whose graph is a segment of C is a solution of
the differential equation. Thus, any solution curve of a differential equation is an integral
curve, but an integral curve need not be a solution curve. This means an integral curve
is either the graph of a solution or is made up of segments that are graphs of solutions.

Example 1.3.1 If a is any positive constant, the circle
x“+y“=a (1.3.2)

is an integral curve of
y = ——. (1.3.3)
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To see this, consider the two functions whose graphs are segments of (1.3.2) are
yr=vaz—x2 and ys=-—-a2—x2

We leave it to you to verify that these functions both satisfy (1.3.3) on the open interval
(—a, a). However, (1.3.2) is not a solution curve of (1.3.3), since it’s not the graph of a
function.

|

Not being able to solve an equation of the form (1.3.1) is equivalent to not knowing
the equations of its integral curves. However, it is easy to calculate the slopes of these
curves because they are first order differential equations. To be specific, the slope of an
integral curve of (1.3.1) through a given point (xo, yo) is given by the number f(xg, yo).
This is the basic idea behind direction fields.

If f is defined on a region R, we can construct a direction field for (1.3.1) in R by
drawing a short line segment through each point (x,y) in R with slope f(x,y). As a
practical matter, we can’t draw line segments through every point in R; rather, we select
a finite set of points to be representative of R. For example, suppose f is defined on the
closed rectangular region

R:{fa<x<b,c<y<dh

Choose equally spaced points in [a, b] so that
a=%xg <X <:+<Xm =Db;
Similarly, choose equally spaced points in [c, d] so that
c=yYo<yr<---<yn=d.
This creates a finite set of ordered pairs
(xi,y5), 0<i<m, 0<j<n,

that form a rectangular grid. (See Figure 1.1.) Through each point in the grid we draw
a short line segment with slope f(xi,y;). The result is an approximation to a direction
field for (1.3.1) in R. If the grid points are sufficiently numerous and close together, we
can draw approximate integral curves of (1.3.1) by drawing curves through points in the
grid. At each point, the solution curve should be tangent to the line segment associated
with that point in the grid.

Unfortunately, approximating a direction field and graphing integral curves in this
way is too tedious to be done effectively by hand. However, there is software for doing
this.

The combination of direction fields and integral curves provides insight into the
behavior of the solutions even if we can’t solve the differential equation. Figures 1.2a
and 1.2b show direction fields and solution curves for the differential equations

/ x* — 92

— I _ 2
y—m and y—1+Xy,
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which are both of the form (1.3.1). Notice that for both differential equations, f(x,y) is
continuous for all (x,y).

When a first order differential equation is such that f(x,y) is not continuous for all
(x,y), numerical methods can be limited. (A discussion of numerical methods is found
in the Appendix.) For example, they do not work for the equation

y' =—x/y (1.3.4)

if the region R contains any part of the x-axis, since f(x,y) = —x/y is undefined when
y = 0. Similarly, numerical methods will not work for the equation

2
Y’ x (1.3.5)

- 1—x2—y?
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if R contains any part of the unit circle x? + y? = 1, because the right side of (1.3.5) is
undefined if x? + y? = 1. However, we can still generate direction fields for these first
order differential equations.

Figure 1.3 shows a direction field and some integral curves for (1.3.4). As we saw in
Example 1.3.1, the integral curves of (1.3.4) are circles centered at the origin.
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. . . . . X
Figure 1.3 A direction field and integral curves fory’ = —g

Figure 1.4a shows a direction field and some integral curves for (1.3.5). The integral
curves near the top and bottom are solution curves. However, the integral curves near
the middle are more complicated. For example, Figure 1.4b shows the integral curve
through the origin. Two points from the circle x? + y? = 1 (a ~ .846, b ~ .533) are
marked on this integral curve at (a, b) and (—a, —b); at these points, the integral curve of
(1.3.5) has infinite slope. The integral curve in Figure 1.4b is comprised of three solution
curves of (1.3.5): the segment above the level y = b is the graph of a solution on (—o0, a),
the segment below the level y = —b is the graph of a solution on (—a, oo), and the
segment between these two levels is the graph of a solution on (—a, a).

Phase Portraits

Now we consider a special type of differential equation where the independent variable
does not appear in the equation. Such equations are said to be autonomous. For an
autonomous first order differential equation, (1.3.1) takes the form y’ = f(y). For such
equations, we can create a phase portrait that provides a geometric representation of the
solution curves. First, we show how to create a phase portrait for an autonomous first
order differential equation of the form

dy
Fv f(y), (1.3.6)

and then we discuss what it tells us about the solution curves. (Although it may be
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inconvenient to write, the Leibniz notation is helpful when representing these types of
equations since it clarifies which variable is the independent variable.)

To begin, find the real values ¢ such that f(c) = 0 in (1.3.6). Now consider the constant
function y(x) = c: if we substitute this function into (1.3.6), we see that both sides of the
equation will be zero. Therefore, y(x) = c is a constant solution of the autonomous first
order differential equation. In fact, the zeros of f(y) are the only constant solutions of
(1.3.6). A real value c that is a zero of f(y) is referred to as an equilibrium point, and the
corresponding function y(x) = c is referred to as an equilibrium solution,

Now we graph a vertical line to represent the y-axis and mark the equilibrium points
on it with a horizontal line. This divides the y-axis into intervals. To complete the phase
portrait, we use a value from each interval on the y-axis to determine the algebraic sign
of the derivative function f(y) on that interval and mark an appropriate arrow on the
corresponding interval of the y-axis.

Example 1.3.2 Find the equilibrium points of

dy _ B B
5—9(2 y)(4—vy) (1.3.7)

and use these to create a phase portrait of the autonomous first order differential equa-
tion.

Solution Using the Zero Product Property with f(y) = 0 gives

y(2—-y)4—y) =0,
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so there are equilibrium points aty = 0, y = 2, and y = 4. This creates four intervals on
the y-axis. For the interval where y > 4, we can test y = 5 in f(y) to get
dy

I =5(2—5)(4—-5).

Since the derivative has the value 15 > 0, any solution curve passing throughy = 5
must have the same positive slope, regardless of the value of x. In fact, any solution
curve in the region where y > 4 must have positive slope, although not necessarily with
a value of 15. (Test a few values of y to convince yourself, if needed.) We indicate this by
drawing an arrow that points up on the y-axis above y = 4. In a similar fashion, we can
test values in the other three intervals. (For example, f(3) < 0, f(1) > 0, and f(—1) < 0.)
Adding arrows to the remaining intervals completes the phase portrait. (See PHASE
PORTRAIT.) [ ]

INSERT FIGURE: PHASE PORTRAIT

The equilibrium points in a phase portrait divide the y-axis into intervals, and these
intervals on the y-axis divide the xy-plane into corresponding subregions. Within a
subregion, any nonconstant solutiony = y(x) of (1.3.6) must be continuous and therefore
cannot change signs algebraically. (Recall that the equilibrium points mark the location
of the zeros). This means that a nonconstant solution must be strictly monotonic — that is,
either continually increasing or continually decreasing — within the subregion. Functions
that are strictly monotonic cannot have relative extrema (maximum or minimum values),
nor can they be oscillatory. Knowing these facts about the nonconstant solutions of
an autonomous first order differential equation tells us a great deal about the solution
curves — without actually solving the equation!

Knowing that the graph of a nonconstant solution cannot cross the graph of an
equilibrium solution and that a nonconstant solution must be strictly monotonic suggests
asymptotic behavior near the equilibrium points. For example, in PHASE PORTRAIT
consider a nonconstant solution y(x) that is bounded above by the equilibrium point
¢ = 2 and bounded below by the equilibrium point ¢ = 0. In this region, the graph of
y(x) must approach the graph of the equilibrium solution y(x) = 2 as x — oo and must
approach the graph of the equilibrium solution y(x) = 0 as x — —oo since we know that
y(x) is continually increasing.

SAMPLE SOLUTION CURVES shows the phase portrait for (1.3.7) with the subregions
it creates in the xy-plane. (The subregions have been labeled for ease of reference.)
Sample solution curves are shown for each region.

INSERT FIGURE: SAMPLE SOLUTION CURVES

In the phase portrait for (1.3.7), the equilibrium point at y = 4 has arrows on either side
pointing away from y = 4. This means all nonconstant solutions of y(x) that start from
any initial point in R4 or R3 will move away from y = 4 as x values increase. Equilibrium
points such as this are said to be unstable. (For obvious reasons, this type of point is also
called a repeller.) On the other hand, the equilibrium point at y = 2 has arrows on either
side pointing toward y = 2. This means all nonconstant solutions of y(x) that start from
any initial point in Rz or Ry will move toward y = 2 as x values increase. Equilibrium
points such as this are said to be asymptotically stable. (This type of point is also called an
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attractor.) Other equilibrium points that attract from one side and repel from the other
are referred to as semi stable.

Many differential equations that model physical laws are autonomous because the
laws themselves do not change with the passing of time. The Malthusian model of
population growth discussed in the first section is an autonomous first order differential
equation where

dP

dt
Another model of population growth that accounts for limitations of space and resources
is the Verhulst model. This model uses the autonomous first order differential equation

aP.

dp
T aP(1 — «P), (1.3.8)
where both a and « are positive constants.

Recall that a flaw in the Malthusian model was that there was no limiting value to
the size of the population with the passing of time. We can use a phase portrait of the
Verhulst model to determine the limiting value of a population that grows according to
the model, without solving the differential equation itself. (You will learn how to solve
it later.)

Example 1.3.3 Find the equilibrium points of the Verhulst model

dp

T aP(1 — «P),
and use these to create a phase portrait of the autonomous first order differential equation.
Then identify any asymptotically stable equilibrium points.

Solution First set
aP(l1—-aP)=0

to find equilibrium points at P = 0 and P = 1/«. For this application based on population,
we need only concern ourselves with positive values of the dependent variable. This
means we need only two test values: P; between 0 and 1/«, and P > 1/c. For Py, we
choose half of 1/« since we do not know the numerical value of . Substituting 1/2«
gives

aP1(1 - OCPl) = 1/2(1P1

which we know is positive since a and Py are both positive. For P, we choose to double
1/, which is 2/«. Testing this value gives

aPQ(l — OCPQ) = —aP2

which we know is negative since a and P; are both positive. The phase portrait shows
that 1/« is an asymptotically stable equilibrium point. This means that all solution



Section 1.3 Analyzing Solution Curves without Solving Equations 29

curves will approach the horizontal asymptote P = 1/x as t increases, regardless of the
value of the initial population, Py. Sample solution curves are shown with the phase
portrait for the Verhulst model in VERHULST.

INSERT FIGURE: VERHULST
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1.3 Exercises

In Exercises 1-11 a direction field is drawn for the given equation. Sketch some integral curves.
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y' =x*(1+y?)
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9. y' =x—-yHx*—vy)
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11. y’ =sin(x —2y)

P 3S2AYNNNNSNIX S>> T A A AA AT >
P 2N NNNNNNDID>IFT AT AA AT 7 >
P 2NN NNNNDXADID>TIAT T A A A A 7 >
QP FAANNNNNARISIS> T T T A A AT T >
P2 2ANNNNNDND2>T T T A A 77 >
P ANNNNNNDNDSI>IFT A A A AT 7 >
P AN NNNNNNDSIS>ST T T AAA T T >
P 2NN NNNNDXD>I>T T AT A A AT 7 >
P SN NNNNNSDD>I>T T A AA AT T >
P 2ANXNNNNNNDXAD>2>T T 0 A A7 7 >
O;»&&\\\&&»»zﬂﬁﬂﬂﬁﬁz;
P 2NN NNNNDYD>2FPT T A A AT T T >
P XANNNNNNDAD>D>ST T A A A AT 7 >
P A NNNNNNDIAD>SIT T AAA AT T >
P A XNNNNNDNDXD>D>PT T AA A AT 7 >
P XANNNNNNDXID>FIT AT A A AT T >
—2§\X\\M\\»+azﬂﬁﬁﬁﬁﬂa$
P XANNNNNAXID>SFTT AT AT AT T >
P YA YNNNNNNDID>IFT T A A AT 7 >
> = N N N NN NSNS TAAAAT T T S
—2 0 2

A direction field for y’ = sin(x — 2y)

In Exercises 12-13 construct a direction field in the indicated rectangular region.
12. y'=yly—-1); {-1 2}

x<2, —2<y
13. y' ' =2-3xy; {-1 <

< <
< <

x <4, —4<y
In Exercises 14-21 find the equilibrium points and phase portrait of the given autonomous
first order differential equation. Classify each equilibrium point as asymptotically stable,
unstable, or semi-stable. By hand, sketch typical solution curves in each region of the plane
created by the graph of the equilibrium solution.

14. :4y—y2

dx
15. %:g3—2y2
16. P =y>-5x+6
17. ¥ =10+ 3y —y?
18. 4P =P(a—bP)
19. 4R =k(a—R)(b—R)
20. 4 —kFn+1-F)

21, M 4 M

dt 100



CHAPTER 2

FIRST ORDER EQUATIONS

“Begin at the beginning,” the King said gravely, “and go on till you come to the end:
then stop.”

— Lewis Carroll, Alice in Wonderland

IN THIS CHAPTER we study first order equations for which there are general methods
of solution.

SECTION 2.1 deals with linear equations, the simplest kind of first order equations. In
this section we introduce the method of variation of parameters. The idea underlying
this method will be a unifying theme for our approach to solving many different kinds
of differential equations throughout the book.

SECTION 2.2 deals with separable equations, the simplest nonlinear equations. In this
section we introduce the idea of implicit and constant solutions of differential equations,
and we point out some differences between the properties of linear and nonlinear
equations.

SECTION 2.3 discusses existence and uniqueness of solutions of nonlinear equations.
Although it may seem logical to place this section before Section 2.2, Section 2.2 is
presented first so that we could have illustrative examples in Section 2.3.

SECTION 2.4 deals with nonlinear equations that are not separable, although they can be
transformed into separable equations by a procedure similar to variation of parameters.

SECTION 2.5 covers exact differential equations, which are given this name because the
method for solving them uses the idea of an exact differential from calculus.

SECTION 2.6 deals with equations that are not exact, although they can be made exact
by multiplying them by a function known as an integrating factor.

36



Section 2.1 Linear First Order Equations 37
2.1 LINEAR FIRST ORDER EQUATIONS

A first order differential equation is said to be linear if it can be written in standard form as

Yy +p(x)y = f(x). (2.1.1)

A first order differential equation that cannot be written like this is nonlinear. We say that
(2.1.1) is homogeneous if f = 0; otherwise it is nonhomogeneous. Since y = 0 is obviously a
solution of the homogeneous equation

y'+p(x)y =0,
we call it the trivial solution. Any other solution is nontrivial.
Example 2.1.1 These first order equations are not in standard form (2.1.1), but they are
linear.

Xy ' +3y = X

xy' — 8%y = sinx

xy'+ (nx)y = 0

!/

Yy = Xy-2

Rewritten in standard form, they have these forms.

3
!/
g _ sinx
Y Xy <
Inx
/
=%y = 0
Yy + Y )
y' —xly = -2
|
Example 2.1.2 Here are some nonlinear first order equations.
xy’ +3y2 = 2x (because y? is not of first degree),
yy' = 3 (because y in the y’ term is not a function of x),
y' +xe¥ = 12 (because eV is not linear).
|

General Solution of a Linear First Order Equation
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To motivate an important definition, consider the simple linear first order equation

1
y' = 2 (2.1.2)
From calculus we know that y satisfies this equation if and only if

1
- - 2.1.3
Y X ¢, ( )

where c is an arbitrary constant. We call ¢ a parameter and say that (2.1.3) defines a
one—parameter family of functions. For each real number c, the function defined by (2.1.3)
is a solution of (2.1.2) on (—oo, 0) and (0, co); moreover, every solution of (2.1.2) on either
of these intervals is of the form (2.1.3) for some choice of c.

A similar situation occurs in connection with any first order linear equation

y' +p(x)y = f(x); (2.1.4)

that is, if p and f are continuous on some open interval (a, b) then there’s a unique
formula y = y(x, ¢) analogous to (2.1.3) that involves a function of x and a parameter ¢
which has these properties:

* For each fixed value of ¢, the resulting function of x is a solution of (2.1.4) on (a, b).

e If y is a solution of (2.1.4) on (a, b), then y can be obtained from the formula by
choosing c appropriately.

We will call y = y(x, c) the general solution of (2.1.4).
When this has been established, it will follow that an equation of the form

Po(x)y’ + P1(x)y = F(x) (2.1.5)

has a general solution on any open interval (a, b) on which Py, Py, and F are all continu-
ous and Py has no zeros, since in this case we can rewrite (2.1.5) in the form (2.1.4) with
p = P1/Pp and f = F/Py, which are both continuous on (a, b).

To avoid awkward wording in examples and exercises, we will not specify the interval
(a, b) when we ask for the general solution of a specific linear first order equation. Let us
agree that this always means that we want the general solution on every open interval
on which p and f are continuous if the equation is of the form (2.1.4), or on which Py, Py,
and F are continuous and Py has no zeros, if the equation is of the form (2.1.5). We leave
it to you to identify these intervals in specific examples and exercises.

For completeness, we point out that if Py, Py, and F are all continuous on an open
interval (a, b), but Py does have a zero in (a, b), then (2.1.5) may fail to have a general
solution on (a, b) in the sense just defined. Since this is not a major point that needs to
be developed in depth, we will not discuss it further; however, see Exercise 44 for an
example.

Homogeneous Linear First Order Equations

We begin with the problem of finding the general solution of a homogeneous linear first
order equation. The next example recalls a familiar result from calculus.
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Example 2.1.3 Let a be a constant, and let y’ represent %. Find the general solution of

y' —ay=0. (2.1.6)

Solution You may remember from calculus that if ¢ is any constant, then y = ce®*
satisfies (2.1.6). Even without this knowledge, we can use this problem to illustrate a
general method for solving a homogeneous linear first order equation.

We know that (2.1.6) has the trivial solution y = 0. Now suppose y is a nontrivial
solution of (2.1.6). Then, since a differentiable function must be continuous, there must
be some open interval I on which y has no zeros. On this interval, we can rewrite (2.1.6)

as
/

v o
Y
using the Leibniz notation for clarity (and some algebra) gives us
1
y dx

Finally, multiply both sides by the differential dx to obtain
1
—dy = adx.
y Y

Integrating both sides of this equation gives us
Inly| = ax + k.

(There is no need to use two constants in this type of integration. If we did use constants
c1 and cz on the left and right sides, respectively, then we could simply rewrite the
equation using k = co —cy.)

Now we exponentiate both sides to get

|y| _ ekeax.

(Use rules of exponents to rewrite e***¥ as eaxe¥.) Since e** can never equal zero, y

has no zeros, which means that y is either always positive or always negative. Therefore
we can rewrite y as
y =ce® 2.1.7)

where

—ek ify <o.

K
. { ek ify >0,
This shows that every nontrivial solution of (2.1.6) is of the form y = ce®* for some
nonzero constant c. Since setting ¢ = 0 yields the trivial solution, all solutions of (2.1.6)
are of the form (2.1.7). Conversely, (2.1.7) is a solution of (2.1.6) for every choice of c,
since differentiating (2.1.7) yields y’ = ace®™ = ay. [
Rewriting a first order differential equation so that one side depends only on y and
y’ and the other depends only on x is called separation of variables. We will apply this
method to nonlinear equations in Section 2.2.



40 Chapter 2 First Order Equations

Example 2.1.4 (a) Find the general solution of

xy’ +y=0. (2.1.8)
(b) Solve the initial value problem
xy' +y=0, y(1)=3. (2.1.9)
(a) We rewrite (2.1.8) as
y' + %y =0, (2.1.10)

where x is restricted to either (—oo, 0) or (0, c0). If y is a nontrivial solution of (2.1.10),
there must be some open interval I on which y has no zeros. We can rewrite (2.1.10) as

y’ 1
v x
for all x in the specified interval I. Integration using separation of variables shows that
ek
Injyl=—Inkx|+%, so Jyl= 0

Since a function that satisfies the last equation cannot change sign on either (—oo, 0) or
(0, 00), we can rewrite this result more simply as

- 2.1.11
y=7 ( )

k .
c:{ ek ify >0,

where

—ek ify <.

We have now shown that every solution of (2.1.10) is given by (2.1.11) for some choice
of c. (Even though we assumed that y was nontrivial to derive (2.1.11), we can get the
trivial solution by setting ¢ = 0 in (2.1.11).) Conversely, any function of the form (2.1.11)
is a solution of (2.1.10), since differentiating (2.1.11) yields

’ C
YT

and substituting this and (2.1.11) into (2.1.10) yields

/_{_1 — _i EE
Y xy X2 xx
c c

= e te=0

(b) Imposing the initial condition y(1) = 3 in (2.1.11) yields ¢ = 3. Therefore the

solution of (2.1.9) is
3
Y= X

The domain of this solution is (0, o).
The results in Examples 2.1.3 and 2.1.4(b) are special cases of the next theorem.
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Theorem 2.1.1 If p is continuous on (a,b), then the general solution of the homogeneous
equation

y' +p(x)y=0 (2.1.12)
on (a,b)is
y=ce "),
where
P(x) = Jp(x) dx (2.1.13)

P/(x) =p(x), a<x<b. (2.1.14)

soy’ + p(x)y = 0; that is, y is a solution of (2.1.12), for any choice of c.

Now we’ll show that any solution of (2.1.12) can be written as y = ce P for some
constant c. The trivial solution can be written this way, with ¢ = 0. Now suppose y is a
nontrivial solution. Then there’s an open subinterval I of (a, b) on which y has no zeros.
We can rewrite (2.1.12) as

LA (2.1.15)
for x in L. Integrating (2.1.15) and recalling (2.1.13) yields
In|ly| = —P(x) + k,

where k is a constant. This implies that

[yl = efe ).
Since P is defined for all x in (a, b) and an exponential can never equal zero, we can take
I = (a,b), and can rewrite the last equationas y = ce P(¥) where

o ek ify>0on(a,b),
| —e* ify<oOon(a,b).

Linear Nonhomogeneous First Order Equations

We now solve the nonhomogeneous equation

y' +px)y = f(x). (2.1.16)
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When considering this equation we call

y' +px)y=0

the complementary equation.

We will find solutions of (2.1.16) in the form y = uy;, where y; is a nontrivial solution
of the complementary equation and u is to be determined. This method of using a
solution of the complementary equation to obtain solutions of a nonhomogeneous
equation is a special case of a method called variation of parameters, which you will
encounter several times in this book.

If

y=1uy;, then y’'=u'y;+uyj.

Substituting these expressions for y and y’ into (2.1.16) yields
uwyr +ulyr + px)ys) = f(x),

which reduces to
u'yp = f(x), (2.1.17)

since y; is a solution of the complementary equation; that is,

yi +p(x)y1 =0.

(Obviously, u cannot be constant, since if it were, the left side of (2.1.17) would be zero.
Recognizing this, the early users of this method viewed u as a “parameter” that varies;
hence, the name “variation of parameters.”)

In the proof of Theorem 2.2.1 we saw that y; has no zeros on an interval where p is
continuous. Therefore we can divide through by y; in (2.1.17) to obtain

u’ = f(x)/yi(x).

We can integrate this (introducing a constant of integration), and multiply the result by
Y1 to get the general solution of (2.1.16). Before turning to the formal proof of this claim,
let us look at some examples.

Example 2.1.5 Find the general solution of
y' +2y =x%e X, (2.1.18)

By applying Example 2.1.3 with a = —2, we see that y; = e 2~ is a solution of the
complementary equation y’ + 2y = 0. Therefore we seek solutions of (2.1.18) in the form
y = ue 2. Taking the derivative and then substituting gives

y +2y =u'e?* — 2ue > 4 2ue 2. (2.1.19)
Since (2.1.19) reduces to u’e~2%, y is a solution of (2.1.18) if and only if

u/e—2x — X3€_2X.
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Therefore, u’ = x? and integrating gives

Example 2.1.6
(a) Find the general solution
Yy’ + (cotx)y = x cscx. (2.1.20)

(b) Solve the initial value problem

y' + (cotx)y =xcscx, y(m/2) = 1. (2.1.21)

a Here p(x) = cotx and f(x) = xcscx are both continuous except at the points
x = 17, where 1 is an integer. Therefore we seek solutions of (2.1.20) on the intervals
(rmT, (r + 1)7t). We need a nontrival solution y; of the complementary equation; thus, y;
must satisfy y; + (cot x)y; = 0, which we rewrite as

/
Yl opx = —B% (2.1.22)
Y1 simx
Integrating this yields
Inlyi| = —In|sinx| + c.

Keep in mind that we need only one function that satisfies (2.1.22). This means that we
can take the constant of integration to be zero. After exponentiating both sides, we see
that

[y:| = [sin x|/~

and therefore y; = 1/sinx is a suitable choice. So we seek solutions of (2.1.20) in the
form

u
Y~ sinx
which has derivative .
u U COS X
Yy =— = 5 (2.1.23)
sinx s~ x
so that ,
, u ucosx — ucotx
Yy +(cotx)y = —— — —— .
sinx  sin“x sin x
/
u UCOSX  UCOSX
= ———5—+— (2.1.24)
sinx S~ x s~ x
u/

sinx
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Therefore y is a solution of (2.1.20) if and only if
u//sinx = xcscx = x/ sinx.

Therefore, u’ = x and integrating gives

2 2
u:%—i-c, sothat y= v + ¢ (2.1.25)

sinx  2sinx  sinx’

is the general solution of (2.1.20) on every interval (r, (r + 1)7t) (r =integer).
b Imposing the initial condition y(7t/2) = 1 in (2.1.25) yields

702 702
l=—+c¢c or ¢c=1——.
8+ 8

Thus,
x? (1 —m2/8)
- + :
2s8inx sin'x

is a solution of (2.1.21). The domain of this solution is (0, 7).
Figure 2.1 shows its graph.

‘y:

Y
15 |

10 |

5,,

—5 4

—10

—15 1

Figure 2.1 Solution of y’ + (cot x)y = xcscx, y(m/2) =1

It was not necessary to do the computations (2.1.23) and (2.1.24) in Example 2.1.6,
since we showed in the discussion preceding Example 2.1.5 that if y = uy; where
Y1 +p(x)yr =0, theny’ + p(x)y = u'y;. We did these computations to show how the
method works. We recommend that you include these “unnecesary” computations in

doing exercises until you are confident that you understand the method. After that, omit
them.

We summarize the method of variation of parameters for solving

y' +px)y =f(x) (2.1.26)

as follows:
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(a) Find a function y; such that

For convenience, take the constant of integration to be zero.
(b) Write u'y; = f and solve for u’. (Sou’ = f/y;.)
() Integrate u’ to obtain u with an arbitrary constant of integration.
(d) Substitute u into y = uy; to determine y.

To solve an equation written as
Po(x)y’ + P1(x)y = F(x),

we recommend that you divide through by Py(x) to obtain an equation of the form
(2.1.26) and then follow this procedure.

Solutions in Integral Form

Sometimes the integrals that arise in solving a linear first order equation cannot be
evaluated in terms of elementary functions. In this case the solution must be left in terms
of an integral.

Example 2.1.7
(a) Find the general solution of
y' —2xy=1.
(b) Solve the initial value problem
y'—2xy=1, y(0)=yo. (2.1.27)

a To apply variation of parameters, we need a nontrivial solution y; of the comple-
mentary equation; thus, y; — 2xy; = 0, which we rewrite as

/

Integrating this and taking the constant of integration to be zero yields
Inly;l=x% so |yil= e

We choose y; = e*” (with constant of integration equal to 0) and seek solutions of (2.1.27)
in the formy = ue"z, where

Therefore
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However, we cannot simplify the integral on the right because there is no elementary
function with derivative equal to e *". Therefore the best available form for the general
solution of (2.1.27) is

y= ue® = e’ <c + J e dx) . (2.1.28)

b Since the initial condition in (2.1.27) is imposed at x¢ = 0, it is convenient to rewrite

(2.1.28) as
X 0
y=e"¥ <c +J et dt) , since J e ¥ dt=0.
0 0

Setting x = 0 and y = yo here shows that ¢ = yg. Therefore the solution of the initial
value problem is

X
y=e* <y0 + L etzdt> . (2.1.29)

For a given value of yg and each fixed x, the integral on the right can be evaluated
by numerical methods. An alternate procedure is to apply the numerical integration
procedures discussed in Chapter 3 directly to the initial value problem (2.1.27).

An Existence and Uniqueness Theorem

The method of variation of parameters leads to this theorem.

Theorem 2.1.2 Suppose p and f are continuous on an open interval (a,b), and let y, be any
nontrivial solution of the complementary equation

y' +pxy=0
n (a,b). Then:
(@) The general solution of the nonhomogeneous equation
y' +px)y = f(x) (2.1.30)
on (a,b)is
Yy =yi(x) (c + Jf(X)/yl(X) dx) : (2.1.31)

(b) If xq is an arbitrary point in (a,b) and yo is an arbitrary real number, then the initial value
problem

y' +p(x)y =~(x), ylxo) =vyo

has the unique solution

B Yo *f(t) >
y=uld (yl(xO) +L0 yi(t) at

on (a,b).
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Proof (a) To show that (2.1.31) is the general solution of (2.1.30) on (a,b), we must
prove that:
(i) If c is any constant, the function y in (2.1.31) is a solution of (2.1.30) on (a, b).

(i) If y is a solution of (2.1.30) on (a,b) then y is of the form (2.1.31) for some
constant c.
To prove (i), we first observe that any function of the form (2.1.31) is defined on (a, b)
since p and f are continuous on (a, b). Differentiating (2.1.31) yields

y' =yix) (c—kjf(x)/yl(x) dx> + f(x).

Since y; = —p(x)yy, this and (2.1.31) imply that

v = —pul) (c+ [ #6410 dx) T f(x)
= —pxJy(x) +f(x),

which implies that y is a solution of (2.1.30).
To prove (ii), suppose y is a solution of (2.1.30) on (a,b). From the proof of Theo-
rem 2.1.1, we know that y; has no zeros on (a, b), so the function u = y/y; is defined
n (a,b). Moreover, sincey’ = —py +f and y{ = —pyi,

W o~ Yy iy
y

_ yilpy+f) = (pyily _ f
i Y1

Integrating u’ = f/y; yields

u= (c + Jf(x)/yl(x) dx> ,

which implies (2.1.31), since y = uy;.

(b) We've proved (a), where [ f(x)/yi1(x) dx in (2.1.31) is an arbitrary antiderivative
of f/yi. Now it’s convenient to choose the antiderivative that equals zero when x = xo,
and write the general solution of (2.1.30) as

y =yi(x) <c +J yf1(2) dt> .

Since

y(xo) = y1(xo) (C +

we see that y(xo) = yo if and only if ¢ =yo/y1(x0)-
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2.1 Exercises

In Exercises 1-5 find the general solution.

1. y’+ ay =0 (a=constant) 2. y'+3x*y=0
3. xy'+ (Inx)y=0 4. xy'+3y=0

5. x*y'+y=0

In Exercises 6-11 solve the initial value problem.
1+x
y'+ (X)y =0, y(1)=1

1
7. xy'—l—(l—i—m)y:(), y(e) =1

o

8. xy'+ (1+xcotx)y =0, y(%):2

2x
9. y/—<1+xz)920a y(0) =2

k
10. y'+ Y= 0, y(1)=3 (k= constant)
11. y' + (tankx)y =0, y(0) =2 (k = constant)
In Exercises 12 —15 find the general solution.

.y + x Yy x

2x e *

14. y +2xy=xe ¥ y =
14 x2 1+x2

15. y'+

In Exercises 16 —24 find the general solution.

1

sinx

16. v’ L7 3 17. y'+ LI +
. y+;y——+ - Y T 7Y (x—1)

x2

2
/ —_—
18. xy'+ (1+2x%)y =x3e " 19 xy +2y=-5+1

sin x
1+x

20. y'+ (tanx)y = cosx 21. (1+x)y' +2y=

(x —1)4
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22, (x—2)(x—1)y' — (4x -3y = (x —2)3

23. y'+ (2sinxcosx)y = e s’ x24.  x*y’ 4 3xy =
In Exercises 25-29 solve the initial value problem and sketch the graph of the solution.

25. |C/G
y' +7y=¢e¥ y(0)=0

2
26. |C/G|(A+x*)y +4xy=-—" =1
[C/Gl 1+ + vy = 7. y(0)

2
! = — =
27. |C/G|xy Y= ey YU =0
[C/G]y" + feot)y =cosx, y(5) =1
2
1 2
29. |C/Gly'+-y==+1 —-1)=0
[C/Gly' + y=5+1 y(-1)

In Exercises 30-37 solve the initial value problem.

28.

@

sin x
30. — Dy’ +3y = 0)=1
3. xy'+2y=8x% y(1)=3
32 xy'—2y=—x%, y()=1
33. y'+2xy=x, y(0)=3
1+ (x—1)sec?x
4. (x—1y’ = =1
34. (x—1)y"+3y x—1) ., y(0)
1+ 2x2
35. 2y +4y=——— —1)=2
(x+2)y" +4y X1 2P y(—1)

36. (x> -1y’ —2xy =x(x*—1), y(0)=4
37. (x> =5y’ —2xy = —2x(x*> —5), y(2)=7

In Exercises 38—42 solve the initial value problem and leave the answer in a form involving a
definite integral.

38. y'+2xy=x* 1y(0)=3

1 sinx
39. ! - = — 1 :2
y+oy=—3, yl
—x
40. y’+y=$, y(1) =0
2 X
41. y'+ x ¢ y(0) =1

1+x27 ~ (1+x2)2
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42,
43.

44.

45.

Chapter 2 First Order Equations

Xy + (x+ 1)y =e, y(1)=2

Experiments indicate that glucose is absorbed by the body at a rate proportional
to the amount of glucose present in the bloodstream. Let A denote the (positive)
constant of proportionality. Now suppose glucose is injected into a patient’s
bloodstream at a constant rate of r units per unit of time. Let G = G(t) be the
number of units in the patient’s bloodstream at time t > 0. Then

G'=-AG+r,

where the first term on the right is due to the absorption of the glucose by the
patient’s body and the second term is due to the injection. Determine G for t > 0,
given that G(0) = Go. Also, find lim¢_,+ G(t).

Some nonlinear equations can be transformed into linear equations by changing
the dependent variable. Show that if

9'(y)y’ +p(x)gly) = f(x)

where y is a function of x and g is a function of y, then the new dependent variable
z = g(y) satisfies the linear equation

z +p(x)z = f(x).

Solve by the method discussed in Exercise 44.

2 1
2y)y’ —3tany =—1 b)ev' (2yy' +2) ==
(a) (sec”y)y any (b) e <yy +X) 2
xy’ 2 y’ 1 3
2lny = 4 d — =
(© y +einy x ()(1+y)2 x(1+vy) x2

2.2 SEPARABLE EQUATIONS

A first order differential equation is separable if it can be written as

h(yly' = g(x), (2.2.1)

where the left side is a product of y’ and a function of y and the right side is a function of
x. Rewriting a separable differential equation in this form is called separation of variables.
In Section 2.1 we used separation of variables to solve homogeneous linear equations.
In this section we'll apply this method to nonlinear equations.

To see how to solve (2.2.1), let’s first assume that y is a solution. Let G(x) and H(y) be
antiderivatives of g(x) and h(y); that is,

H'(y) =h(y) and G'(x)=g(x). (2.2.2)
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Then, from the chain rule,

—H
dx
Therefore (2.2.1) is equivalent to

d d

EH(U(X)) = EG(X)'

Integrating both sides of this equation and combining the constants of integration yields
H(y(x)) = G(x) + c. (2.2.3)

Although we derived this equation on the assumption that y is a solution of (2.2.1), we
can now view it differently: Any differentiable function y that satisfies (2.2.3) for some
constant c is a solution of (2.2.1). To see this, we differentiate both sides of (2.2.3), using
the chain rule on the left, to obtain

which is equivalent to

because of (2.2.2).

In conclusion, to solve (2.2.1) it suffices to find functions G = G(x) and H = H(y) that
satisfy (2.2.2). Then any differentiable function y = y(x) that satisfies (2.2.3) is a solution
of (2.2.1).

Example 2.2.1 Solve the equation

/

y =x(1+1y?).

Solution Separating variables yields

vy
1+y2 x
Integrating yields
tan "ty = Xj +c
vy=5
Therefore

Example 2.2.2
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(a) Solve the equation

, X
S (2.2.4)
) Yy
(b) Solve the initial value problem
, X
y=—— yl=1 (2.2.5)
Yy
(c) Solve the initial value problem
y'= —3, y(1) = -2 (2.2.6)

a Separating variables in (2.2.4) yields yy’ = —x. Integrating yields

y? X2
T="7 +c, or equivalently, x*+y%=2c.

The last equation shows that ¢ must be positive if y is to be a solution of (2.2.4) on an
open interval. Therefore we let 2c = a? (with a > 0) and rewrite the last equation as

x* +y? = a’ (2.2.7)

This equation has two differentiable solutions for y in terms of x:

y= vaz—x? —a<x<a, (2.2.8)

and
y=—vaz—x%? —a<x<a (2.2.9)

The solution curves defined by (2.2.8) are semicircles above the x-axis and those defined
by (2.2.9) are semicircles below the x-axis.

b The solution of (2.2.5) is positive when x = 1; hence, it is of the form (2.2.8). Substi-
tuting x = 1 and y = 1 into (2.2.7) to satisfy the initial condition yields a? = 2; hence,
the solution of (2.2.5) is

y=v2—x2, —/2<x<V2

¢ The solution of (2.2.6) is negative when x = 1 and is therefore of the form (2.2.9).
Substituting x = 1 and y = —2 into (2.2.7) to satisfy the initial condition yields a® = 5.
Hence, the solution of (2.2.6) is

y=—vV5—-x2, —/5<x<b.

Figure 2.1 shows the solution curves for the initial value problems. [ ]

Implicit Solutions of Separable Equations
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_3 1
Figure2.1 @y =v2—x% —V2<x<v2, (By=—-V5—-%2 —V5<x<+V5

In Examples 2.2.1 and 2.2.2 we were able to solve the equation H(y) = G(x) + ¢ to obtain
explicit formulas for solutions of the given separable differential equations. The next
example shows that this is not always possible. In this situation we must broaden our
definition of a solution of a separable equation. The next theorem provides the basis for
this modification. We omit the proof, which requires a result from advanced calculus
called as the implicit function theorem.

Theorem 2.2.1 Suppose g = g(x) is continous on (a,b) and h = h(y) is continuous on
(c,d). Let G be an antiderivative of g on (a, b) and let H be an antiderivative of h on (c, d). Let
Xo be an arbitrary point in (a,b), let yo be a point in (c, d) such that h(yg) # 0, and define

¢ = H(yo) — G(xo). (2.2.10)

Then there is a function y = y(x) defined on some open interval (ay,by), where a < a3 < xg <
by < b, such that y(xg) = yo and

H(y) = G(x) +¢ (2.2.11)

h(yly’ =g(x), ylxo) =xo. (2.2.12)

We sometimes say that a solution with the form (2.2.11) with a specific but arbitrary
value of ¢ is an implicit solution of h(y)y’ = g(x).

In the case where c satisfies (2.2.10), we say that (2.2.11) is an implicit solution of the
initial value problem (2.2.12). However, keep these points in mind:

¢ For some choices of c there may not be any differentiable functions y that satisfy
(2.2.11).

e The function y in (2.2.11) — not (2.2.11) itself — is a solution of h(y)y’ = g(x).
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Example 2.2.3

(a) Find implicit solutions of
, 2x+1

= . 221
Y 5yt +1 ( 3)
(b) Find an implicit solution of
, 2x+1
=— 2)=1. 2214
v =y Y2 (2214)

a Separating variables yields
(5y* + 1)y’ =2x + 1.
Integrating yields the implicit solutions
Y+y=x+x+ec. (2.2.15)

of (2.2.13). (There are multiple solutions corresponding to multiple choices of the
constant c.)

b Imposing the initial condition y(2) = 1in (2.2.15) yields 1 +1=4+42+c¢c,so c = —4.
Therefore

y5 +y= 2 +x—4

is an implicit solution of the initial value problem (2.2.14). Although more than one
differentiable function y = y(x) satisfies (2.2.13) near x = 1, it can be shown that there is
only one such function that satisfies the initial condition y(1) = 2. [ |

Curves defined by (2.2.11) are integral curves of h(y)y’ = g(x). However, since the
function y is an implicit solution, the appearance of the graph for the solution is not
apparent. The problem of seeing what an implicit solution looks like can be overcome
by using technology to generate a direction field. Figure 2.3 shows a direction field and
some integral curves for (2.2.13).

Constant Solutions of Separable Equations

An equation of the form

y' =g(x)p(y)
is separable, since it can be rewritten as
1 /
—y’ = g(x).
ply)? Y

However, the division by p(y) is not legitimate if p(y) = 0 for some values of y. The
next two examples show how to deal with this problem.

Example 2.2.4 Find all solutions of
y' =2y’ (2.2.16)
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Figure 2.2 A direction field and integral curves for y’ = 521;—:_11
Solution Here we must divide by p(y) = y? to separate variables. This is not legitimate
if y is a solution of (2.2.16) that equals zero for some value of x. One such solution can be
found by inspection: y = 0. Now suppose y is a solution of (2.2.16) that isn’t identically
zero. Since y is continuous there must be an interval on which y is never zero. Since
division by y? is legitimate for x in this interval, we can separate variables in (2.2.16) to
obtain

Ij; = 2x.
Integrating this yields
! =x*+c,
which is equivalent to
Y="2 :_ . (2.2.17)

We have now shown that if y is a solution of (2.2.16) that is not identically zero, then
y must be of the form (2.2.17). By substituting (2.2.17) into (2.2.16), you can verify that
(2.2.17) is a solution of (2.2.16). Thus solutions of (2.2.16) are y = 0 and the functions of
the form (2.2.17). Note that the solution y = 0 is not of the form (2.2.17) for any value of
C.

Figure 2.3 shows a direction field and some integral curves for (2.2.16).

Example 2.2.5 Find all solutions of

1
y' = FX(1— y?). (2.2.18)
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Figure 2.3 A direction field and integral curves for y’ = 2xy?

Solution Here we must divide by p(y) = 1 — y? to separate variables. This is not
legitimate if y is a solution of (2.2.18) that equals +1 for some value of x. Two such
solutions can be found by inspection: y = 1 and y = —1. Now suppose y is a solution of
(2.2.18) such that 1 — y? isn’t identically zero. Since 1 — y? is continuous there must be
an interval on which 1 —y? is never zero. Since division by 1 —y? is legitimate for x in
this interval, we can separate variables in (2.2.18) to obtain

/

2y_
y?-1

A partial fraction expansion on the left yields

[1 B 1],__X
y—1 y—l—ly_ ’

and integrating yields

o 2
Y [l R S ¥
y+1 2
hence,
y—1 _ eke—x2/2_
y+1

Since y(x) # =£1 for x on the interval under discussion, the quantity (y —1)/(y + 1)
cannot change sign in this interval. Therefore we can rewrite the last equation as
y—1 —x2/2

——F = C€
y+1 ’
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where ¢ = +e¥, depending upon the sign of (y — 1)/(y + 1) on the interval. Solving for
y yields
1+ cex"/2

= (2.2.19)

We have now shown that if y is a solution of (2.2.18) that is not identically equal to
+1, then y must be as in (2.2.19). By substituting (2.2.19) into (2.2.18) you can verify that
(2.2.19) is a solution of (2.2.18). Thus, the solutions of (2.2.18) arey = 1,y = —1 and the
functions of the form (2.2.19). Note that the constant solution y = 1 can be obtained
from this formula by taking ¢ = 0; however, the other constant solution, y = —1, cannot
be obtained in this way.

1
Figure 2.4 A direction field and integral curves for y’ = 5)((1 —y?)

Differences Between Linear and Nonlinear Equations

Theorem 2.1.2 states that if p and f are continuous on (a, b) then every solution of the
linear equation

y' +px)y =f(x)

on (a, b) can be obtained by choosing a value for the constant c in the general solution,
and if x¢ is any point in (a, b) and yy is arbitrary, then the initial value problem

y' +px)y=~(x), ylxo)=1yo

has a solution on (a, b).
This theorem does not hold true for nonlinear equations. First, we saw in Exam-
ples 2.2.4 and 2.2.5 that a nonlinear equation may have solutions that cannot be obtained
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by choosing a specific value of a constant appearing in a one-parameter family of solu-
tions. (Such a solution is called a singular solution.) Second, it is generally impossible to
determine the domain of a solution for an initial value problem for a nonlinear equation
by simply examining the equation, since the domain may depend on the initial condition.
For instance, in Example 2.2.2 we saw that the solution of

dy X

_— = —— X =

x y y(xo) = Yo
has domain (—a, a), where a = \/xg + yg. In other words, the domain of the solution
depends on the point (xg, yo). Let us revisit Example 2.2.4 to see another example where
the domain of the solution depends on the initial condition.

Example 2.2.6 Solve the initial value problem

y' =2xy* y(0)=yo

and determine the domain of the solution.

Solution From Example 2.2.4, we know that y must be of the form

1

_ 2.2.20
x2+c ( )

y =
Imposing the initial condition shows that ¢ = —1/yg. Substituting this into (2.2.20) and
rearranging terms yields the solution

Yo

y= 1 —yox2’

This is the solution if yo = 0. If yg < 0, the denominator cannot be zero for any value of
x, so the solution has domain (—oo, 00). If yg > 0, however, the domain of the solution

must be restricted to (—1/,/Yo, 1/\/Yo)- [ |

2.2 Exercises

In Exercises 1-6 find all solutions.

24 ox+1
1. y = BXJ—X; 2. (sinx)(siny) + (cosy)y’ =0
3. xy' +y’+y=0 4. y'lnlyl+x*y =0

(2x + 1)y

=0
14+x2

5. (3y®+3ycosy + 1)y’ +
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6. xyy' = (y?—1)*?

In Exercises 7-10 find all solutions.

y =x*(1+y%); {~1<x<1, -1<y <1}

y(1+x}) +xy=0;{-2<x<2, —-1<y<1}
9. y=Kx-Dy-Dy—-2);{-2<x<2, -3<y <3}
10. (y—1)%y' =2x+3; {—2<x<2, —2<y<5H)

In Exercises 11 and 12 solve the initial value problem.
X2+ 3x +2

y—2
12y +x(y*+y)=0, y(2)=1

1. y' = , y(1) =4

In Exercises 13-16 solve the initial value problem and graph the solution.

13. (3y?+4y)y’ +2x+cosx =0, y(0)=1
(y+1y—1y—2)
14. ! =0 1)=0
y + 1 , y(1)

15. y'+2x(y+1)=0, y(0)=2
16. y' =2xy(l1+y?), y(0)=1

In Exercises 17-23 solve the initial value problem and find the domain of the solution.

17. y'(x2+2) +4x(y?+2y+1) =0, y(1)=-1

18. y' ' =-2x(y>?—3y+2), y(0)=3

9. Y= y@2)=0 20, y=2g—y% yl0)=1

) 1+2y’ ' ’

21. x+yy' =0, y3)=-4

22, y'+xP(y+1)(y—2)2=0, y4) =2

23. (x+1)(x—2)y'+y=0, y(1)=-3

14y tan A + tan B
El iz )) explicitly. HINT: Use the identity tan(A 4+ B) = %.

25. Solve y’'v/1—x2+ /1 —y? =0 explicitly. HINT: Use the identity sin(A — B) =
sin A cos B — cos A sin B.

24. Solvey’ =

26. Solvey' = , y(m) = gexplicitly. HINT: Use the identity cos(x+7m/2) = —sinx

and the periodicity of the cosine function.
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27.

28.

29.

Chapter 2 First Order Equations

The population P = P(t) of a species satisfies the logistic equation
P/ =aP(1 — aP)

and P(0) = Py > 0. Find P for t > 0, and find lim{_, P(t).

An epidemic spreads through a population at a rate proportional to the product of
the number of people already infected and the number of people susceptible, but
not yet infected. Therefore, if S denotes the total population of susceptible people
and I = I(t) denotes the number of infected people at time t, then

I =+I(S—1),

where 7 is a positive constant. Assuming that I1(0) = Iy, find I(t) for t > 0, and
show that lim{_, I(t) = S.

The result of Exercise 28 is discouraging: if any susceptible member of the group
is initially infected, then in the long run all susceptible members are infected!
On a more hopeful note, suppose the disease spreads according to the model of
Exercise 28, but there is a medication that cures the infected population at a rate
proportional to the number of infected individuals. Now the equation for the
number of infected individuals becomes

I'=7I(S—1)—ql (A)

where q is a positive constant.

(@) Assume r and S are positive. By drawing a phase portrait, verify that if I is
any solution of (A) such that I(0) > 0, then lim¢_,o I(t) =S — q/rif ¢ < 1§
and lim¢_, [(t) =0if g > rS.

(b) To verify the experimental results of (a), use separation of variables to solve
(A) with initial condition I(0) = Iy > 0, and find lims_,, I(t). HINT: There are
three cases to consider: (i) q < rS; (ii) q > rS; (iii) q = rS.

Solve the equations in Exercises 30-33 using variation of parameters followed by separation of

variables.
/ 2X€_X 31 / 2 X6

30. = XYy —2y =

Yy =TT yex Y +x?

(x +1)e** xe2x

32, y—y=-——"- 33. y —2y=-———

Y Y (U +ex)2 Y Y 1 _ye—Zx
34. Use variation of parameters to show that the solutions of the following equations

are of the form y = uy;, where u satisfies a separable equation u’ = g(x)p(u).
Find y; and g for each equation.
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@ xy’ +y =h(x)p(xy) (b) xy’ —y = h(x)p ()
@y’ +y =nh(x)p(e*y) (d) xy’ +ry = h(x)p(x"y)
V(%)

@y’ + LA h(x)p (v(x)y)

2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR EQUATIONS

Although there are methods for solving some nonlinear equations, it is impossible to find
useful formulas for the solutions of most. Whether we are looking for exact solutions or
numerical approximations, it is useful to know conditions that imply the existence and
uniqueness of solutions of initial value problems for nonlinear equations. In this section
we state such a condition and illustrate it with examples.

Some terminology: an open rectangle R is a set of points (x,y) such that

a<x<b and c<y<d

(Figure 2.1). We will denote this setby R ={a < x < b,c <y < d}. “Open” means that
the boundary rectangle (indicated by the dashed lines in Figure 2.1) is not included in R .

The next theorem gives sufficient conditions for existence and uniqueness of solutions
of initial value problems for first order nonlinear differential equations. We omit the
proof, which is beyond the scope of this text.

8

Figure 2.1 An open rectangular grid

Theorem 2.3.1
(a) If f is continuous on an open rectangle
R={a<x<b,c<y<d}
that contains (xo,Yo) then the initial value problem

y' =f(x,y), ylxo) =yo 2.3.1)
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has at least one solution on some open subinterval of (a,b) that contains x,.

(b) If both f and f are continuous on R then (2.3.1) has a unique solution on some open
subinterval of (a,b) that contains xg. (Recall that fy denotes the partial derivative of
f(x,y) with respect to y.)

It is important to understand exactly what Theorem 2.3.1 says.

(a) is an existence theorem. It guarantees that a solution exists on some open interval
that contains xo, but provides no information on how to find the solution nor on how to
determine the open interval on which it exists. Moreover, (a) provides no information on
the number of solutions that (2.3.1) may have. It leaves open the possibility that (2.3.1)
may have two or more solutions that differ for values of x arbitrarily close to xo. We will
see in Example 2.3.6 that this can happen.

(b) is a uniqueness theorem. It guarantees that (2.3.1) has a unique solution on some
open interval (a,b) that contains xo. However, if (a,b) # (—o0, 00), (2.3.1) may have
more than one solution on a larger interval that contains (a, b). For example, it may
happen that b < co and all solutions have the same values on (a, b), but two solutions
y; and ys are defined on some interval (a, b;) with b; > b, and have different values for
b < x < by; thus, the graphs of y; and ys “branch off” in different directions at x = b.
(See Example ?? and Figure ??). In this case, continuity implies that y;(b) = y2(b) (call
their common value ), and y; and y» are both solutions of the initial value problem

y' =fxy), yb)=7y (2.3.2)

that differ on every open interval that contains b. Therefore f or f; must have a discon-
tinuity at some point in each open rectangle that contains the point (b, y), since if this
were not so, (2.3.2) would have a unique solution on some open interval that contains b.
We leave it to you to give a similar analysis of the case where a > —oo.

Example 2.3.1 Consider the initial value problem

, X2_y2
-~ 9 =Uo. 2.3.3
Yy 1+X2+y2’ y(XO) Yo ( )
Since ) 9 ( 2)
_ Xy __ U+ A7)
f(x,y) - 1—|—x2+y2 and fy(xvy) - (1 +X2 _|_y2)2

are continuous for all (x,y), Theorem 2.3.1 implies that if (x¢,yo) is arbitrary, then (2.3.3)
has a unique solution on some open interval that contains x.

Example 2.3.2 Consider the initial value problem

2 2
/_X -y

Yy = ma Yy(x0) = Yo. (2.3.4)
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Here
2 2

X° — 4x?

W?JQ and fy(x,y) = —ﬁ

are continuous everywhere except at (0, 0). If (xo,yo) # (0,0), there’s an open rectangle
R that contains (xo,yo) that does not contain (0, 0). Since f and fy are continuous on R,
Theorem 2.3.1 implies that if (x,yo) # (0, 0) then (2.3.4) has a unique solution on some
open interval that contains x,.

f(x,y) =

|
Example 2.3.3 Consider the initial value problem
r_xty
= =o. 2.3.
— y(xo0) =yo (2.3.5)
Here N 5
X+y X
f(x,y) = and fy(x,y)=-—"-—=
(x,y) — y(x,y) )

are continuous everywhere except on the liney = x. If yo # xo, there’s an open
rectangle R that contains (xg,yo) that does not intersect the line y = x. Since f and f, are
continuous on R, Theorem 2.3.1 implies that if yo # %o, (2.3.5) has a unique solution on
some open interval that contains x,.

|
Example 2.3.4 In Example 2.2.4 we saw that the solutions of
y' = 2xy? (2.3.6)
are
=0 and -
v= L

where c is an arbitrary constant. In particular, this implies that no solution of (2.3.6)
other than y = 0 can equal zero for any value of x. Show that Theorem 2.3.1(b) implies
this.

Solution We will obtain a contradiction by assuming that (2.3.6) has a solution y; that
equals zero for some value of x, but isn’t identically zero. If y; has this property, there’s
a point xq such that y;(xo) = 0, but y1(x) # 0 for some value of x in every open interval
that contains x(. This means that the initial value problem

y =2xy?% ylxo) =0 (2.3.7)

has two solutions y = 0 and y = y; that differ for some value of x on every open interval
that contains x. This contradicts Theorem 2.3.1(b), since in (2.3.6) the functions

f(x,y) =2xy> and fy(x,y) = dxy.

are both continuous for all (x,y), which implies that (2.3.7) has a unique solution on
some open interval that contains xg. ]
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Example 2.3.5 Consider the initial value problem

.10

y' =37 y(x) =vo. (2.3.8)

(a) For what points (xo,yo) does Theorem 2.3.1(a) imply that (2.3.8) has a solution?

(b) For what points (xo,yo) does Theorem 2.3.1(b) imply that (2.3.8) has a unique
solution on some open interval that contains x(?

(a) Since 10
f(X, U) = ?XHQ/F)
is continuous for all (x,y), Theorem 2.3.1 implies that (2.3.8) has a solution for every
(x0,Yo)-
(b) Here
fy (Xv U) = %Xy_g/g,

is continuous for all (x,y) with y # 0. Therefore, if yo # 0 there’s an open rectangle
on which both f and fy are continuous, and Theorem 2.3.1 implies that (2.3.8) has a
unique solution on some open interval that contains x,.

If y = 0 then fy(x,y) is undefined, and therefore discontinuous; hence, Theo-
rem 2.3.1 does not apply to (2.3.8) if yp = 0. ]

Example 2.3.6 Example 2.3.5 leaves open the possibility that the initial value problem

10
y' =7 y(0) =0 (2.39)
has more than one solution on every open interval that contains xy = 0. Show that this
is true.

Solution By inspection, y = 0 is a solution of the differential equation

1
y' = §0ny/5. (2.3.10)
Since y = 0 satisfies the initial condition y(0) = 0, it is a solution of (2.3.9).
Now suppose y is a solution of (2.3.10) that isn’t identically zero. Separating variables
in (2.3.10) yields
—2/5. .1 10

Yy UZEX

on any open interval where y has no zeros. Integrating this and rewriting the arbitrary
constant as 5¢/3 yields

293/5 = g(x2 +c).
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Therefore
y=(*+c)? (2.3.11)

Since we divided by y to separate variables in (2.3.10), our derivation of (2.3.11) is
legitimate only on open intervals where y has no zeros. However, (2.3.11) actually
defines y for all x, and differentiating (2.3.11) shows that

!/

10 10
y' = gx(x2 +¢)¥3 =~

3

25 —00 < x < 0.

Xy
Therefore (2.3.11) satisfies (2.3.10) on (—oo, 0o0) evenif ¢ < 0, so thaty( m) =y (—m) =
0. In particular, taking ¢ = 0 in (2.3.11) yields

y = x10/3
as a second solution of (2.3.9). Both solutions are defined on (—o0, c0), but they differ

on every open interval that contains xo = 0 (see Figure 2.2.) In fact, there are four
distinct solutions of (2.3.9) defined on (—oo, c0) that differ from each other on every

open interval that contains xo = 0. Can you identify the other two? |
Y
2 1
1 1
‘ x
—2 -1 1 2
—11

Figure 2.2 Two solutions of (2.3.9) that differ on every interval containing xo = 0

2.3 Exercises

In Exercises 1-13 find all (xg,yo) for which Theorem 2.3.1 implies that the initial value
problem y’ = f(x,y), y(xo) = yo has (a) a solution (b) a unique solution on some open
interval that contains xg.

X2 +y?2 Y = e* +y
sinx ) x2+y2
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3. Yy’ =tanxy A y,:x2+y2
Inxy

5. U/Z(X2+U2)Ul/3 6. y/:2xy
2x + 3y

r_ 2 2 I =

7. y =In(1+x"+y7) 8. —

9. y/:(XQ +y2)1/2 10. y/:X(y2_1)2/3

11y’ =(x*+y?)? 12. y'=(x+y)"/?

13. r_ tany

x—1

2.4 TRANSFORMATION OF NONLINEAR EQUATIONS INTO SEPARABLE EQUATIONS

In Section 2.1 we found that the solutions of a linear nonhomogeneous equation

y' +p(x)y =f(x)

are of the form y = uy;, where y; is a nontrivial solution of the complementary equation

Yy +p(x)y =0 (2.4.1)
and u is a solution of

u'yp (x) = f(x).
Note that this last equation is separable, since it can be rewritten as

’ f(x)

" T i)

In this section we will consider nonlinear differential equations that are not separable
to begin with, but that can be solved in a similar fashion. This is done by writing their
solutions in the form y = uy;, where y; is a suitably chosen known function and u
satisfies a separable equation. In this case, we will say that we transformed the given
equation into a separable equation.

Bernoulli Equations

A Bernoulli equation is an equation of the form

y' +pxy =f(x)y", (2.4.2)
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where 1 can be any real number other than 0 or 1. (Note that (2.4.2) is linear if and only
if r = 0 or r = 1.) We can transform (2.4.2) into a separable equation by variation of
parameters: if y; is a nontrivial solution of (2.4.1), substituting y = uy; into (2.4.2) and
applying the product rule for derivatives yields

wyr+u(yr +pyr) = f(x) (uyd)",
which is equivalent to the separable equation
uyi(x) = f(x) (y1(x))"u, (2.4.3)
since y; + p(x)y; = 0.
Example 2.4.1 Solve the Bernoulli equation

y -y =xy’.

Solution By inspection, y; = e* is a solution of y’ —y = 0. We can use this fact to look
for solutions in the form y = ue*, where we can substitute into (2.4.3) to obtain

I X 2 ,2x 2

u'e* =xu‘e or, equivalently, u’ =xu’e*.

Separating variables yields

u/
_ X
E =Xxe".

Now we integrate on both sides (use integration by parts on the right side) to obtain

1
——=(x—1)e"+c.
u

Hence,
1
u=—
(x—1)ex+¢
and
1
Yy=-—

x—1+ce

Other Nonlinear Equations That Can be Transformed Into Separable Equations

We have seen that the nonlinear Bernoulli equation can be transformed into a separable
equation by the substitution y = uy; if y; is suitably chosen. Now we discuss a sufficient
condition for a nonlinear first order differential equation

y' =f(x,y) (2.4.4)
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to be transformable into a separable equation in the same way. Substituting y = uy;
into (2.4.4) yields
uy1 (%) +uyg(x) = f(x, uys(x)),
which is equivalent to
u'ys (x) = fx, uy1(x)) —uyi(x). (2.4.5)
If
fx, w1 (x)) = q(u)y; (x)

for some function ¢, then (2.4.5) becomes

uwyi(x) = (q(u) —uyi(x), (2.4.6)

which is separable. After checking for constant solutions u = 1 such that q(ug) = uo,
we can separate variables to obtain

In the next two examples, we consider only the most widely studied class of equations
for which this method of transformation works. In these examples, x and y occur in f in
such a way that f(x,y) depends only on the ratio y/x; that is, (2.4.4) can be written as

y' =qly/x), (24.7)

where q = q(u) is a function of a single variable. For the first example,

,_ytxe Vo y

:i_i_e*y/x
X X

Y

has

u

qu) =u+e ™

and for the second example,

2 2
p_ YTty =Xt yN? Ly
v = x2 _(x> +x 1

has

u

qu =u+e™ and qu)=u®+u—1.

(Historically, these types of equations were referred to as homogeneous equations, but this
is not the same as the definition given in Section 2.1, where we said that a linear equation
of the form

Yy +p(x)y =0

is homogeneous. Unfortunately, homogeneous has been used in these two inconsistent
ways. The one having to do with linear equations is the most important, and this is the
only section where the meaning defined here will apply.)
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The general method of transformation can be applied to (2.4.7) with y; = x (and
therefore y{ = 1). Thus, substituting y = ux in (2.4.7) yields

u'x +u=qu),

and separation of variables (after checking for constant solutions such that q(u) = u)
yields
u 1

glw —u X
Since y/x is in general undefined if x = 0, we will consider solutions of equations only
on open intervals that do not contain the point x = 0.

Example 2.4.2 Solve
f_yhxevx

(2.4.8)
X

Y

Solution Substituting y = ux into (2.4.8) yields

ux + xe wWx/x
N )

u'x+u=
We can simplify the fraction on the right to get
u

ux+u=ute ™,

then separate variables to arrive at

Integrating yields e = In [x| + c. Therefore u = In(In [x| + c¢) and the solution y = ux is

given by y = xIn(In x| + c). ]
Example 2.4.3
(@) Solve

Xy =y? +xy —x2 (2.4.9)

(b) Solve the initial value problem

X2y =y +xy—x%, y(l)=2. (2.4.10)

(a) We find solutions of (2.4.9) on open intervals that do not contain x = 0. We can
rewrite (2.4.9) as
2 2
Yy +xy—x
V=t
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for x in any such interval. Substituting y = ux yields

(ux)? 4+ x(ux) —x?

u'x4+u= 5
X

b
which reduces to
ux+u=ul+u—1

after reducing the fraction on the right side. This equation simplifies to
u'x =u?—1, (2.4.11)

which has the constant solutions u = 1 and u = —1. (The constant solutions can be
found by applying the Zero Product Property to the right side of the equation.) Therefore
y = x and y = —x are solutions of (2.4.9). If u is a solution of (2.4.11) that does not
assume the values 1 on some interval, separating variables yields

u’ 1

w—-1 x

)

or, after a partial fraction expansion,

1] 1 1 , 1
sl |u ==
2 lu—1 u+1

Multiplying by 2 and integrating yields

—1
In| & ':21n|x+k,
u+1
or
u+1
which holds if
vl e (2.4.12)
u+1 o

where c is an arbitrary constant. Solving for u yields

L 1+ cx?
1 —cx?’

Therefore, we can substitute into y = ux to find

ox(1+ cx?)

2.4.1
1—cx2? ( 3

is a solution of (2.4.10) for any choice of the constant c. Setting ¢ = 0 in (2.4.13) yields
the solution y = x. However, the solution y = —x can’t be obtained from (2.4.13). Thus,
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Figure 2.1 A direction field and integral curves for x?y’ = y2 + xy — x*

the solutions of (2.4.9) on intervals that do not contain x = 0 are y = —x and functions
of the form (2.4.13).

Figure 2.1 shows a direction field and some integral curves for (2.4.9).

(b) We could obtain ¢ by imposing the initial condition y(1) = 2 in (2.4.13), and then
solving for c. However, it is easier to use (2.4.12). Since u = y/x, the initial condition
y(1) = 2 implies that u(1) = 2. Substituting this into (2.4.12) yields ¢ = 1/3. Hence, the
solution of (2.4.10) is

~ x(14x%/3)
- 1-—x2/3

The domain of this solution is (—v/3, v/3). However, the largest interval on which (2.4.10)
has a unique solution is (0, V3).

Figure 2.1 shows several solutions of the initial value problem (2.4.10). Note that these
solutions coincide on (0, v/3).

In the last two examples we were able to solve the given equations explicitly. However,
this is not always possible, as you will see in the exercises.
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2.4 Exercises

In Exercises 14 solve the given Bernoulli equation.

2

X
1. y/—}-y :y2 2. 7Xy/_2y:_y76

1
. 2y’ 4+ 2y = 2el/xyl/2 4. (1 M roxy=—
3. X%y’ +2y=2e*y (1+x)y" +2xy Ty

In Exercises 5 and 6 find all solutions.

5.y —xy =x3y3

1+x
6. Y —— y=y*

In Exercises 7-11 solve the initial value problem.

=22

Y —xy =xy??, y(1) =4
coxy’ Fy=xtyt, y(1) =1/2
10. y' —2y=2y'/2 y(0)=1

48x
1.y —4y= yTa y(0) =1

y' —2y =xy*®, y(0)
(

In Exercises 12 and 13 solve the initial value problem and graph the solution.
12. X%y’ +2xy=y3, y(l)=1/V2
13,y —y=xy'? y0)=4
14. You may have noticed that the logistic equation
P’ = aP(1 — «P)
from Verhulst’s model for population growth can be written in Bernoulli form as
P’ — aP = —aaP?.

The logistic equation is separable, and therefore solvable by the method studied in
Section 2.2. Solve the logistic equation by the method of your choice.

In Exercises 15-18 solve the equation explicitly.

2
+x _ YTy
15. y/:yx 16. UI—T
17. xy’y’ =y* +x* 18 y’zg—ksec—
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In Exercises 19-21 solve the equation explicitly.

19. x%y' =xy+x?+y?
20. xyy’ =x%+2y?
2y? + x e~ (y/x)?
2xy

21. y’

In Exercises 22-27 solve the initial value problem.

2
2. oy =Y )=

xz
x3—|-y3
23. y' = 1)=3
g y(1)
24. xyy' +x*+y2=0, y(1)=2
2 _3xy —5x?
2.y =0 y(1) =1

26. X’y =22+y*+4xy, y(1)=1
27. xyy' =3x2+4y2, y(1) =3

In Exercises 28-34 solve the given “homogeneous” equation implicitly.

28, y/ — 1Y 29. (y'x —y)(Infy|—Inlx|) =x
xX—y
30, ,:y3+2xy2+x2y+x3 31 U/ZX+2U
x(y +x)? 2x+y
32. y/ == y 33 ! __ XUQ + 2y3
y—2x -y _X3+X29+Xy2
34 ,_x3+x2y+3y3

x3 + 3xy?

2.5 EXACT EQUATIONS

In this section it will be convenient to write first order differential equations in the form
M(x,y) dx + N(x,y)dy = 0. (2.5.1)
This type of equation can be interpreted as

d
M(x,y) + N(x,y) d% —0, (2.5.2)
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where x is the independent variable and y is the dependent variable, or as
dx
M(x,y) ay +N(x,y) =0, (2.5.3)

where y is the independent variable and x is the dependent variable. Since the solutions
of (2.5.2) and (2.5.3) will often need to be left in implicit form, we will say that F(x,y) = c
is an implicit solution of (2.5.1) if every differentiable function y = y(x) that satisfies
F(x,y) = c is a solution of (2.5.2) and every differentiable function x = x(y) that satisfies
F(x,y) = c is a solution of (2.5.3).

Some examples are shown in the table. Each differential equation is shown in three
forms.

Form (2.5.1) Form (2.5.2) Form (2.5.3)
2.2 3 2.2 3, 4Y 2,2 9% 3
3x“y“dx +2x>ydy =0 3xyY +2x°y — =0 XY — +2x'y=0
dx dy
2 .2 2 1,2 dy 2, L2y 4%
(x*+y“)dx+2xydy =0 (x +y)+2xya:0 (x +y)@+2xy:0
. . dy . dx
3ysinx dx — 2xycosxdy =0 3ysmx—2xycosxazo 3y51nx@—2xycosx:0

Note that a separable equation can be written as (2.5.1) as
M(x) dx + N(y) dy = 0.

We will develop a method for solving equations of this form under appropriate assump-
tions on M and N. This method is an extension of the method of separation of variables
(Exercise ??). Before discussing the method, we consider an example.

Example 2.5.1 Show that
x4 Xty oxy = ¢ (2.5.4)

is an implicit solution of

(4x3y3 + 2xy® + 2y) dx + (3x*y? + 5x%y* + 2x) dy = 0. (2.5.5)

Solution Regarding y as a function of x and differentiating (2.5.4) implicitly with respect
to x yields

d
(4x3y? + 2xy° + 2y) + (3x*y? + 5x%y? + 2x) d—z =0.
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Similarly, regarding x as a function of y and differentiating (2.5.4) implicitly with respect
toy yields

d
(4x3y3 + 2xy® + 2y)d—1j + (3x*y? 4+ 5x*yt + 2x) = 0.
Therefore (2.5.4) is an implicit solution of (2.5.5) in either of its two possible interpreta-
tions. [

You may think this example is pointless, since concocting a differential equation
that has a given implicit solution is difficult to do and not particularly interesting.
However, it illustrates the next important theorem, which we will prove by using
implicit differentiation, as in Example 2.5.1.

Theorem 2.5.1 If F = F(x,y) has continuous partial derivatives F and Fy, then
F(x,y)=c (2.5.6)
is an implicit solution of the differential equation
Fx(x,y) dx + Fy(x,y) dy = 0. (2.5.7)
(Here, c is an arbitrary constant.)

Proof Regardingy as a function of x and differentiating (2.5.6) implicitly with respect
to x yields
dy

Fx(x,y) + Fy(x,y) pvi 0

On the other hand, regarding x as a function of y and differentiating (2.5.6) implicitly
with respect to y yields

dx
Fx(x,y) @ +Fy(x,y) = 0.
Thus, (2.5.6) is an implicit solution of (2.5.7) in either of its two possible interpretations.
|
We will say that the equation
M(x,y) dx + N(x,y)dy =0 (2.5.8)

is exact on an an open rectangle R if there is a function F = F(x,y) such F, and F are
continuous, and
Fx(x,y) =M(x,y) and Fy(x,y) =N(x,y) (2.5.9)

for all (x,y) in R. This usage of “exact” is related to its usage in calculus, where the
expression
FX(X7U) dX+ Fy (ny) dy

is the exact differential of F. (This can be obtained by substituting (2.5.9) into the left side
of (2.5.8).)
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Example 2.5.1 shows that it is easy to solve (2.5.8) if it is exact and we know a function
F that satisfies (2.5.9). The important questions are:

QUESTION 1. Given an equation (2.5.8), how can we determine whether it is exact?

QUESTION 2. If (2.5.8) is exact, how do we find a function F satisfying (2.5.9)?

To discover the answer to Question 1, assume that there is a function F that satisfies
(2.5.9) on some open rectangle R, and in addition that F has continuous mixed partial
derivatives Fyy and Fyx. Then a theorem from calculus implies that

ny = Fyx~ (2510)

If Fx = M and F; = N, differentiating the first of these equations with respect to y and
the second with respect to x yields

Fxy =My and Fyx =N,. (2.5.11)
From (2.5.10) and (2.5.11), we conclude that a necessary condition for exactness is that

My = Ny. This motivates the next theorem, which we state without proof.

Theorem 2.5.2 [The Exactness Condition] Suppose M and N are continuous and have contin-
uous partial derivatives My and Ny on an open rectangle R. Then

M(x,y) dx+ N(x,y)dy =0
is exact on R if and only if
My (X7 U) = NX(X7 U) (2512)
forall (x,y) in R..
To help you remember the exactness condition, observe that the coefficients of dx
and dy are differentiated in (2.5.12) with respect to the “opposite” variables; that is,

the coefficient of dx is differentiated with respect to y, while the coefficient of dy is
differentiated with respect to x.

Example 2.5.2 Show that the equation
3x%y dx +4x3 dy = 0

is not exact on any open rectangle.

Solution Here
M(x,y) =3x?y and N(x,y)=4x>

SO
My (x,y) = 3x2 and  Ny(x,y) = 12x%

Therefore My = Ny on the line x = 0, but not on any open rectangle, so there is no
function F such that Fx(x,y) = M(x,y) and Fy(x,y) = N(x,y) for all (x,y) on any open
rectangle. ]

The next example illustrates two possible methods for finding a function F that satisfies
the condition Fx = M and Fy = N if M dx + N dy = 0 is exact.
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Example 2.5.3 Solve
(4x3y3 + 3x?) dx + (3x*y? 4+ 6y?) dy = 0. (2.5.13)

Solution (Method 1) Here
M(x,y) = 4x*y® +3x%,  N(x,y) = 3x"y? + 67,

and
My (x,y) = Nx(x,y) = 12x3y2

for all (x,y). Therefore Theorem 2.5.2 implies that there is a function F such that
Fe(x,y) = M(x,y) = 4x3y® + 3x> (2.5.14)

and
Fy(x,y) = N(x,y) = 3x"y? + 6y? (2.5.15)

for all (x,y). To find F, we integrate (2.5.14) with respect to x to obtain
Fx,y) =x"y +x* + d(y), (2.5.16)

where ¢ (y) is the “constant” of integration. (Here ¢ is “constant” in that it is independent
of x, the variable of integration.) If ¢ is any differentiable function of y then F satisfies
(2.5.14). To determine ¢ so that F also satisfies (2.5.15), assume that ¢ is differentiable
and differentiate F with respect to y. This yields

Fy(x.y) = 3x"y* + ¢/ (y).
Comparing this with (2.5.15) shows that
b'(y) = 6y>.

We integrate this with respect to y and take the constant of integration to be zero because
we are interested only in finding some T that satisfies (2.5.14) and (2.5.15). This yields

bly) =2y,
Substituting this into (2.5.16) yields
F(x,y) = x'y® +x% + 2¢°. (2.5.17)
Now Theorem 2.5.1 implies that
My 3 oyl =

is an implicit solution of (2.5.13). Solving this for y yields the explicit solution

[e—x3 1/3
Y= 2+ x4 '
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Solution (Method 2) Instead of first integrating (2.5.14) with respect to x, we could
begin by integrating (2.5.15) with respect to y to obtain

F(x,y) = x"y® + 20° + ¥ (x), (2.5.18)

where 1) is an arbitrary function of x. To determine 1, we assume that 1 is differentiable
and differentiate F with respect to x, which yields

Frlx,y) = 4y + 9/ (x).
Comparing this with (2.5.14) shows that
P/ (x) = 3x%.
Integrating this and again taking the constant of integration to be zero yields
P(x) = x3.

Substituting this into (2.5.18) yields (2.5.17). [ |
Here’s a summary of the procedure used in Method 1 of this example. A summary of
the procedure used in Method 2 is similar.

Procedure For Solving An Exact Equation

Step 1. Check that the equation
M(x,y) dx + N(x,y)dy =0 (2.5.19)

satisfies the exactness condition My = Ny. If not, don’t go further with this
procedure.

Step 2. Integrate

oF(x,y)
=M
o (x,y)
with respect to x to obtain
F(x,y) = Gx,y) + d(y), (2.5.20)
where G is an antiderivative of M with respect to x, and ¢ is an unknown function

of y.
Step 3. Differentiate (2.5.20) with respect to y to obtain

OF(x,y) _ 9G(xy)

o o + ¢ (y).

Step 4. Equate the right side of this equation to N and solve for ¢’; thus,

aG(MU) / _ / _ o aG(X,U)
T+d>(y)—N(x,y), so  ¢'(y) =N(x,y) oy
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Step 5. Integrate ¢’ with respect to y (taking the constant of integration to be zero),
and substitute the result into (2.5.20) to obtain F(x,y).

Step 6. Set F(x,y) = c to obtain an implicit solution of (2.5.19). If possible, solve for y
explicitly as a function of x.

It is a common mistake to omit Step 6. However, it is important to include this step,
since F is not itself a solution of (2.5.19).

Many equations can be conveniently solved by either of the two methods used in
Example 2.5.3. However, sometimes the integration required in one approach is more
difficult than in the other. In such cases we choose the approach that requires the easier
integration.

Example 2.5.4 Solve the equation
(ye*Y tanx + e*Y sec? x) dx + xe*¥ tanx dy = 0. (2.5.21)
Solution We leave it to you to check that M = Ny on any open rectangle where tan x
and sec x are defined. Here we must find a function F such that
Fye(x,y) = ye*Y tanx + e*Y sec? x (2.5.22)

and
Fy(x,y) =xe™ tanx. (2.5.23)

It is difficult to integrate (2.5.22) with respect to x, but easy to integrate (2.5.23) with
respect to y. This yields
F(x,y) = e*Y tanx + P(x). (2.5.24)

Differentiating this with respect to x yields
Fr(x,y) =ye*Y tanx + e sec? x + 1’ (x).

Comparing this with (2.5.22) shows that {’(x) = 0. Hence, { is a constant, which we
can take to be zero in (2.5.24), and

eYtanx =c

is an implicit solution of (2.5.21). [
Attempting to apply our procedure to an equation that is not exact will lead to failure
in Step 4, since the function

will not be independent of x if My # Ny (Exercise ??), and therefore cannot be the
derivative of a function of y alone. Here is an example that illustrates this.
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Example 2.5.5 Verify that the equation
3x2y? dx + 6x3y dy =0 (2.5.25)

is not exact, and show that the procedure for solving exact equations fails when applied
to (2.5.25).

Solution Here
My(x,y) =6xy and Ny(x,y) = 18x%y,

s0 (2.5.25) is not exact. Nevertheless, let us try to find a function F such that

Fe(x,y) = 3x%y? (2.5.26)

and
Fy(x,y) = 6x°y. (2.5.27)

Integrating (2.5.26) with respect to x yields
Fixy) =x"y% + b(y),
and differentiating this with respect to y yields
Fy(x,y) = 2%y + ' (y).
For this equation to be consistent with (2.5.27),
6x°y = 2x%y + ¢'(y),

or )
d'(y) = 4x3y.

This is a contradiction, since ¢’ must be independent of x. Therefore the procedure fails.

2.5 Exercises

In Exercises 1-17 determine which equations are exact and solve them.

1. 6x%y?dx+4x*ydy =0

2. (3ycosx+ 4xeX + 2x%eX) dx + (3sinx +3)dy =0
3. ldx*y? dx +21x%*y2dy =0

4. (2x—2y?)dx+ (12y2 —4xy)dy =0

o

(x+y)2dx+ (x+y)2dy=0 6. (4x+T7y)dx+ (3x+4y)dy =0
7. (—2y2sinx + 3y> — 2x) dx + (4y cosx + Ixy?) dy = 0



Section 2.5 Exact Equations 81

8 (2x+y)dx+ (2y+2x)dy=0
(3x2 + 2xy +4y?) dx + (x*> + 8xy + 18y)dy =0
10.  (2x% +8xy +y?) dx + (2x2 +xy3/3) dy =0

1 1
11. —+2 —+2 =
<X+ x) dx+(y+ y) dy=0

12.  (ysinxy + xy?cosxy) dx + (xsinxy + xy? cosxy) dy = 0
x dx ydy B
13. ( )3/2 + (x2 +y2)3/2 =0

14. (e x*y? + 2xy?) + 6x) dx + (2x*ye* +2)dy =0

15.  (x2eX’*Y(2x2 +3) +4x) dx 4+ (x3eXTY —12y2) dy = 0

16. (e (x*y +4x%) + 3y) dx + (x%eXY +3x) dy = 0
(

17.  (3x2cosxy — x>y sinxy + 4x) dx + (8y — x*sinxy) dy =0

In Exercises 18-22 solve the initial value problem.

18. (4x3y? —6x%y —2x —3)dx + (2x'y —2x3)dy =0, y(1)=3

19. (— 4ycosx+451nxcosx+bec x)dx + (4y —4sinx)dy =0, y(m/4) =0
20. (y®—1)e¥dx+3y%(e*+1)dy=0, y(0)=0

21. (sinx —ysinx —2cosx)dx+cosxdy =0, y(0)=1

22, (2x—1)(y—1)dx+ (x+2)(x—3)dy=0, y(1)=-1

23. Find all functions M such that the equation is exact.
(@ M(x,y)dx+ (x> —y?)dy =0
(b) M(x,y) dx + 2xysinxcosydy =0
() M(x,y)dx+ (e*—eYsinx)dy =0

24. Find all functions N such that the equation is exact.
(@ (x*y?+2xy +3y?)dx+ N(x,y)dy =0
(b) (Inxy 4+ 2ysinx)dx+ N(x,y)dy =0
(¢) (xsinx+ysiny)dx+ N(x,y)dy =0

25. Rewrite the separable equation

hy)y' =g(x) (A)

as an exact equation
M(x,y) dx + N(x,y) dy = 0. (B)

Show that applying the method of this section to (B) yields the same solutions that
would be obtained by applying the method of separation of variables to (A)
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2.6 INTEGRATING FACTORS

In Section 2.5 we saw that if M, N, My and Ny are continuous and My = Ny on an open
rectangle R then
M(x,y) dx + N(x,y)dy =0 (2.6.1)

is exact on R. Sometimes an equation that is not exact can be made exact by multiplying
it by an appropriate function. For example,

(3x +2y?) dx + 2xy dy =0 (2.6.2)

is not exact, since My (x,y) = 4y # Ny(x,y) = 2y in (2.6.2). However, multiplying
(2.6.2) by x yields
(3x% + 2xy?) dx + 2x*y dy = 0, (2.6.3)

which is exact, since My (x,y) = N« (x,y) = 4xy in (2.6.3). Solving (2.6.3) by the proce-
dure given in Section 2.5 yields the implicit solution

x* +x*y? =c.

In Section 2.4, we transformed equations into separable equations by use of a sub-
stitution. In this section, we transform equations into exact equations by using the
multiplication property of equality. More specifically, a function u = p(x,y) is called an
integrating factor for (2.6.1) if

n(x, y)M(x,y) dx + u(x,y)N(x,y) dy =0 (2.6.4)

is exact. If we know an integrating factor p for (2.6.1), we can solve the exact equation
(2.6.4) by the method of Section 2.5. (It would be nice if we could say that (2.6.1) and
(2.6.4) always have the same solutions, but this is not always true. However, if pu(x,y) is
defined and nonzero for all (x,y), (2.6.1) and (2.6.4) are equivalent; that is, they have the
same solutions.)

Finding Integrating Factors

By applying Theorem 2.5.2 (with M and N replaced by uM and uN), we see that (2.6.4)
is exact on an open rectangle R if uM, uN, (uM)y, and (uN), are continuous and

0 0
@(uM) = a(uN) or, equivalently, pyM+ puMy = N + uNy

on R. It is better to rewrite the last equation as
H(My — Ny) = uxN — uy M, (2.6.5)

which reduces to the known result for exact equations; that is, if M = Ny then (2.6.5)
holds with u =1, so (2.6.1) is exact.

You may think (2.6.5) is of little value, since it involves partial derivatives of the
unknown integrating factor p, and we have not studied methods for solving such
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equations. However, we will now show that (2.6.5) is useful if we restrict our search
to integrating factors that are products of a function of x and a function of y; that is,
w(x,y) = P(x)Q(y). We are not saying that every equation M dx + N dy = 0 has an
integrating factor of this form; rather, we are saying that some equations have such
integrating factors. We will now develop a way to determine whether a given equation
has such an integrating factor, and a method for finding the integrating factor in this
case.

If u(x,y) = P(x)Q(y), then px(x,y) = P/(x)Q(y) and py (x,y) = P(x)Q’(y), so (2.6.5)
becomes

POOQMY) My — Ny) = P/()QuIN — P(x)Q'(y)M, (26.6)
or, after dividing through by P(x)Q(y),
P, QW)
My = Nu = 5 N =5 M. (2.6.7)
Now let P )
P = g andqy) = 58
so (2.6.7) becomes
My — N = p(xIN — q(y)M. (2.6.8)

We obtained (2.6.8) by assuming that M dx + N dy = 0 has an integrating factor
i(x,y) = P(x)Q(y). However, we can now view (2.6.7) differently: If there are functions
p =p(x) and q = q(y) that satisfy (2.6.8) and we define

P(x) = el P and  Q(y) = el 9V Y, (2.6.9)

then reversing the steps that led from (2.6.6) to (2.6.8) shows that p(x,y) = P(x)Q(y) is
an integrating factor for M dx + N dy = 0. In using this result, we take the constants
of integration in (2.6.9) to be zero and choose the signs conveniently so the integrating
factor has the simplest form.

There is no simple general method for ascertaining whether functions p = p(x) and
q = q(y) satisfying (2.6.8) exist. However, the next theorem gives simple sufficient
conditions for the given equation to have an integrating factor that depends on only one
of the independent variables x and y, and for finding an integrating factor in this case.

Theorem 2.6.1 Let M, N, My, and Ny be continuous on an open rectangle R. Then:
(@ If (My — Ny)/N is independent of y on R and we define

My — Ny
plx) = N
then
(x) = +el P dx (2.6.10)
is an integrating factor for
M(x,y) dx + N(x,y)dy =0 (2.6.11)

on R.
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(b) If (Nx —My)/M is independent of x on R and we define

then
n(y) = +el alv)dy

is an integrating factor for (2.6.11) on R.

(2.6.12)

Proof (a)If (My—Ny)/Nisindependent of y, then (2.6.8) holds withp = (M —Ny)/N

and q = 0. Therefore
P(x) = :I:efP(X)dx and Q(y) = :tefq(y)dy — 40 — 41,

s0 (2.6.10) is an integrating factor for (2.6.11) on R.

(b) If (Nx — My)/M is independent of x then (2.6.8) holds with p = 0 and q =
(Nx —My)/M, and a similar argument shows that (2.6.12) is an integrating factor for

(2.6.11) on R.
The next two examples show how to apply Theorem 2.6.1.

Example 2.6.1 Find an integrating factor for the equation
(2xy® — 23y® —dxy? + 2x) dx + (3x%*y? + 4y)dy =0

and solve the equation.

Solution In (2.6.13)
M = 2xy® — 2x3y® — 4xy? + 2x, N = 3x%y? + 4y,

and
(My) —Nyx = (6xy? — 6x3y% — 8xy) — 6xy? = —6x3y% — 8xy,

so (2.6.13) is not exact. However,

My — Ny 6x3y? + 8xy _

- S
N 3x2y? + dy X

is independent of y, so Theorem 2.6.1(a) applies with p(x) = —2x. Since

Jp(x) dx = —J2xdx = —x2

(2.6.13)

u(x) = e " isan integrating factor. Multiplying (2.6.13) by p yields the exact equation

e_"2(2xy3 — 2x3y? — Axy? 4 2x) dx + e_x2(3x2y2 +4y)dy =0.

(2.6.14)
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To solve this equation, we must find a function F such that
Fx(x,y) = e (2xy® — 2x3y? — 4xy? + 2x) (2.6.15)

and ,
Fy(x,y) = e ™ (3x*y* + 4y). (2.6.16)

Integrating (2.6.16) with respect to y yields
F(x,y) = e (x*y® 4+ 2y%) + P(x). (2.6.17)
Differentiating this with respect to x yields
Feboy) = e (20 - 27y — axy®) + ' (x).

Comparing this with (2.6.15) shows that {/(x) = 2xe~*’; therefore, we can let P(x) =
—e*"in (2.6.17) and conclude that

e ¥’ (Y*(x*y+2)—1)=c
is an implicit solution of (2.6.14). It is also an implicit solution of (2.6.13). [
Example 2.6.2 Find an integrating factor for
2xy® dx + (3x*y? +x*y3 + 1) dy =0 (2.6.18)

and solve the equation.

Solution In (2.6.18),
M =2xy3, N=3x*y2+x*y*>+1,

and
My — Ny = 6xy® — (6xy? + 2xy?) = —2xy°,

so (2.6.18) is not exact. Moreover,

My — Ny 2xy?
N x4yl

is not independent of y, so Theorem 2.6.1(a) does not apply. However, Theorem 2.6.1(b)
does apply, since
Ny =My  2xy?
M 2xy3

is independent of x, so we can take q(y) = 1. Since

Jq(y)dyzj dy =y,
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1(y) = eY is an integrating factor. Multiplying (2.6.18) by u yields the exact equation
2xy®eY dx + (3x%y? +x%y® +1)e¥ dy = 0. (2.6.19)
To solve this equation, we must find a function F such that
Fe(x,y) = 2xy3eY (2.6.20)

and
Fy(x,y) = (3x%*y* +x*y® + 1)eY. (2.6.21)

Integrating (2.6.20) with respect to x yields
F(x,y) = x*y%eY + d(y). (2.6.22)
Differentiating this with respect to y yields
Fy = (3x%y” +x*y*)eY + ¢/ (y),

and comparing this with (2.6.21) shows that ¢/(y) = eV. Therefore we set $p(y) = eV in
(2.6.22) and conclude that
(x*y®> 4+ 1)eY =c¢

is an implicit solution of (2.6.19). It is also an implicit solution of (2.6.18). [ |

When working with exact equations, be sure to use the form M(x, y)dx+N(x,y)dy = 0.
For example, suppose an equation is given as G(x,y)dx = H(x,y)dy; in this case, we
would first rewrite it as G(x,y)dx — H(x,y)dy = 0 and then identify N(x,y) = —H(x,y)
before applying the method of solving.

2.6 Exercises

In Exercises 1-14, find an integrating factor that is a function of only one variable, and
then solve the given equation.

1. ydx—xdy=0 2. IHN’ydx+2x3dy=0

3. 2y3dx+3y?dy =0 4. (bxy—+2y+5)dx+2xdy =0
5. (xy+x+2y+1)dx=—(x+1)dy

6. (27xy? +8y3) dx + (18x%y + 12xy?) dy = 0

7. (6xy?+2y)dx + (12x%y +6x+3)dy =0

1
8. —yldx= (xy2 +3xy + y) dy
9. (12x%y + 24x2y?) dx + (x* +32x%y +4y)dy =0
10. (xX%y +4xy+2y)dx+ (x> +x)dy =0



11.
12.
13.
14.

Section 2.6 Integrating Factors

—ydx = —(x* —x) dy

cosxcosy dx + (sinxcosy —sinxsiny +y)dy =0
(2xy +y?) dx + (2xy + x? — 2x*y? — 2xy?) dy = 0
ysiny dx + x(siny —ycosy)dy =0
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CHAPTER 3

LINEAR HIGHER ORDER EQUATIONS

IN THIS CHAPTER we study higher order equations, primarily second order equations
that can be written in the form

Pa(x)y” + P1(x)y’ + Po(x)y = F(x).

Such equations are said to be linear. As in the case of first order linear equations, an
equation is said to be homogeneous if F = 0, or nonhomogeneous if F # 0. Because of their
many applications in science and engineering, second order differential equations have
historically been the most thoroughly studied class of differential equations. We will
look at a few of these applications at the end of the chapter. Throughout the chapter, we
will also encounter a few differential equations of order three or higher.

SECTION 3.1 is devoted to the theory of homogeneous linear equations.
SECTION 3.2 deals primarily with homogeneous equations of the special form

ay” + by’ +cy =0,
where @, b, and c are constant (a # 0).
SECTION 3.3 presents the theory of nonhomogeneous linear equations.
SECTIONS 3.4 AND 3.5 present the method of undetermined coefficients, which can be used
to solve nonhomogeneous equations of the form
ay” + by’ + cy = F(x),

where a, b, and c are constants and F has a special form that is still sufficiently general to
occur in many applications. In this section we make extensive use of the idea of variation
of parameters introduced in Chapter 2.

SECTION 3.6 deals with reduction of order, a technique based on the idea of variation
of parameters, which enables us to find the general solution of a nonhomogeneous

89
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linear second order equation provided that we know one nontrivial (not identically zero)
solution of the associated homogeneous equation.

SECTION 3.7 deals with the method traditionally called variation of parameters, which
enables us to find the general solution of a nonhomogeneous linear second order equa-
tion provided that we know two nontrivial solutions (with nonconstant ratio) of the
associated homogeneous equation.

SECTION 3.8 looks at applications of linear higher order equations to spring—mass sys-
tems. In particular, we consider simple harmonic motion, undamped forced oscillation,
and free vibrations with damping.
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3.1 HOMOGENEOUS LINEAR EQUATIONS

A second order differential equation is said to be linear if it can be written as

y" +px)y’ + qx)y = f(x). (3.1.1)

We say that (3.1.1) is homogeneous if f = 0 or nonhomogeneous if f # 0. Since these
definitions are like the corresponding definitions for the linear first order equation

y' +px)y = f(x), (3.1.2)

it is natural to expect similarities between methods of solving (3.1.1) and (3.1.2). How-
ever, solving (3.1.1) is more difficult than solving (3.1.2). For example, while Theo-
rem 2.1.1 gives a formula for the general solution of (3.1.2) in the case where f = 0 and
Theorem 2.1.2 gives a formula for the case where f # 0, there are no formulas for the
general solution of (3.1.1) in either case. Therefore we must be content to solve linear
second order equations of special forms.

In Section 2.1, we first considered the homogeneous equation y’ + p(x)y = 0 and
then used a nontrivial solution of this equation to find the general solution of the
nonhomogeneous equation y’ + p(x)y = f(x). Although the progression from the
homogeneous to the nonhomogeneous case is not that simple for the linear second order
equation, it is still necessary to solve the homogeneous equation

Yy +px)y" +qx)y =0 (3.1.3)

in order to solve the nonhomogeneous equation (3.1.1). This section is devoted to solving
homogeneous equations of this type.

The next theorem gives sufficient conditions for existence and uniqueness of solutions
of initial value problems for (3.1.3). We omit the proof.

Theorem 3.1.1 Suppose p and q are continuous on an open interval (a, b), let xo be any point
in (a,b), and let ko and ky be arbitrary real numbers. Then the initial value problem

y" +p(x)y’ +q(x)y =0, y(xo) = ko, y'(x0) = k1

has a unique solution on (a, b).

Since y = 0 is obviously a solution of (3.1.3) we call it the trivial solution. Any other
solution is nontrivial. Notice that under the assumptions of Theorem 3.1.1, the only
solution of the initial value problem

Yy +px)y’ +qx)y =0, y(xo) =0, y'(x0) =0

on (a, b) is the trivial solution.

The next three examples illustrate concepts that we will develop later in this section.
You should not be concerned with how to find the given solutions of the equations in
these examples. This will be explained in later sections.
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Example 3.1.1 The coefficients of y’ and y in
y'—y=0 (3.1.4)

are the constant functions p = 0 and q = —1, which are continuous on (—oo, 00).
Therefore Theorem 3.1.1 implies that every initial value problem for (3.1.4) has a unique
solution on (—oo, 00).

(a) Verify thaty; = e* and y = e~ * are solutions of (3.1.4) on (—o0, c0).

(b) Verify that if c; and cy are arbitrary constants, y = c;e* + coe™* is a solution of
(3.1.4) on (—o0, 00).

(c) Solve the initial value problem

y"—y=0, y0)=1, y'(0)=3. (3.1.5)

Solution (a) If y; = e* then both y] = e* and y{ = e*,so thatyy —y; =0.Ifys = e~ %,
then y, = —e~* and y4 = e * so that yJ = ys. This verifies that y}' —y2 = 0.
(b) If

y=cie*+coe © (3.1.6)
then
y' =cie¥ —coe ¥ (3.1.7)
and
Y’ =cie¥ +coe7,
SO

y"—y = (c1e¥+coe ) —(c1e¥ +coe )

= ci(e¥—e¥)+cale¥—e ¥)=0
for all x. Therefore y = c1e* + coe™* is a solution of (3.1.4) on (—o0, 00).

(c) We can solve (3.1.5) by choosing c¢; and c2 in (3.1.6) so that y(0) = 1 and y’(0) = 3.
Setting x = 0 in (3.1.6) and (3.1.7) shows that this is equivalent to

cp+c = 1

Ci—Cy = 3.
Solving this system of equations yields ¢; = 2 and c3 = —1. Therefore y = 2e* — e~ * is
the unique solution of (3.1.5) on (—o0, 00). [ |

The next example will be a useful reference for the technique discussed in the next
section.

Example 3.1.2 Let w be a positive constant. The coefficients of y” and y in
Yy +w?y =0 (3.1.8)

are the constant functions p = 0 and q = w?, which are continuous on (—oo, co).
Therefore Theorem 3.1.1 implies that every initial value problem for (3.1.8) has a unique
solution on (—oco, 00).
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(a) Verify thaty; = cos wx and ys = sin wx are solutions of (3.1.8) on (—oo, o).

(b) Verify that if c; and c» are arbitrary constants then y = ¢ cos wx + cosinwx is a
solution of (3.1.8) on (—oo, c0).

(c) Solve the initial value problem

y +w’y=0, y(0)=1, y'(0)=3. (3.1.9)

Solution (a) If y; = cos wx then y] = —wsin wx and y;’ = —w? cos wx. Substitution

then verifies that yj’ + w?y; = 0. If yo = sinwx then, y, = wcoswx and y4 =
—w? sin wx. Again, substitution is used to verify that y + w?ys = 0.

(b) If

Y = €1 COS WX + Cg sin wx (3.1.10)
then
y’ = w(—cy sin wx + cg cos wx) (3.1.11)
and
y” = —w?(cq cos wx + ¢ sin wx),
SO
y” +wly = —w?(cycoswx + cysin wx) + w?(cy cos wx + cg sin wx)

= crw?(—cos wx + cos wx) + cow?(—sin wx + sin wx) = 0

for all x. Therefore y = c; cos wx + ¢4 sin wx is a solution of (3.1.8) on (—oo, 00).
(c) To solve (3.1.9), we must choose c¢; and ¢ in (3.1.10) so that y(0) = 1 and y'(0) = 3.
Setting x = 0in (3.1.10) and (3.1.11) shows that ¢; = 1 and c¢2 = 3/w. Therefore

3 .
Y = COS WX + — sin wx
w

is the unique solution of (3.1.9) on (—o0, c0). [
Theorem 3.1.1 implies that if kg and k; are arbitrary real numbers then the initial value
problem

Pa(x)y” +Pi(x)y’ 4+ Po(x)y =0, ylxo) =ko, Yy'(x0) =ki (3.1.12)

has a unique solution on an interval (a, b) that contains xg, provided that Py, P;, and
Py are continuous and Ps has no zeros on (a, b). To see this, we rewrite the differential
equation in (3.1.12) as

=0

Pix) , , Polx)
Po(x)” | Py(x)”

and apply Theorem 3.1.1 with p = P1 /P2 and q = Py/P>.

yll+
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Example 3.1.3 The equation

X2y +xy’ —4y =0 (3.1.13)

has the form of the differential equation in (3.1.12), with Py(x) = x2, P1(x) = x, and
Po(x) = —4, which are are all continuous on (—o0, c0). However, since P5(0) = 0 we
must consider solutions of (3.1.13) on (—o0, 0) and (0, co). Since P has no zeros on these
intervals, Theorem 3.1.1 implies that the initial value problem

Py +xy’ =4y =0, ylxo) =ko, y'(x) =k

has a unique solution on (0, co) if xg > 0, or on (—o0, 0) if xg < 0.
(@) Verify that y; = x? is a solution of (3.1.13) on (—o0, o) and y, = 1/x? is a solution
of (3.1.13) on (—o0,0) and (0, co).

(b) Verify that if c¢; and c are any constants then y = c1x? + co/x? is a solution of
(3.1.13) on (—o0, 0) and (0, co).

(c) Solve the initial value problem

Py’ —dy =0, y(1)=2 y'(1)=0. (3.1.14)

(d) Solve the initial value problem

X2yll+xy/_4y :07 U(—l) :27 y/(_l) =0. (3115)

Solution (a) If y; = x? theny] = 2x and y{ = 2, so
Py’ xyp — dyn =x7(2) +x(2x) — 47,
which reduces to zero for x in (—o0, 00). If yo = 1/x2, then y5 = —2/x3 and y4/ = 6/x%,

SO
6 2 4
2.1 / 2

which reduces to zero for x in (—oo, 0) or (0, co).

(b) If
y=ci+ % (3.1.16)
then
/ 2C2
Yy =2c1x — Py (3.1.17)
and

C2
1
y"' =2c; + <
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SO
XQ];//—i—x]_;/—Zh_; = x%(2c1 4+ —= ) +x[ 2c1x — == —4((: x2+—>
! x4 ! x3 ! x2

6 2 4

= C1'0+C2'0
= 0

for x in (—o0,0) or (0, co0).
(c) To solve (3.1.14), we choose ¢; and c; in (3.1.16) so that y(1) = 2 and y’(1) = 0.
Setting x = 1in (3.1.16) and (3.1.17) shows that this is equivalent to

C1+ Cco =
2C1—2C2 =

Solving this system of equations yields ¢; = 1 and ¢y = 1. Therefore, y = x2 +1/x%is
the unique solution of (3.1.14) on (0, co).

(d) We can solve (3.1.15) by choosing c; and c3 in (3.1.16) so that y(—1) = 2 and
y’(—1) = 0. Setting x = —1 in (3.1.16) and (3.1.17) shows that this is equivalent to

Ci1+ €2
—2¢1 +2¢co =

Solving this system of equations yields ¢; = 1 and ¢y = 1. Therefore y = x? + 1/x? is the
unique solution of (3.1.15) on (—o0, 0). [ |

Although the formulas for the solutions of (3.1.14) and (3.1.15) are both y = x* + 1/x?,
you should not conclude that these two initial value problems have the same solution.
Remember that a solution of an initial value problem is defined on an interval that contains
the initial point; therefore, the solution of (3.1.14) is y = x? + 1/x? on the interval (0, c0),
which contains the initial point xo = 1, while the solution of (3.1.15) is y = x? + 1/x? on
the interval (—oo, 0), which contains the initial point xg = —1.

Initial value problems impose conditions on a single point xg. However, many applica-
tions involve solving differential equations where conditions have been imposed on two
different points xo and x;. A boundary value problem is a differential equation together
with conditions specified on the dependent variable or its derivatives at two different
points. For example,

y’'—y=0, y(0)=1, y(2)=3

is a boundary value problem. A solution of this problem is a function satisfying the
differential equation on some interval that contains both x = 0 and x = 2; that is,
the solution passes through the points (0,1) and (2, 3). Unfortunately, even when the
conditions of Theorem 3.1.1 are satisfied, it is not known whether a boundary value
problem will have none, one, or multiple solutions.
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Example 3.1.4
The homogeneous linear second order equation y” + 16y = 0 has the two-parameter
family of solutions

Yy = c1cosdx + cosindx.

(You should verify this.)
(a) Find the solution of y” + 16y = 0 that satisfies the boundary conditions y(0) = 0
and y(7t/2) = 0.

(b) Find the solution of y” 4 16y = 0 that satisfies the boundary conditions y(0) = 0
and y(7t/8) = 0.

() Find the solution of y” + 16y = 0 that satisfies the boundary conditions y(0) =0
and y(7t/2) = 1.

Solution (a) Setting 0 = c1cos0 + c2sin0 implies that ¢; = 0 and therefore y = cosin4x.
Before applying the second condition, notice that substituting x = 71/2 into sin4x gives
sin27 = 0. This means that 0 = cpsin4(7/2) is true for any choice of cy. Therefore, the
boundary value problem

y”"+16y =0, y(0)=0, y(n/2)=0

has infinitely many solutions. (b) As before, the first condition implies that ¢; = 0 and
therefore y = casindx. This time, notice that substituting x = 71/8 into sin4dx gives
sin7t/2 = 1. This means that 0 = c is required to fulfill the second condition. In fact,
the boundary value problem

y”’+16y=0, y(0)=0, y(n/8)=0

has only the one solution y = 0. (c) Once more, the first condition implies that ¢c; =0
and therefore y = cosindx. Here however, the substitution of x = 7/2 into sin4x that
gives sin2m = 0 leads to the contradiction 1 = 0. This means that the boundary value
problem

y”+16y =0, y(0)=0, y(n/8)=0

has no solutions. m

The General Solution of a Homogeneous Linear Second Order Equation

If y; and ys are defined on an interval (a, b) and ¢; and c5 are constants, then

Y = C1Y1 + C2Y2

is a linear combination of y; and y,. For example, y = 2 cos x+7 sin x is a linear combination
of y; = cosx and ys =sinx, withc; =2and cy = 7.
The next theorem states a fact that we illustrated in Examples 3.1.1, 3.1.2, and 3.1.3.
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Theorem 3.1.2 Ify; and ys are solutions of the homogeneous equation
Y +px)y +qx)y =0 (3.1.18)
on (a,b), then any linear combination
Y = C1y1 + C2Y2 (3.1.19)

of y1 and ys is also a solution of (3.1.18) on (a, b).

Proof If
Y = C1Y1 + C2Y2
then
y' =ciy; teoys and  y” =ciyy +cays.
Therefore
vy +pxy' +qx)y = (cryy +coyy) +p(x)(c1y; + cayz) + q(x)(c1y1 + cay2)

= ¢ (y!' +p(X)y1 + q(x)y1) +c2 (y5 + p(x)ys + q(x)y2)

= ¢1-04co-0

= 0,
since y; and ys are solutions of (3.1.18). [

We say that {y1, Y2} is a fundamental set of solutions of (3.1.18) on (a,b) if every solution
of (3.1.18) on (a, b) can be written as a linear combination of y; and ys as in (3.1.19). In
this case we say that (3.1.19) is the general solution of (3.1.18) on (a, b).

Linear Independence

We need a way to determine whether a given set {y1,y2} of solutions of (3.1.18) is a
fundamental set. The next definition will enable us to state necessary and sufficient
conditions for this.

We say that two functions y; and y» defined on an interval (a, b) are linearly independent
on (a,b) if neither is a constant multiple of the other on (a, b). (In particular, this means
that neither can be the trivial solution of (3.1.18), since, for example, if y; = 0 we could
write y; = Oyz.) We will also say that the set {y1,y2} is linearly independent on (a,b).

Theorem 3.1.3 Suppose p and q are continuous on (a,b). Then a set {y1,ya} of solutions of
Yy +px)y +qx)y =0 (3.1.20)
on (a,b) is a fundamental set if and only if {y1, Y} is linearly independent on (a, b).

We will present the proof of Theorem 3.1.3 in steps worth regarding as theorems in
their own right. However, let us first interpret Theorem 3.1.3 in terms of Examples 3.1.1,
3.1.2,and 3.1.3.
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Example 3.1.5

(@) In Example 3.1.1, since e*/e™* = e?* is nonconstant, Theorem 3.1.3 implies that

y = c1e* + cae” * is the general solution of y” —y = 0 on (—o0, c0).

(b) In Example 3.1.2, since cos wx/sin wx = cot wx is nonconstant, Theorem 3.1.3
implies that y = ¢ cos wx + co sin wx is the general solution of y” + w?y = 0 on
(_007 OO) .

2

(c) In Example ??, since x?/x 2 = x* is nonconstant, Theorem 3.1.3 implies that y =
2,1

c1x% + c2/x? is the general solution of x?y” + xy’ — 4y = 0 on (—o0, 0) and (0, c0).
The Wronskian and Abel’s Formula

To motivate a result that we need in order to prove Theorem 3.1.3, let us see what is
required to prove that {y;, Yz} is a fundamental set of solutions of (3.1.20) on (a, b). Let
X0 be an arbitrary point in (a, b), and suppose y is an arbitrary solution of (3.1.20) on
(a,b). Then y is the unique solution of the initial value problem

vy’ +px)y' +qx)y =0, ylxo) =ko, y'(x0)=ky; (3.1.21)

that is, kg and k; are the numbers obtained by evaluating y and y’ at xo. Moreover, kg
and k; can be any real numbers, since Theorem 3.1.1 implies that (3.1.21) has a solution
no matter how kg and k; are chosen. Therefore {y;, Y2} is a fundamental set of solutions
of (3.1.20) on (a, b) if and only if it is possible to write the solution of an arbitrary initial
value problem (3.1.21) as y = c1y1 + c2y2. This is equivalent to requiring that the system

c1yi(xo) + cay2(xo) = ko
3.1.22
eyl (xo) + cauhlxo) = ki (3122

has a solution (cy, c2) for every choice of (ko, k). Let us try to solve (3.1.22).
Multiplying the first equation in (3.1.22) by y5(xo) and the second by ya(xo) yields

c1Y1(x0)ys(xo) + c2ya(xo)ys(xo) = yilxo)ko
c1Y1 (x0)y2(xo0) + c2ys(xo)y2(x0) = yalxo)ki,

and subtracting the second equation here from the first yields
(y1(x0)ya(x0) —yi(x0)y2(x0)) c1 = ya(xo)ko — ya(xo)ki. (3.1.23)

Multiplying the first equation in (3.1.22) by y; (xo) and the second by y; (x¢) yields

c1y1(x0)y1(x0) + cay2(x0)yi(x0) = yilxo)ko
c1y1 (x0)y1(xo0) + cays(x0)y1(x0) = yilxo)ki,

and subtracting the first equation here from the second yields

(y1(x0)ya(x0) —y1(x0)yz2(x0)) c2 = y1(xo)k1 — yq(xo)ko. (3.1.24)
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If
y1(x0)ys(x0) —y1(x0)y2(xo) =0,

it is impossible to satisfy (3.1.23) and (3.1.24) (and therefore (3.1.22)) unless kg and k;
happen to satisfy

yi(xo)ki —yi(xo)ko =
y5(x0)ko —yalxo)ki = 0.

On the other hand, if
y1(xo0)ys(x0) — y1(x0)yz(xo) # 0 (3.1.25)

we can divide (3.1.23) and (3.1.24) through by the quantity on the left to obtain

ys(xo)ko — ya(xo)ki

Cc1 =

)
Y1 (x0)ys(xo) —yi(xO)yz(xO) (3.1.26)
6 — yi(xo)k1 —y1(xo0)ko
Y1 (xo)ys(xo) —yi(x0)y2(x0)’

no matter how kg and k; are chosen. This motivates us to consider conditions on y; and
yo that imply (3.1.25).

Theorem 3.1.4 Suppose p and q are continuous on (a, b), let yy and y» be solutions of
Yy +px)y’ +qx)y =0 (3.1.27)

on (a,b), and define
W =1y1y; — Y1y (3.1.28)

Let xq be any point in (a,b). Then
W(x) = Wi(xgle o P®dt ¢ -y 1y (3.1.29)

Therefore either W has no zeros in (a,b) or W =0on (a,b).
Proof Differentiating (3.1.28) yields

W’ =y1y; +Y1y3 — Y1y — Y1'y2 = Yy1y3 — y1'ya. (3.1.30)
Since y; and ys both satisfy (3.1.27),

y{'=-pyi—qui and Y3 =-py;—qys.

Substituting these into (3.1.30) yields

W' = —yi(pys + qy2) +y2(pyi + qui)
—p(Y1ys — Y2y1) — 4(y1y2 — yay1)
—p(Y1Yys — Yy2y1)

= —pW.
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Therefore W’ + p(x)W = 0; that is, W is the solution of the initial value problem

y' +pxJy=0, ylxo) =Wl(xo).

We leave it to you to verify by separation of variables that this implies (3.1.29). If
W(xg) # 0, (3.1.29) implies that W has no zeros in (a, b), since an exponential is never
zero. On the other hand, if W(x¢) = 0, (3.1.29) implies that W(x) = 0 forall xin (a,b). m
The function W defined in (3.1.28) is the Wronskian of {y1, y2}. Formula (3.1.29) is Abel’s
formula.
The Wronskian of {y1, Yz} is usually written as the determinant

Y1 Y2
W = |
Y1 Yo
The expressions in (3.1.26) for ¢ and cy can be written in terms of determinants as
1 ko Ya2(xo) q 1 yi1(xo) ko
C1 = an Co =
W(XO) k1 yé(Xo) W(XO) y{(XO) k1

If you have taken linear algebra you may recognize this as Cramer’s rule.

Example 3.1.6 Verify Abel’s formula for the differential equations and the corresponding
solutions, from Examples 3.1.1, 3.1.2, and 3.1.3:

@ y'-y=0; yi=e,ys=e"

(b) y” + w?y =0; Y1 = COS WX, Y2 = sin wx

© x*y”"+xy’ —4y=0; y; =x? yp =1/x?

Solution (a) Here there is no y’ term, so p = 0. Therefore we can verify Abel’s formula
by showing that W is constant. By computing the Wronskian as a determinant, we see
that

e e *
W(x) = . .
e —e
_ eX(_e—X) —eXe X
= -2

for all x.
(b) Again, since p = 0, we verify Abel’s formula by showing that W is constant. In
this case,

COs WX sin wx
W(x) =

—Ww sin WX W cos Wwx

= cos wx(w cos wx) — (—w sin wx) sin wx

2 2

= w(cos” wx + sin” wx)

= w
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for all x.
(c) Computing the Wronskian of y; = x? and ys = 1/x? directly yields

W(x) =

To verify Abel’s formula, we rewrite the differential equation as
1 4
P . I
y oty gy=0

to see that p(x) = 1/x. If xg and x are either both in (—o0, 0) or both in (0, co) then

X X
J p(t)dt:J' dt:ln<x>7
X0 X0 t XO

so the right side of Abel’s formula becomes

W(x) =

which is consistent with the result we got from computing the Wronskian directly. =
The next theorem will enable us to complete the proof of Theorem 3.1.3.

Theorem 3.1.5 Suppose p and q are continuous on an open interval (a,b), let y; and ys be
solutions of
Yy +px)y +qx)y =0 (3.1.31)

on (a,b), and let W = y1y5 — y{ya. Then yy and ys are linearly independent on (a,b) if and
only if W has no zeros on (a, b).

Proof We first show that if W(x() = 0 for some x in (a, b), then y; and y; are linearly
dependent on (a, b). Let I be a subinterval of (a, b) on which y; has no zeros. (If there is
no such subinterval, y; = 0 on (a, b), so y; and ys are linearly independent, and we are
finished with this part of the proof.) Then y»/y; is defined on I, and

/ / /
— w
<yz ) _ Ut by W (3.1.32)
Y1 Y1 Y1
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However, if W(xg) = 0, Theorem 3.1.4 implies that W = 0 on (a, b). Therefore (3.1.32)
implies that (y2/y1)’ =0, so y2/y1 = ¢ (constant) on I. This shows that y2(x) = cy;(x)
for all x in I. However, we want to show that y» = cy;i(x) for all x in (a,b). Let
Y =y2 —cy;. Then Y is a solution of (3.1.31) on (a, b) such that Y = 0 on I, and therefore
Y’ = 0 on I. Consequently, if x is chosen arbitrarily in I then Y is a solution of the initial
value problem

Yy’ +px)y’ +qx)y=0, ylxo) =0, y'(xo) =0,

which implies that Y = 0 on (a, b), by the paragraph following Theorem 3.1.1. Hence,
Y2 —cyp = 0 on (a, b), which implies that y; and ys are not linearly independent on
(a,b).

Now suppose W has no zeros on (a, b). Then y; cannot be identically zero on (a, b)
(why not?), and therefore there is a subinterval I of (a,b) on which y; has no zeros.
Since (3.1.32) implies that y2/y; is nonconstant on I, ys is not a constant multiple of
y1 on (a,b). This means that y; and y are linearly independent on (a,b). A similar
argument shows that y; is not a constant multiple of y, on (a, b), since

(m)'ZUQQ—myé_ w
Y2

y3 Y
on any subinterval of (a, b) where ys has no zeros. [ |

We can now complete the proof of Theorem 3.1.3. From Theorem 3.1.5, two solutions
y1 and y» of (3.1.31) are linearly independent on (a, b) if and only if W has no zeros
on (a,b). From Theorem 3.1.4 and the motivating comments preceding it, {yi,ys2}
is a fundamental set of solutions of (3.1.31) if and only if W has no zeros on (a,b).
Therefore {yi,y2} is a fundamental set for (3.1.31) on (a,b) if and only if {yi,y2} is
linearly independent on (a, b). [ |

The next theorem summarizes the relationships among the concepts discussed in this
section.

Theorem 3.1.6 Suppose p and q are continuous on an open interval (a,b) and let y; and y»
be solutions of
y" +px)y’ +qx)y =0 (3.1.33)

on (a,b). Then the following statements are equivalent; that is, they are either all true or all
false.
(@) The general solution of (3.1.33) on (a,b) isy = c1y1 + caya2.

(b) {y1,y2} is a fundamental set of solutions of (3.1.33) on (a,b).
(&) {y1,y2}is linearly independent on (a,b).
(d) The Wronskian of {y1, Yz} is nonzero at some point in (a,b).

(e) The Wronskian of {y1,ys} is nonzero at all points in (a,b).
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We can apply this theorem to an equation written as
Pa(x)y” 4 P1(x)y’ + Po(x)y =0
on an interval (a, b) where Py, Py, and Py are continuous and P has no zeros.

3.1 Exercises

o are solutions of

1. (a) Verify thaty; =e**andys =e
Yy’ =Ty +10y =0 (A)

on (—o0, 00).

(b) Verify that if ¢c; and cy are arbitrary constants then y = c; e?* + coe’* is a
solution of (A) on (—o0, co).

(c) Solve the initial value problem

y”" =71y’ +10y =0, y(0)=-1, y'(0)=1.
(d) Solve the initial value problem
y" =Ty +10y =0, y(0)=ko, y'(0) =k
2. (a) Verify thaty; = e* cosx and ys = e* sin x are solutions of
y”" -2y +2y=0 (A)

on (—o0, 00).

(b) Verify that if c; and ¢y are arbitrary constants then y = c1e* cosx + cpe* sinx
is a solution of (A) on (—o0, 00).

(c) Solve the initial value problem

y”"—2y"+2y=0, y(0)=3, y'(0)=-2.
(d) Solve the initial value problem
y"—2y"+2y =0, y(0)=ko, y'(0)=ki.
3. (a) Verify thaty; = e* and ys = xe* are solutions of
y'—2y"+y=0 (A)

on (—oo, 00).
(b) Verify that if ¢c; and cy are arbitrary constants then y = e*(c; + c2x) is a
solution of (A) on (—o0, c0).
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() Solve the initial value problem
vy’ =2y"+y=0, y(0)=7 y'(0)=4
(d) Solve the initial value problem

y"—2y"+y=0, y(0)=ko, y'(0)=ki.

4. y = cjcos2x+ cysin 2x is a two-parameter family of solutions for the second order
differential equationy” +4y = 0. If possible, find a solution of the differential equa-
tion that satisfies the given boundary conditions. (a) y(0) = 0,y(n/4) =3 (b) y(0) = 0,y(m)

(© y’(0) = 0,y'(n/6) = 0 () y'(m/2) =1,y'(m) = 0
5. Yy =cieXcosx+ coe*sinxis a two-parameter family of solutions for the second or-

der differential equation y” —2y’+2y = 0 on the interval (—oo, o). If possible, find
a solution of the differential equation that satisfies the given boundary conditions.

@uy(0)=1,y'(mr) =0 (b) y(0) =1,y(m) =—1
(©y(0) =1,y(m/2) =1 (d) y(0) =0,y(n) =0
6. y=cix’+cox*+3isa two-parameter family of solutions for the second order dif-

ferential equation x?y” — 5xy’ + 8y = 24 on the interval (—o0, c0). If possible, find

a solution of the differential equation that satisfies the given boundary conditions.

@y(-1)=0,y(1) =4 b)) y((0) =1,y(1) =2

(@ y(0) =3,y(1) =0 (dy(1) =3,y(2) =15
7. Compute the Wronskians of the given sets of functions.

(a) {1, e*} (b) {eX, e* sinx}

©{x+1,x24+2} (d) {x1/2,x1/3}

(o) (T2, %, (® (xlnfx], 2 In [x}

x X
(g) {€* cos /x, e sin y/x}
8. (a) Verify thaty; =1/(x —1) and yo = 1/(x + 1) are solutions of

(x2—1)y” +4xy’ +2y =0 (A)

on (—oo,—1), (—1,1), and (1, co). What is the general solution of (A) on each
of these intervals?

(b) Solve the initial value problem
(x* = 1y" +4xy’ +2y =0, y(0)=—-5 y'(0)=1

What is the domain of the solution?
(c) Graph the solution of the initial value problem.
(d) Verify Abel’s formula for y; and ys, with x¢ = 0.
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9. Use Abel’s formula to find the Wronskian of a given set {y;,y2} of solutions of
y" +3(x*+ 1)y’ —2y =0,

given that W(m) = 0.

10. Use Abel’s formula to find the Wronskian of a given set {y1,y2} of solutions of
(1—x3y"” —2xy’ + «(oc+ 1)y = 0,

given that W(0) = 1. (This is Legendre’s equation.)
11. Use Abel’s formula to find the Wronskian of a given set {y1,y2} of solutions of

Y +xy’ + (¢ = vy =0,

given that W(1) = 1. (This is Bessel’s equation.)

12. (This exercise shows that if you know one nontrivial solution of y” + p(x)y’ +
q(x)y = 0, you can use Abel’s formula to find another.)

Suppose p and q are continuous and y; is a solution of

Yy +px)y +qx)y =0 (A)
that has no zeros on (a,b). Let P(x) = [p(x) dx be any antiderivative of p on
(a,b).

(@) Show that if K is an arbitrary nonzero constant and ys satisfies

Y1y} —yiys = Ke "9 (B)

on (a, b), then ys also satisfies (A) on (a, b), and {y1,y2} is a fundamental set
of solutions on (A) on (a, b).

eiP(X)

(b) Conclude from (a) that if y» = uy; where u’ = KW, then {y;,yz}is a
1

fundamental set of solutions of (A) on (a, b).

In Exercises 13-26 use the method suggested by Exercise 12 to find a second solution yso that is
not a constant multiple of the solution y,. Choose K conveniently to simplify ys.

13. y”" -2y’ —3y=0; y; =e*

14. y”" -6y’ +9y=0; y; =e*

15. y” —2ay’+ a’y =0 (a = constant); y; = e

16. xX2y”" +xy'—y=0; y;=x

17. x*y” —xy'+y=0; yr=x

18. x%y” — (2a—1)xy’ + a?y =0 (a = nonzero constant); x > 0; y; = x°

19. 4x%y” —4xy’ + (3 —16x*)y =0; y; = x/2e>
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20. (x—1)y"—xy'+y=0; yi=e*

21. x%y” —2xy’ + (x> +2)y =0; y; =xcosx

22, 4x2(sinx)y” — 4x(xcosx +sinx)y’ + (2xcosx + 3sinx)y = 0; y; = x/?

23. (3x—1)y” — (3x+2)y’ — (6x —8)y =0; y; = e
1

24, (x> —4y" +4xy' +2y=0; vy, = —

1
25. (2x+1)xy” —2(2x®> — 1)y’ —4(x+ 1)y =0; y; =—
X

26. (X2 —2xX)y"+(2—x)y' +(2x—2)y=0; y; =e*

3.2 CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

If a, b, and c are real constants and a # 0, then
ay” + by’ +cy = F(x)

is said to be a constant coefficient equation. We first consider the homogeneous constant
coefficient equation
ay” + by’ +cy =0. (3.2.1)

As we will see, all solutions of (3.2.1) are defined on (—oo, 0o). This being the case, we
will omit references to the interval on which solutions are defined, or on which a given
set of solutions is a fundamental set, etc., since the interval will always be (—oo, o).

The key to solving (3.2.1) is that if y = e™ where 1 is a constant then the left side
of (3.2.1) is a multiple of e™. So if y = €™, theny’ = re™ and y” = r%e™. We can
substitute into (3.2.1) to get

ar?e™ + bre™ + ce™ = (ar? + br+c)e™. (3.2.2)
The quadratic polynomial
p(r) = ar? +br+c¢

is the characteristic polynomial of (3.2.1), and p(r) = 0 is the characteristic equation. From
(3.2.2) we can see that y = e"™ is a solution of (3.2.1) if and only if p(r) = 0.
The roots of the characteristic equation are given by the quadratic formula

_ /b2 —
M 22 dac (3.2.3)

We consider three cases:
CASE 1. b2 —4ac > 0, so the characteristic equation has two distinct real roots.

CASE 2. b% — 4ac = 0, so the characteristic equation has a repeated real root.
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CASE 3. b% — 4ac < 0, so the characteristic equation has complex roots.

In each case we will start with an example.

Case 1: Distinct Real Roots

Example 3.2.1

(a) Find the general solution of

y” + 6y’ +5y=0. (3.2.4)

(b) Solve the initial value problem

y” +6y +5y =0, y(0)=3,y'(0)=—L (3.2.5)

Solution (a) The characteristic polynomial p(r) of (3.2.4) is
P 4+6r+5=(r+1)(r+5).

Since p(—1) = p(—5) = 0, y; = e * and yo = e > are solutions of (3.2.4). Since
Yy2/y1 = e~ ¥ is nonconstant, Theorem 3.1.6 implies that the general solution of (3.2.4) is

y=cre X+ coe . (3.2.6)

(b) We must determine c; and c9 in (3.2.6) so that y satisfies the initial conditions in
(3.2.5). Differentiating (3.2.6) yields

/

y' =-—cie ™

— 5ege X, (3.2.7)
Imposing the initial conditions y(0) = 3 and y’(0) = —1 in (3.2.6) and (3.2.7) yields

C1+ Cco = 3
—C1—5C2 = —1.

The solution of this system is ¢; = 7/2, c; = —1/2. Therefore the solution of (3.2.5) is

Figure 3.1 is a graph of this solution. |

To summarize, if the characteristic equation has arbitrary distinct real roots 1 and ry,
theny; = e™* and y, = e"2* are solutions of ay”+by’+cy = 0. Since y /y; = e(T2—T1)x
is nonconstant, Theorem 3.1.6 implies that {y, Y2} is a fundamental set of solutions of
ay” +by’ +cy=0.
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1 2 3 4 5

x 1 —b5x

7
Figure3.1y = 56_

Case 2: A Repeated Real Root

Example 3.2.2

(a) Find the general solution of
y” + 6y’ +9y =0. (3.2.8)
(b) Solve the initial value problem

y”"+6y"+9y=0, y(0)=3,y'(0)=—1. (3.2.9)

Solution (a) The characteristic polynomial p(r) of (3.2.8) is

24+ 6r4+9=(r+3)?

so the characteristic equation has the repeated real root r; = —3. Therefore y; = e3>

is a solution of (3.2.8). Since the characteristic equation has no other roots, (3.2.8) has

no other solutions of the form e™. We look for solutions of the form y = uy; = ue>%,

where u is a function that we will now determine. (This should remind you of the

method of variation of parameters that was used to solve the nonhomogeneous equation

y’ + p(x)y = f(x), given a solution y; of the complementary equation y’ + p(x)y = 0.)
If y = ue 3%, then

y ' =ue® —3ue ™ and y” =u"e ¥ —6u'e 3 + Jue 3,
S0

y"+6y'+9y = e *[(u’ —6u +9u)+6(u —3u)+ 9u]
e X [u”—(6—6)u 4+ (9—18+9)u]

— u//e—3x-
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Therefore y = ue 3> is a solution of (3.2.8) if and only if u” = 0, which is equivalent to

u = c1 + c2x, where ¢; and cy are constants. Therefore any function of the form

y= e *(cq + cax) (3.2.10)

is a solution of (3.2.8). Letting c; = 1 and ¢y = 0 yields the solution y; = e~3* that we
already knew. Letting ¢; = 0 and c2 = 1 yields the second solution y, = xe3*. Since
Y2/yY1 = x is nonconstant, Theorem 3.1.6 implies that {y;, Yz} is a fundamental set of
solutions of (3.2.8), and (3.2.10) is the general solution.

(b) To solve the initial value problem, differentiate (3.2.10) to get

y' = —3e3¥(cy + cox) + coe X, (3.2.11)

Now impose the initial conditions y(0) = 3 and y’(0) = —1 in (3.2.10) and (3.2.11) to
obtain ¢; = 3 and —3cy + ¢ = —1. (So ¢o = 8.) Therefore the solution of (3.2.9) is

y=e 3X(3+8x).
Figure 3.2 is a graph of this solution. [ ]

Y

Figure 3.2 y = e 3%(3 + 8x)
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In general, if the characteristic equation of ay” +by’+cy = 0 has an arbitrary repeated
root 11, the characteristic polynomial must be

p(r) = afr—m)2=a(r®*— 2r1r+r%).

Therefore
ar’ 4+ br + ¢ = ar’ — (2ar;)r + ar?,

which implies that b = —2ar; and ¢ = ar?. Therefore ay” + by’ + cy = 0 can be written
as a(y” — 2r1y’ + r3y) = 0. Since a # 0 this equation has the same solutions as

y” —2ory’ 13y =0. (3.2.12)

Since p(r1) = 0, y1 = e"* is a solution of ay” + by’ + cy = 0, and therefore of
(3.2.12). Proceeding as in Example 3.2.2, we look for other solutions of (3.2.12) of the
form y = ue™*; then

y'=uwe" +rue™ and vy’ =u"e"*+2ru'e"* + r%ue“",

so
y’—2ry’ +1iy = e™ [(u”’ +2ru’ +riu) — 2r (0 + 1u) + iy
= " [u’+ (2r —2r)u’ + (1] — 21 + 1)u]
— u//eTlX.

Therefore y = ue™* is a solution of (3.2.12) if and only if u” = 0, which is equivalent to
u = ¢ + c2x, where ¢; and cp are constants. Hence, any function of the form

y=-e"*(c1 + cox) (3.2.13)

is a solution of (3.2.12). Letting c¢; = 1 and c2 = 0 here yields the solution y; = e™* that
we already knew. Letting ¢; = 0 and c2 = 1 yields the second solution y; = xe™*. Since
Y2/yY1 = x is nonconstant, 3.1.6 implies that {y;, y»} is a fundamental set of solutions of
(3.2.12), and (3.2.13) is the general solution.

Case 3: Complex Conjugate Roots

Example 3.2.3
(a) Find the general solution of

y’ + 4y’ +13y =0. (3.2.14)

(b) Solve the initial value problem

y”" +4y" +13y =0, y(0)=2, y'(0) = -3. (3.2.15)
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Solution (a) The characteristic polynomial p(r) of (3.2.14) is
P 4ar4+13 =1 +4r+44+9=(r+2)2+09.

By the square root property, the roots of the characteristic equation are r; = —2 + 3i
and r, = —2 — 3i. (Alternatively, the quadratic formula may be employed to find the
roots of the characteristic equation.) By analogy with Case 1, it is reasonable to expect
that e(=2+3Ux and e(—2-3Vx are solutions of (3.2.14). This is true. However there are
difficulties here, since you are probably not familiar with exponential functions involving
the imaginary unit i. Such functions are inconvenient to work with, so we will take a
simpler approach. Notice that

e(f2+31)x — 672xe31x and 6(72731)7( — ef2x6731x;

3ix and e—Six

—2—31)x

even though we have not defined e , it is reasonable to expect that every
linear combination of e(~2131x and el can be written as y = ue 2%, where u
depends upon x. To determine 1, we note that if y = ue™2* then

! ! ,—2x —2x

y' =u'e ?* —2ue "

and y” =u"e > —4u'e > 4 4ue ¥,

SO

Y +4y’ + 13y = e P [(u” —4u’ +4u) +4(u —2u) + 13u]
= e X [u —(4—4u' +(4—8+ 131

= e (" +9u).

2x

Therefore y = ue™“* is a solution of (3.2.14) if and only if

u’ 4+ 9u=0.
From Example 3.1.2, the general solution of this equation is
U = ¢q cos 3x + c9 sin 3x.
Therefore any function of the form

y = e 2*(cy cos 3x + co sin 3x) (3.2.16)

is a solution of (3.2.14). Letting c; = 1 and c2 = 0 yields the solution y; = e 2% cos 3x.

Letting c; = 0 and ¢y = 1 yields the second solution ys = e 2*sin 3x. Since y2/y; =
tan 3x is nonconstant, 3.1.6 implies that {y;,y2} is a fundamental set of solutions of
(3.2.14), and (3.2.16) is the general solution.

(b) Imposing the condition y(0) = 2 in (3.2.16) shows that ¢; = 2. Differentiating
(3.2.16) yields

Yy’ = —2e (¢ cos 3x + cp sin 3x) 4 3~ 2¥(—cy sin 3x + ¢ cos 3x),
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2 X y =e 2*(2cos 3z + 1 sin3x)

1 2

2X(

1
Figure 3.3y = e “*(2cos 3x + 3 sin 3x)

and imposing the initial condition y’(0) = —3 here yields —3 = —2c¢; + 3c2 = —4 + 3co,
so ¢o = 1/3. Therefore the solution of (3.2.15) is

1
y=-e *(2cos3x + 3 sin 3x).

Figure 3.3 is a graph of this function. |
To generalize the preceding example, suppose the characteristic equation of ay” +
by’ + cy = 0 is such that b? — 4ac < 0 with roots

T =A4+iw, T2=A—1iw, (3.2.17)

where
b v4dac — b2
A=——— and w=———.
2a 2a

Do not memorize these formulas. Just remember that r; and 19 are of the form (3.2.17),
where A is an arbitrary real number and w is positive. Recall that ry and r; are complex
conjugates, which means that they have the same real part and their imaginary parts have
the same absolute values, but opposite signs. Here, A and w are the real and imaginary
parts, respectively, of r1. Similarly, A and —w are the real and imaginary parts of 3.

As in Example 3.2.3, it is reasonable to expect that the solutions of ay” + by’ +cy =0
are linear combinations of eAtiw)x gnd e(A—iw)x Again, the exponential notation
suggests that

e(?\+1w)x — e?\X iwx

e and e(?\flw)x — e?\x —iwx

€ )

so even though we have not defined el@* and e %X it is reasonable to expect that
every linear combination of e A T1®)x and e(*~1w)X can be written as y = ue*, where u
depends upon x. To determine u, we first observe that sincery = A +iwand 1o = A —iw
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are the roots of the characteristic equation, p must be of the form

p(r) = alr—m)(r—m2)
alr—A—iw)(r—A+iw)
al(r—2A)?2+ w?]

= a(r? —2Aar+ A2 4+ w?).

Therefore ay” + by’ + cy = 0 can be written as
aly”—2ay’ + (A* + w?)y] =0.
Since a # 0 this equation has the same solutions as
y” =20y + (A + w?)y =0.
To determine u we note that if y = ue** then
y =uweM™+aue™ and  y” =u’e™ + 2au/eM + A2uex.
Substituting these expressions into (3.2.18) and factoring out e** leaves
(w4 22u” + A%u) — 22w +2u) + (A2 + wHu =0,

which simplifies to
u 4+ w?u=0.

From Example 3.1.2, the general solution of this equation is
U = €1 COs WX + Cy sin wx.

Therefore any function of the form

Ax(

y = e"*(cq cos wx + cg sin wx)

113

(3.2.18)

(3.2.19)

is a solution of (3.2.18). Letting ¢; = 1 and ca = 0 here yields the solutiony; = e cos wx.

Letting ¢y = 0 and cp = 1 yields a second solution ys = e

sin wx. Since yo/y1 = tan wx

is nonconstant, Theorem 3.1.6 implies that {y;, y»} is a fundamental set of solutions of

(3.2.18), and (3.2.19) is the general solution.
The next theorem compiles the results of the three examples just discussed.

Theorem 3.2.1 Let p(r) = ar? + br + c be the characteristic polynomial of
ay” + by’ +cy =0.

Then:

(3.2.20)

(@) Ifp(r) = 0 has distinct real roots v1 and v, then the general solution of (3.2.20) is

y =cie"* 4 coe*.
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(b) Ifp(r) = 0 has a repeated root r1, then the general solution of (3.2.20) is

T1X(¢q + cox).

y=e

(c) Ifp(r) = 0 has complex conjugate roots vy = A + iw and ro = XA —iw (where w > 0),
then the general solution of (3.2.20) is

7\X(

y = e"*(cy cos wx + cg sin wx).

Equations of Order Three or Higher

If an, an—_1, ..., ag are constants, then
any™ +an y™ Y 4.4y = 0. (3.2.21)

can be classified as a constant coefficient, homogeneous, differential equation of order n.
Suppose we are able to solve the corresponding characteristic equation

ant™ +an T T+ a=0 (3.2.22)

and find that there are n distinct, real roots r1, 1, ..., 7. In this case, the general solution
of (3.2.21) is
y= Clerlx + Czergx NI cneT“X,

as might be expected based on part (a) of Theorem 3.2.1.

Unfortunately, parts (b) and (c) of Theorem 3.2.1 are more difficult to generalize. While
it is true that the solutions of (3.2.21) are determined by the zeros of the characteristic
polynomial, there are many different combinations of roots that may occur. For example,
a polynomial equation of degree three with real coefficients could have three distinct real
roots; two distinct real roots, one of multiplicity one and the other of multiplicity two;
one real root of multiplicity three; or one real root and one pair of complex conjugate
roots. (Recall that complex conjugate roots of a polynomial equation correspond to the
presence of an irreducible quadratic factor in the polynomial and therefore always appear
in pairs.) Finally, while the quadratic formula can be used to solve any polynomial
equation of degree two, it may be difficult or impossible to find roots of a polynomial
equation of degree three or higher. The good news is that finding the general solution
of a higher order equation uses the same concept of linear combinations just discussed,
and the fundamental set of solutions used in the combinations are much as would be
expected.

The next theorem is analogous to Theorem 3.1.6. As with the definitions of a funda-
mental set of solutions and the general solution, the definitions of a linearly independent
set and the Wronskian extend to higher dimensions as expected.

Theorem 3.2.2 Suppose the homogeneous linear n-th order equation

Prn()y™ + P (x)y ™Y 4 Py (x)y =0, (3.2.23)
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is such that all coefficients Py, Pn_1, ..., Pg are continuous on (a, b) and Py, has no zeros on
(a,b). Let y1, Y2, ..., Yn be n solutions of (3.2.23) on (a, b). Then the following statements
are equivalent; that is, they are either all true or all false:

(@) The general solution of (3.2.23) on (a,b) isy = c1ys +cay2 + -+ - + CnYn.

(b) {y1,Y2,...,Un} is a fundamental set of solutions of (3.2.23) on (a,b).
() {y1,Y2,...,Yn} is linearly independent on (a,b).
(d) The Wronskian of {y1, Yz, ..., Yn} is nonzero at some point in (a, b).
(e) The Wronskian of {y1,Ya, . .., Yn} is nonzero at all points in (a,b).

Since we are currently interested in constant coefficient equations and constants are
continuous on (—oo, 00), the domain of the solution will be (a,b) = (—oo, o). Therefore,
we choose to omit continued reference to the domain of the solution in this section.

Although we omit the proof of Theorem 3.2.2, we will demonstrate the use of the
Wronskian to verify the linear independence of the solutions in the following examples.

Example 3.2.4

(a) Find the general solution of

y"” —6y” + 11y’ — 6y =0. (3.2.24)

(b) Solve the initial value problem
y” —6y” +11y' —6y =0, y(0)=4, y'(0)=5 y”(0)=09. (3.2.25)
(Notice that the number of initial conditions must match the order of the differential
equation.)
Solution The characteristic polynomial p(r) of (3.2.24) is
™ — 61+ 1lr— 6= (r—1)(r —2)(r — 3).

(By inspection, r = 1 is a root; then use polynomial division to find a quadratic equation
that is easily factored.) Therefore {e*, e?*, e3*} is a set of solutions of (3.2.24). To verify
that this is a fundamental set of solutions, we evaluate the Wronskian W(x) to confirm
that it is nonzero.

ex X e 1 1 1
eX 2e2x eI | =X 1 2 3
eX 4e?x 9edx 1 49

The value of the 3x3 determinant is 2, and 2e%* is never zero, so this is a fundamental set
of solutions. Therefore the general solution of (3.2.24) is

y = creX + cge? + czedx. (3.2.26)
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(b) We must determine cy, co and c3 in (3.2.26) so that y satisfies the initial conditions
in (3.2.25). Differentiating (3.2.26) twice yields

y' = cie® + 2cge®* 4 3cze’”
y” = c1e* +4cpe® + 9czex. (3.2.27)
Setting x = 0 in (3.2.26) and (3.2.27) and imposing the initial conditions yields
ci+ co+ ¢c3 = 4
c1+2co+3cg = 5
ci+4co+9c3 = 9.
The solution of this system is ¢; = 4, ca = —1, cg = 1. Therefore the solution of (3.2.25) is
y = 4de™® —e?¥ 3%
]

It is helpful to understand that there is no need to obtain a formula for the Wronskian.
Theorem 3.2.2 tells us that the Wronskian either has no zeros on (a, b) or is zero every-
where. This means we can simply evaluate the Wronskian at some convenient point in
(a,b). This is demonstrated in the next two examples.

Example 3.2.5 Find the general solution of
y —16y = 0. (3.2.28)

Solution The characteristic polynomial of (3.2.28) is p(r) = r* — 16 which factors as

(M —4)(? +4) = (r—2)(r +2)(r* + 4).

Based on Theorem 3.2.1, it is reasonable to expect that (e?*, e 2% cos 2x,sin 2x} is a

fundamental set of solutions of (3.2.28). The Wronskian of this set is

2x —2x

e e coS 2X sin 2x
2e2X  _2e72X  _924in2x  2cos2x
4e?*  4e™2* —dcos2x —4sin2x
8e2X —8e2X  8sin2x —8cos2x

W(x) =

Rather than finding a formula for the Wronskian, we test the convenient point x = 0:

1 1 1 o0
2 -2 0 2
W=l 4 4 o
8 -8 0 -8

Using technology, the value of the 4x4 determinant is found to be —512. Therefore,
{e?*, 672X, cos 2x, sin 2x} is linearly independent, and

y1 = c1e®¥ 4 coe 2 + c3cos 2x + ¢4 8in 2x

is the general solution of (3.2.28). [ |
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Example 3.2.6 Find the general solution of

y” —y" 4y’ —y =0. (3.2.29)

Solution The characteristic polynomial p(r) of (3.2.29) is
P tr—1=(r—-10r*+1).

Based on Theorem 3.2.1, it is reasonable to expect that {e*, cos x, sin x} is a fundamental
set of solutions of (3.2.29). The Wronskian of this set is

COSX sinx e~
W(x) =| —sinx  cosx e~
—cosx —sinx e*

For convenience, we evaluate W(0) to get

1
0
-1

o = O

1
1|=2,
1

which verifies that {cos x, sin x, e*} is linearly independent and therefore
Yy =cC1cosXx + cosinx + cge”

is the general solution of (3.2.29). [ |
The concept of repeated roots can be extended to higher order equations as well. For
example, if (3.2.22) has a single real root r of multiplicity m, then

{e™, xe™, ... x™ 1™}
is a fundamental set of solutions and
y=rcre™ +coxe™ 4 fepmx™le™
is the general solution of (3.2.21).
Example 3.2.7 Find the general solution of

1

y” +3y” +3y’ +y =0. (3.2.30)

Solution The characteristic polynomial p(r) of (3.2.30) is
B3t +3r+1=(r+1)>3%
Therefore the general solution of (3.2.30) is

y=e *(c1 + cox + c3x?).
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(We leave it to you to verify linear independence by inspection of the Wronskian.)

3.2 Exercises

In Exercises 1-18 find the general solution.

1. y"+5y’ ' —6y=0 2. y'—4y’'+5y=0
3. y"+8y'+7y=0 4. y"—4y'+4y =0
5. y”+2y’ +10y =0 6. y"+6y +10y=0
7. y”—8y’' +16y =0 8. y’+y’' =0

9. y’—2y' +3y=0 10. y” +6y’+13y =0
11. 4y” + 4y’ + 10y =0 12. 10y”" -3y’ —y=0

13. y” —-3y"+3y’'—y=0
14. yW +8y” —9y =0

15. y”" —y”+16y’'—16y=0 16. 2y”" +3y”"—2y’'—3y=0
17. y® —16y=0 18. y® +12y” +36y =0

In Exercises 19-28 solve the initial value problem.

19. y”+ 14y’ +50y =0, y(0)=2, y’
20. 6y”"—y’'—y=0, y(0)=10, y'(0)=0
21. 6y"+y'—y=0, yO)=-1, y'(0)=3

13 23

22, Ay’ — 4y’ —3y = _ 2 ) =
y y' —3y=0, y(0) 1 y'(0) 5

23. 4y”"—12y' +9y =0, y(0)=3, y’(O)zg

24, y" —2y"+4y’'—8y=0, y(0)=2, y'(0)=-2,y"(0)=0

25. y"”+3y”"—y'—3y=0, y(0)=0, y'(0)=14, y”(0)=-40
26. 8y —4y” —2y'+y=0, y(0)=4, y'(0)=-3, y”
27. y®W —16y =0, y(0)=2, y'(0) =2, y”(0) =—2

«
3
o

28. 4y —13y”"+9y=0, y(0)=1, y'(0)=3, y”(0)=1, y”(0)=3

In Exercises 29-34 solve the initial value problem and graph the solution.
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29. y"+7y' +12y=0, y(0)=-1, y'(0)=0
30. y”"—6y"+9y=0, y(0)=0, y'(0)=2

31. 36y” — 12y’ +y =0, y(0)=3, y'(O):g

32. y”"+4y'+10y=0, y(0)=3, y'(0)=-2

33. y"—y"—y'+y=0, y(0)=-2 y'(0)=9, y"(0)=4
14

34. 3y"—y"-Ty' +5y=0, y(0)=—

In Exercises 35-36 solve the boundary value problem.

35. y”—10y’+25y=0, y(0)=1, y(1)=0
36. y"+y=0, y'(0)=0, y'(m/2)=0

3.3 NONHOMOGENEOUS LINEAR EQUATIONS

We will now consider the nonhomogeneous linear second order equation

y" +p(x)y’ + qx)y = f(x), (33.1)

where the function f is not identically zero. The next theorem, an extension of Theo-
rem 3.1.1, gives sufficient conditions for existence and uniqueness of solutions of initial
value problems for (3.3.1). We omit the proof, which is beyond the scope of this book.

Theorem 3.3.1 Suppose p, , q and f are continuous on an open interval (a,b), let xo be any
point in (a,b), and let ko and ky be arbitrary real numbers. Then the initial value problem

Yy +p(x)y’ +qx)ly =f(x), ylxo) =ko, y'(x0) =k
has a unique solution on (a,b).

To find the general solution of (3.3.1) on an interval (a,b) where p, q, and f are
continuous, it is necessary to find the general solution of the associated homogeneous
equation

Yy +px)y’ +qxly =0 (3.3.2)

on (a,b). We call (3.3.2) the complementary equation for (3.3.1).

The next theorem shows how to find the general solution of (3.3.1) if we know one
solution yy, of (3.3.1) and a fundamental set of solutions of (3.3.2). We call yy, a particular
solution of (3.3.1). The particular solution may be found by observation, by guessing
(then checking), or by some other means. In this section, we will limit ourselves to
applications of Theorem 3.3.2 where we can guess at the form of the particular solution.
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Theorem 3.3.2 Suppose p, q, and f are continuous on (a,b). Let y, be a particular solution of
Y+ py’ + gy = f(x) (3.3.3)
on (a,b), and let {yy,ya} be a fundamental set of solutions of the complementary equation
Y +px)y +qx)y =0 (3.3.4)
on (a,b). Theny is a solution of (3.3.3) on (a, b) if and only if
Y =Yp *+C1y1 + C2y2, (3.3.5)
where ¢1 and co are constants.

Proof We first show thaty in (3.3.5) is a solution of (3.3.3) for any choice of the constants
c1 and cs. Differentiating (3.3.5) twice yields

y' =yp+cyiteoyy and y” =yy +cyy +eayy,
SO

Y +pxy' +axly = (yp +cryy +cays) +p(x)(yp +cryy + cays)
+q(x)(yp + c1y1 + c2y2)
= (yp +P(x)yp +a(x)yp) + c1(yy’ + p(x)y; + q(x)y1)
+ca(ys +p(x)ys + q(x)y2)
= f4¢1-0+co-0
= f’

since Yy, satisfies (3.3.3) and y; and y» satisfy (3.3.4).

Now we will show that every solution of (3.3.3) has the form (3.3.5) for some choice of
the constants c¢; and cp. Suppose y is a solution of (3.3.3). We will show thaty —y, isa
solution of (3.3.4), and therefore of the form y —y, = c1y; + c2yz, which implies (3.3.5).
To see this, we compute

Y—yp)" +pX)y—yp) +dX)y—yp) = " —yp) +pX)Y —y;)
+q(x)(y —yp)
= (y"+pX)y’ +qx)y)
~(yp +P(x)yp + q(x)yp)
= f(x) — f(x)
= ()7

since y and y, both satisfy (3.3.3). [ |
We say that (3.3.5) is the general solution of (3.3.3) on (a, b).
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If Py, P1, and F are continuous and Py has no zeros on (a,b), then Theorem 3.3.2
implies that the general solution of

Po(x)y” + P1(x)y’ + Po(x)y = F(x) (3.3.6)

on (a,b)isy = yp + c1y1 + c2yz, where y,, is a particular solution of (3.3.6) on (a, b)
and {y1,y2} is a fundamental set of solutions of

P2(x)y” + Pi(x)y’ + Po(x)y =0
on (a,b). To see this, we rewrite (3.3.6) as

"y Pl(x)y/ PO(X)y _ F(X)
Pa(x) Pa(x) Pa(x)

and apply Theorem 3.3.2 with p = P1 /P2, ¢ = Pg/P2, and f = F/P.

To avoid awkward wording in examples and exercises, we will not specify the interval
(a,b) when we ask for the general solution of a specific linear second order equation, or
for a fundamental set of solutions of a homogeneous linear second order equation. Let us
agree that this always means that we want the general solution (or a fundamental set of
solutions, as the case may be) on every open interval on which p, g, and f are continuous
if the equation is of the form (3.3.3), or on which Py, Py, Py, and F are continuous and P»
has no zeros, if the equation is of the form (3.3.6). We leave it to you to identify these
intervals in specific examples and exercises.

For completeness, we point out that if Py, P, Py, and F are all continuous on an open
interval (a, b), but P, does have a zero in (a, b), then (3.3.6) may fail to have a general
solution on (a, b) in the sense just defined.

Example 3.3.1
(a) Find the general solution of
y'+y=1 (3.3.7)
(b) Solve the initial value problem
y"+y=1, y(0)=2 y'(0)="7. (3.3.8)

Solution (a) We can apply Theorem 3.3.2 with (a,b) = (—o0, 00), since the functions
p=0,q9 =1, and f = 1in (??) are continuous on (—oo, o). By inspection we see that
Yp = lisa particular solution of (??). Since y; = cosx and yz = sin x form a fundamental
set of solutions of the complementary equation y” +y = 0, the general solution of (??) is

y=1+cjcosx+ cosinx. (3.3.9)

(b) Imposing the initial condition y(0) = 2 in (3.3.9) yields 2 = 1+ ¢y, s0 ¢; = 1.
Differentiating (3.3.9) yields

y’ = —cysinx + co cos x.
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Imposing the initial condition y’(0) = 7 here yields cy = 7, so the solution of (??) is

Yy =14 cosx+ 7sinx.

|
Figure 3.1 is a graph of this function.
81y
4 1
y=1+4cosx + 7sinx
| o
1 3 5
—4 +
-8 L
Figure3.1y =1+ cosx + 7sinx
Example 3.3.2
(a) Find the general solution of
y =2y +y=-3—x+x% (3.3.10)
(b) Solve the initial value problem
y’' =2y’ +y=-3—x+x% y0)=-2, y'(0)=1. (3.3.11)

Solution (a) The characteristic polynomial of the complementary equation
y'—2y'+y=0

ist?—2r+1=(r—1)?,s0y; = e* and ys = xe* form a fundamental set of solutions of
the complementary equation. To guess a form for a particular solution of (3.3.10), we
note that substituting a second degree polynomial y, = A 4+ Bx + Cx? into the left side
of (3.3.10) will produce another second degree polynomial with coefficients that depend
upon A, B, and C. The trick is to choose A, B, and C so the polynomials on the two sides
of (3.3.10) have the same coefficients; thus, if

Yyp =A+Bx+Cx* then y,=B+2Cx and vy, =2C,
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SO
Yy =2y, +yp = 2C—2(B+2Cx)+ (A+Bx+Cx?)
= (2C—2B+ A)+ (—4C+ B)x + Cx?
—3—x+x%

Equating coefficients of like powers of x on the two sides of the last equality yields

cC = 1
B—4C = -1
A—2B+2C = -3,

soC=1,B=—-14+4C,and A = —3 — 2C + 2B. Substitution then shows that B = 3 and
A = 1. Therefore y, =1+ 3x + x? is a particular solution of (3.3.10) and Theorem 3.3.2
implies that

y=143x+x*+e*(c; + ca2x) (3.3.12)

is the general solution of (3.3.10).
(b) Imposing the initial condition y(0) = —2in (3.3.12) yields —2 = 1 + ¢y, so ¢; = —3.
Differentiating (3.3.12) yields
y' =3+ 2x + e¥(c1 + cax) + coe”,

and imposing the initial condition y’(0) = 1 yields 1 = 3 + ¢; + c2, so c3 = 1. Therefore
the solution of (3.3.11) is
=14+3x+x2—e*(3—x).

Figure 3.2 is a graph of this solution.
Y

y=1+3z+ a2 — e¥(3 —x)

/ |

Figure 32y =1+ 3x +x? — e*(3 — x)
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Example 3.3.3 Find the general solution of

Xy 4+ xy’ — 4y =2x4 (3.3.13)

on (—o0,0) and (0, 0o).

Solution In Example 3.1.3, we verified that y; = x? and y2 = 1/x* form a fundamental
set of solutions of the complementary equation

X211'// +Xy/ _4y =0

on (—o0,0) and (0, 0o). To find a particular solution of (3.3.13), we note that if y, = Ax?,
where A is a constant, then both sides of (3.3.13) will be constant multiples of x* and we
may be able to choose A so the two sides are equal. This is true in this example, since if
yp = Ax* then substituting derivatives gives

Yl 4 xyl — dyp = X2 (12A%%) + x(4Ax%) — 4Ax%,

Algebraic simplification of (3.3.13) then yields 12Ax* = 2x*, so we can choose A = 1/6
to make the equation true. Therefore, y, = x*/61is a particular solution of (3.3.13) on
(—00,00). Theorem 3.3.2 implies that the general solution of (3.3.13) on (—o0,0) and

(0,00) is
4

X 2 C2
Yy = 6 +Cc1x° + @
The Principle of Superposition

The next theorem enables us to break a nonhomogeous equation into simpler parts, find
a particular solution for each part, and then combine their solutions to obtain a particular
solution of the original problem.

Theorem 3.3.3 [The Principle of Superposition] Suppose yyp, is a particular solution of
Y +p(xy’ +a(x)y = fi(x)

on (a,b) and yp, is a particular solution of
y"+px)y" + ax)y = fa(x)

on (a,b). Then
Yp =VYp; T Yp,

is a particular solution of
y"+p(x)y" + )y = fi(x) + f2(x)
on (a,b).
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Proof Ify, =yp, +Yyp, then

Yp +PX)Yp +a(x)yp = (Upy +Ypo)” F P Yps +Yps) + aX)(Yp, +Yps)
= (yp, +PXyp, +aX)yp,) + (Yp, +P)Yp, + a(X)Yp,)
= fi(x)+f2(x). ®

It is easy to generalize Theorem 3.3.3 to the equation
Y +p(y’ +ax)y = f(x) (33.14)

where
f=1f1+fo+--- 4+ fy;

thus, if y,, is a particular solution of
Y+ Py +q(x)y = filx)

on(a,b)fori=1,2,...,k thenyy, +yp, +---+Yp, is a particular solution of (3.3.14)
n (a,b). Moreover, by a proof similar to the proof of Theorem 3.3.3 we can formulate
the principle of superposition in terms of a linear equation written in the form

P2(x)y” + P1(x)y’ + Po(x)y = F(x);
that is, if y;,, is a particular solution of
Pa(x)y” + P1(x)y’ + Po(x)y = Fi(x)
on (a,b) and yp, is a particular solution of
Po(x)y” + P1(x)y’ + Po(x)y = Fa(x)
on (a,b), thenyp, +yp, is a solution of
Pa(x)y” + P1(x)y’ + Po(x)y = Fi(x) + Fa(x)
on (a,b).
Example 3.3.4 The function yp,, = x/15 is a particular solution of
X*y" +dxy’ + 2y = 2 (3.3.15)
on (—oo,00) and yp, = x2/3 is a particular solution of
X2y +axy’ + 2y = 4x2 (3.3.16)
on (—oo, 00). Use the principle of superposition to find a particular solution of
X*y” +4xy’ + 2y = 2x* + 4x? (3.3.17)

on (—o0, 00).
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Solution The right side F(x) = 2x* + 4x? in (3.3.17) is the sum of the right sides
Fi(x) =2x* and Fo(x) = 4x2.

in (3.3.15) and (3.3.16). Therefore the principle of superposition implies that

xt X2

Yp = Yp, +Up2:T5+§

is a particular solution of (3.3.17). [

3.3 Exercises

In Exercises 1-6 find a particular solution by the method used in Example 3.3.2. Then
find the general solution and, where indicated, solve the initial value problem and graph
the solution.

Yy + 5y’ — 6y = 22 + 18x — 18x?

y” —4y’+5y =1+ 5x

Yy + 8y’ + 7y =—-8—x+24x? + 7x3

Yy — 4y’ + 4y =2+ 8 — 4x?

y” +2y’ + 10y =4 +26x + 6x2 +10x3, y(0) =2, y'(0)=9

y”+ 6y’ + 10y =22 +20x, y(0)=2, y'(0) =—-2

Show that the method used in Example 3.3.2 will not yield a particular solution of

N o gk w b

y”" +y’ =1+ 2x+x% (A)

that is, (A) does not have a particular solution of the form y, = A + Bx + Cx?,
where A, B, and C are constants.

In Exercises 8-13 find a particular solution by the method used in Example 3.3.3.

6 9. X%y" —7xy’ + Ty = 13x/?
8. x2y”+7xy’+8y:;
2.1 / — 943 1
10. «x y Xy +y 2x 11. X2y " + 5Xy/ + 4y _ g
12. x2y "4 Xy/ +y= 10x1/3 13. X2y " ?)Xg, + 13y = 2x*
14. Show that the method suggested for finding a particular solution in Exercises 8-13
will not yield a particular solution of

1
2.1 / . .
Mwmw—@—g, (A)

that is, (A) does not have a particular solution of the form y,, = A/x3.
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15. Prove: If a, b, ¢, &, and M are constants and M # 0 then

ax®*y” 4+ bxy’ + cy = Mx*

has a particular solution y, = Ax* (A = constant) if and only if ac(x—1)+bax+c #
0.

If a, b, ¢, and « are constants, then
a(e®)” +b(e*) + ce®* = (an® + ba + c)e**.

Use this in Exercises 16-21 to find a particular solution . Then find the general solution and,
where indicated, solve the initial value problem and graph the solution.

16. y”—i—5y'—6y:6e3x 17. y"—4y’+5y:e2x
18. y” +8y’ + 7y =10e"?*, y(0)=—2, y'(0) =10
19. y//_4y/+4y:ex’ 9(0)22’ y/(O)ZO

20. y” 42y’ + 10y = /2 21. y”+6y’ + 10y =e >

22. Show that the method suggested for finding a particular solution in Exercises 16-21
will not yield a particular solution of

y” =1y’ + 12y = 5e*; (A)

that is, (A) does not have a particular solution of the form y,, = Ae'x,

23. Prove: If x and M are constants and M # 0 then constant coefficient equation
ay”+by’ +cy = Me**

has a particular solution y, = Ae** (A = constant) if and only if e** isn’t a
solution of the complementary equation.

If w is a constant, differentiating a linear combination of cos wx and sin wx with respect to x
yields another linear combination of cos wx and sin wx. In Exercises 24-29 use this to find a
particular solution of the equation. Then find the general solution and, where indicated, solve the
initial value problem and graph the solution.

24. y” —8y’+ 16y =23 cosx — Tsinx

25. y” 4y’ =—8cos2x + 6sin 2x

26. y" —2y’+3y=—6cos3x+ 6sin3x

27. y” 46y’ + 13y = 18 cosx + 6sinx

28. y”"+ 7y’ +12y =—2cos2x + 36sin2x, y(0)=-3, y’(0)=3
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29.
30.

31.

32.
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y” —6y’+9y = 18cos3x + 18sin3x, y(0)=2, y’(0)=2

Find the general solution of
y"+ w%y = M cos wx + N sin wx,

where M and N are constants and w and wy are distinct positive numbers.
Show that the method suggested for finding a particular solution in Exercises ??-2?
will not yield a particular solution of

y” +y = cosx +sinx; (A)

that is, (A) does not have a particular solution of the form y, = A cosx + Bsinx.

Prove: If M, N are constants (not both zero) and w > 0, the constant coefficient
equation

ay” + by’ + cy = M cos wx + N sin wx (A)
has a particular solution that is a linear combination of cos wx and sin wx if and

only if the left side of (A) is not of the form a(y” + w?y), so that cos wx and sin wx
are solutions of the complementary equation.

In Exercises 33-38 refer to the cited exercises and use the principal of superposition to find a
particular solution. Then find the general solution.

33.
34.
35.
36.
37.
38.

y” + 5y’ — 6y = 22 + 18x — 18x% + 6e3* (See Exercises 1 and 16.)

y” — 4y’ + 5y = 1 + 5x + e?* (See Exercises 2 and 17.)

Y+ 8y’ + Ty = —8 — x + 24x2 + 7x3 + 10e2* (See Exercises 3 and 18.)
Yy — 4y’ + 4y = 2 + 8x — 4x% + e* (See Exercises 4 and 19.)

y” + 2y’ + 10y = 4 + 26x + 6x% + 10x> 4 e*/2 (See Exercises 5 and 20.)
y” + 6y’ + 10y = 22 + 20x + e 3* (See Exercises 6 and 21.)

3.4 THE METHOD OF UNDETERMINED COEFFICIENTS I

In this section we consider the constant coefficient equation

ay” + by’ +cy = e**G(x), (3.4.1)

where « is a constant and G is a polynomial.

From Theorem 3.3.2, the general solution of (3.4.1) isy = yp + c1y1 + c2y2, where
Yp is a particular solution of (3.4.1) and {y1, Y2} is a fundamental set of solutions of the
complementary equation

ay” +by’ +cy =0.

In Section 3.2 we showed how to find {y1,ys2}. In this section we will show how to find
Yp. The procedure that we will use is called the method of undetermined coefficients.
Our first example is similar to Exercises 16-21 from Section 3.3.
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Example 3.4.1 Find a particular solution of
y” =7y’ +12y = 4e**. (34.2)

Then find the general solution.

Solution Substituting y, = Ae?* for y in (3.4.2) will produce a constant multiple of
Ae?* on the left side of (3.4.2), so it may be possible to choose A so that Yp is a solution
of (3.4.2). To try this, lety, = Ae** so that

Y, — Ty, + 12y, = 4Ae* — 14Ae> + 12Ae*.

Algebraic simplification of (3.4.2) then yields 2Ae?* = 4e2*, so we can choose A = 2 to
make the equation true. Therefore y,, = 2e?* is a particular solution of (3.4.2). To find the
general solution, we note that the characteristic polynomial p(r) of the complementary
equation

y' =1y +12y =0 (3.4.3)

ist? —7r+12 = (r — 3)(r — 4), so {e3*, e**} is a fundamental set of solutions of (3.4.3).
Therefore the general solution of (3.4.2) is

y = 2e* + c1e®* + coet.

Example 3.4.2 Find a particular solution of
y” — 7y’ + 12y = 5e*x. (3.4.4)

Then find the general solution.

Solution Fresh from our success in finding a particular solution of (3.4.2) — where we
chose y, = Ae?* because the right side of (3.4.2) is a constant multiple of e** — it may
seem reasonable to try y, = Ae?* as a particular solution of (3.4.4). However, this will
not work, since we saw in Example 3.4.1 that e** is a solution of the complementary
equation (3.4.3), so substituting y, = Ae? into the left side of (3.4.4) produces zero on
the left, no matter how we choose A. To discover a suitable form for y,, we use the same
approach that we used in Section 3.2 to find a second solution of

ay” +by’ +cy=0

in the case where the characteristic equation has a repeated real root: we look for
solutions of (3.4.4) in the form y = ue®*, where u is a function to be determined.
Substituting

y=ue®™ y =ue™+4ue®™, and y” =u"e* +8u'e™ +16ue®™  (34.5)
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into (3.4.4) and then multiplying by the reciprocal of the common factor e?* yields
(u” +8u’ 4+ 16u) — 7(u’ + 4u) + 12u = 5,
which reduces to
u’4+u’ =5,
By inspection we see that u, = 5x is a particular solution of this equation, so y, = 5xe?*
is a particular solution of (3.4.4). Therefore

y = sxe™ 4 c1e?* 4 cpet*

is the general solution. ]

Example 3.4.3 Find a particular solution of

y” — 8y’ + 16y = 2e**. (3.4.6)

Solution Since the characteristic polynomial p(r) of the complementary equation
y’' =8y +16y=0 (3.4.7)

is T2 — 81 + 16 = (r — 4)2, both y; = e** and y, = xe** are solutions of (3.4.7). Therefore
(3.4.6) cannot have a particular solution of the form y, = Ae** or y, = Axe®*. Asin
Example 3.4.2, we look for solutions of (3.4.6) in the form y = ue®*, where u is a function
to be determined. Substituting from (3.4.5) into (3.4.6) and then multiplying by the
reciprocal of the common factor e?* yields

(u +8u’ 4+ 16u) —8(u' +4u) + 16u = 2,

which reduces to

u’ =2
Integrating twice and taking the constants of integration to be zero shows that u, = x?
is a particular solution of this equation, so y, = x*e?* is a particular solution of (3.4.4).
Therefore

y = e (x* +c1 + cox)

is the general solution. ]
The preceding examples illustrate the following facts concerning the form of a particu-
lar solution yy, of a constant coefficent equation

ay” + by’ + cy = ke™*,

where k is a nonzero constant:
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(a) If e** is not a solution of the complementary equation
ay” +by’ +cy =0, (3.4.8)

then y, = Ae**, where A is a constant. (See Example 3.4.1).

(b) If e** is a solution of (3.4.8) but xe®* is not, then y, = Axe®*, where A is a constant.
(See Example 3.4.2.)

() If both e** and xe** are solutions of (3.4.8), then y, = Ax?e**, where A is a
constant. (See Example 3.4.3.)
In all three cases you can just substitute the appropriate form for y, and its derivatives
directly into
ayy, + by, +cyp = ke™,

and solve for the constant A, as we did in Example 3.4.1. However, if the equation is
ay” + by’ + cy = ke**G(x),

where G is a polynomial of degree greater than zero, we recommend that you use the
substitution y = ue®* as we did in Examples 3.4.2 and 3.4.3. The equation for u will
turn out to be

au” +p’(c)u’ +p(a)u = G(x), (3.4.9)

where p(r) = ar?+br+c is the characteristic polynomial of the complementary equation
and p’(r) = 2ar + b; however, you should not memorize this since it is easy to derive
the equation for u in any particular case. Note, however, that if e** is a solution of the
complementary equation then p(«) = 0, so (3.4.9) reduces to

au” +p’(c)u’ = G(x),
while if both e** and xe** are solutions of the complementary equation then p(r) =

a(r — «)? and p’(r) = 2a(r — ), so both p(«) and p’(«) are zero in which case (3.4.9)
reduces to

Example 3.4.4 Find a particular solution of

y” =3y’ +2y =¥ (—1+2x +x?). (3.4.10)

Solution Substituting
y=ue® y =ue¥ +3ue®™, andy” =u"e¥ +6u'ed™ + gued™
into (3.4.10) and then multiplying by the reciprocal of the common factor e3* yields

(W +6u’ +9u) —3(u' +3u) + 2u = —1 4+ 2x + x2,
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which reduces to
u’ 4+ 3u +2u=—142x+x° (3.4.11)

As in Example 2, in order to guess a form for a particular solution of (3.4.11), we note
that substituting a second degree polynomial u, = A + Bx + Cx? for u in the left side of
(3.4.11) produces another second degree polynomial with coefficients that depend upon
A, B, and C; thus,

if up=A+Bx+Cx* then u, =B+2Cx and u, =2C.
If uy, is to satisfy (3.4.11), we must have

w) +3u, +2u, = 2C+3(B+2Cx)+2(A + Bx+ Cx?)
= (2C+3B+2A) + (6C + 2B)x + 2Cx?
= —1+2x+x°%

Equating coefficients of like powers of x on the two sides of the last equality yields

2C = 1
2B+6C =
2A+3B+2C = -—1.

Solving these equations for C, B, and A (in that order) yields C = 1/2,B = —1/2, and
A = —1/4. Therefore

1
Up = _Z(l + 2x — 2x?)

is a particular solution of (3.4.11), and

Yp = Upe™ = —zx(l + 2x — 2x?)
is a particular solution of (3.4.10). [ |
Example 3.4.5 Find a particular solution of
y” — 4y’ + 3y = ¥(6 + 8x + 12x?). (3.4.12)

Solution Substituting
y=ue® y =ue¥ +3ue®, andy” =u"e¥ +6u’ed 4 gue™
into (3.4.12) and then multiplying by the reciprocal of the common factor e3* yields
(W’ + 6u’ 4+ 9u) — 4(u’ + 3u) 4+ 3u = 6 + 8x + 12x2,

which reduces to
u” +2u’ =64 8x + 12x%. (3.4.13)
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There is no u term in this equation, since €3 is a solution of the complementary equation

for (3.4.12). Therefore (3.4.13) cannot have a particular solution of the form u, =
A + Bx + Cx? that we used successfully in Example 3.4.4, since with this choice of up,

uy + 2uy, = 2C 4 (B +2Cx)

cannot contain the last term (12x?) on the right side of (3.4.13). Instead, let us try
up = Ax + Bx? + Cx? on the grounds that

u{):A—I—QBX—I-?)CXQ and ug:QB—l—GCx

together contain all the powers of x that appear on the right side of (3.4.13).
Substituting these expressions in place of u’ and u” in the left side of (3.4.13) yields

(2B 4+ 6Cx) + 2(A + 2Bx + 3Cx?) = (2B + 2A) + (6C + 4B)x + 6Cx2.

Comparing coefficients of like powers of x on the two sides of (3.4.13) shows that u, is a
particular solution if

6C = 12
4B+6C = 8
2A +2B = 6.

Solving these equations successively yields C =2, B = —1, and A = 4. Therefore
Up =x(4—x+ 2x?)
is a particular solution of (3.4.13), and
Yp = u][,e?’X = xe¥*(4 — x + 2x?)
is a particular solution of (3.4.12). [ |
Example 3.4.6 Find a particular solution of

dy" 4y’ +y=e /(=8 + 48x + 144x?). (3.4.14)

Solution Substituting

ymue 2yl mule /2 }ue—x/2’ B R N R Lo/

2
into (3.4.14) and then multiplying by the reciprocal of the common factor e=*/2 yields
"o E I E — 2
4<u u+4)+4(u 2>+u 8 + 48x + 144x~7,

which reduces to
u” = —2 4 12x + 36x2, (3.4.15)
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x/2 x/2

which does not contain u or u’ because e~ and xe~ are both solutions of the
complementary equation. To obtain a particular solution of (3.4.15) we integrate twice,
taking the constant of integration to be zero each time; thus,

U, = —2x + 6x2 +12x* and u, = —x% +2x* + 3x*.
Therefore, y,, is
upe*"/2 = x2e/2(—1 + 2x + 3x?)
and is a particular solution of (3.4.14). ]

Summary

The preceding examples illustrate the following facts concerning particular solutions of
a constant coefficent equation of the form

ay” + by’ +cy = e**G(x),

where G is a polynomial:
(a) If e** is not a solution of the complementary equation

ay” +by’ +cy =0, (3.4.16)

then y, = e¢**Q(x), where Q is a polynomial of the same degree as G. (See
Example 3.4.4).

(b) If e®* is a solution of (3.4.16) but xe** is not, then y, = xe**Q(x), where Q is a
polynomial of the same degree as G. (See Example 3.4.5.)

(c) If both e** and xe™* are solutions of (3.4.16), then y, = x*¢**Q(x), where Q is a
polynomial of the same degree as G. (See Example 3.4.6.)
In all three cases, you can just substitute the appropriate form for y,, and its derivatives
directly into
ay, + by, +cyp = e**G(x),

and solve for the coefficients of the polynomial Q. However, if you try this you will see
that the computations are more tedious than those that you encounter by making the
substitution y = ue** and finding a particular solution of the resulting equation for u.
In Case (a) the equation for u will be of the form

auw” +p’(c)u’ +p(ax)u = G(x),

with a particular solution of the form u, = Q(x), a polynomial of the same degree as G,
whose coefficients can be found by the method used in Example 3.4.4. In Case (b) the
equation for u will be of the form

au” +p’(e)u’ = G(x)
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(no u term on the left), with a particular solution of the form u, =xQ(x), where Q is a
polynomial of the same degree as G whose coefficents can be found by the method used
in Example 3.4.5. In Case (c) the equation for u will be of the form

with a particular solution of the form u,, = x*Q(x) that can be obtained by integrating
G(x)/a twice and taking the constants of integration to be zero, as in Example 3.4.6.

Using the Principle of Superposition

The next example shows how to combine the method of undetermined coefficients and
Theorem 3.3.3, the principle of superposition.

Example 3.4.7 Find a particular solution of

y” — 7y’ + 12y = 4e®* + setx. (3.4.17)

Solution In Example 3.4.1 we found that yp, = 2e* is a particular solution of
y” =1y’ + 12y = 4e*,

and in Example 3.4.2 we found that y,,, = 5xe* is a particular solution of
y” =1y’ + 12y = se*™.

Therefore the principle of superposition implies that y, = 2e** + 5xe?* is a particular
solution of (3.4.17). [

3.4 Exercises

In Exercises 1-14 find a particular solution.

1. y’"—3y'+2y=e*1+x) 2. y”—6y’ +5y=-e 3*(35—8x)

3. y'—2y' —3y=eX(—8+3x) 4. y”"+2y’+y=eX(-7—15x+9x?)
5. y'+4y=eX(T7T—4x+5x?) 6. y"'—y’ —2y=e*(9+2x —4x?)
7. y”" —4y’—5y =—6xe 8. y”—3y’ +2y=e*(3—4x)

9. y"+y’ —12y =e3X(—6+7x)10. 2y” —3y’ —2y = e**(—6 + 10x)

11. y”"+2y'+y=e *2+3x) 12. y”—2y'+y=e*(1—6x)
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13. y” — 4y’ + 4y = e*(1 — 3x + 6x?)
14. 9y” +6y’ +y=e /32 —4dx + 4x?)

In Exercises 15-19 find the general solution.

15. y” -3y +2y=e(1+x) 16. y”—6y’+8y=e*(1l—0x)

17. y” 46y’ +9y =e?*(3—5x) 18. y” +2y’ —3y = —16xe*
19. y”"—2y'+y=e*(2—12x)

In Exercises 20-23 solve the initial value problem and plot the solution.
20. y”—4y’—5y=9e*(1+x), y(0)=
21. y” +3y’ —4y =e?*(7+6x), y(0)=
22, y’"+4y'+3y=—e"X(2+8x), y(0)=1, y'(0)=2
23. y”—3y' —10y="7e 2%, y(0)=1, y'(0)=-17

In Exercises 24-29 use the principle of superposition to find a particular solution.

24. y"+y'+y=xe¥+e *(1+2x)

25. y” —Ty’' + 12y = —eX(17 — 42x) — e3*

26. y” —8y’ + 16y = 6xe*™ + 2 + 16x + 16x>

27. y" -3y’ +2y = —e?*(3 +4x) — e¥

28. y” —2y’' +2y =eX(1+x)+e *(2—8x+5x?)

29. y” +y=e %2 —4x+2x%) 4 ¥ (8 — 12x — 10x?)

Exercises 30-35 treat the equations considered in Examples 3.4.1-3.4.6. Substitute the suggested
form of yp into the equation and equate the resulting coefficients of like functions on the two
sides of the resulting equation to derive a set of simultaneous equations for the coefficients in

Yp. Then solve for the coefficients to obtain y,. Compare the work you've done with the work
required to obtain the same results in Examples 3.4.1-3.4.6.

30. Compare with Example 3.4.1:

y" =y’ + 12y = 4e?;  yp, = Ae®™
31. Compare with Example 3.4.2:

y” =7y’ + 12y = 5e™;  y, = Axe™™

32. Compare with Example 3.4.3.
y//—Sy/+16y:2€4X, yp:AX264X
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33. Compare with Example 3.4.4:
y” =3y’ +2y = e (1 +2x +x?), yp = (A +Bx+ Cx?)
34. Compare with Example 3.4.5:
y” — 4y’ +3y = e (6 +8x + 12x?), yp = e¥*(Ax + Bx? + Cx?)
35. Compare with Example 3.4.6:
dy" + 4y’ +y =e -8 +48x + 144x?), yp = e */2(AxE + Bx® + Cx?)

36. Write y = ue** to find the general solution.

—x

e

12 2 / —
@uy”"+2y" +y \/%
X

e
1+x

b)y” +6y’ +9y =e XInx

1
@y — 4y +4y = (d) 4y" 4y’ +y = e/ <X +x>

3.5 THE METHOD OF UNDETERMINED COEFFICIENTS II

In this section we consider the constant coefficient equation
ay” + by’ + cy = ™ (P(x) cos wx + Q(x) sin wx) (3.5.1)

where A and w are real numbers, w # 0, and P and Q are polynomials. The function f
on the right is called a forcing function, since in physical applications it is often related to
a force acting on some system modeled by the differential equation. We want to find a
particular solution of (3.5.1). As in Section 3.4, the procedure that we will use is called
the method of undetermined coefficients.

Forcing Functions Without Exponential Factors

We begin with the case where A = 0 in (3.5.1); that is, we want to find a particular
solution of

ay” + by’ + cy = P(x) cos wx + Q(x) sin wx. (3.5.2)

Differentiating x" cos wx and x" sin wx yields

d T T r—1
—X COSWX = —WX SInwx + rXx COS WX
dx
and d . 1.
d—xr sinwx =  wx" cos wx + rx" " !sin wx.
X

This implies that if
Yp = A(x) cos wx + B(x) sin wx
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where A and B are polynomials, then
ay, + by, +cyp = F(x) cos wx + G(x) sin wx,

where F and G are polynomials with coefficients that can be expressed in terms of the
coefficients of A and B. This suggests that we try to choose A and B so that F = P and
G = Q, respectively. Then y,, will be a particular solution of (3.5.2). The next theorem
tells us how to choose the proper form for y,,. We omit the proof.

Theorem 3.5.1 Suppose w is a positive number and P and Q are polynomials. Let k be the
larger of the degrees of P and Q. Then the equation

ay” + by’ + cy = P(x) cos wx + Q(x) sin wx

has a particular solution
Yp = A(x) cos wx + B(x) sin wx, (3.5.3)

where
A(x) =Ag+Ax+ -+ Ax* and B(x) =Bo+ Bix+--- + Brx¥,

provided that cos wx and sin wx are not solutions of the complementary equation. In the case
where cos wx and sin wx are solutions of the complementary equation, then there exists a
particular solution of the form (3.5.3), where

A(x) = Agx + A1x? + - + Ax*Tt and  B(x) = Box 4+ Bix% + - - + Bix* L.

Example 3.5.1 Find a particular solution of
y” =2y’ +y = 5cos2x + 10sin 2x. (3.5.4)
Solution In (3.5.4) the coefficients of cos 2x and sin 2x are both zero degree polynomials
(constants). Therefore Theorem 3.5.1 implies that (3.5.4) has a particular solution
Yp = Acos2x + Bsin 2x.

Since
Yp = —2Asin2x +2Bcos2x and Yy, = —4(A cos 2x + Bsin 2x),

replacing y by yp in (3.5.4) yields
Yp —2Yp +Yyp = —4(Acos2x+ Bsin2x) —4(—Asin 2x 4 B cos 2x)

+(A cos 2x + B sin 2x)
= (—3A —4B) cos2x + (4A — 3B) sin 2x.
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Equating the coefficients of cos 2x and sin 2x here with the corresponding coefficients on
the right side of (3.5.4) shows that y,, is a solution of (3.5.4) if

—3A—4B = 5
4A —-3B = 10.

Solving these equations yields A = 1, B = —2. Therefore

Yp = C€O82x — 2sin 2x
is a particular solution of (3.5.4). [ |
Example 3.5.2 Find a particular solution of

y” + 4y = 8cos 2x + 12sin 2x. (3.5.5)

Solution The procedure used in Example 3.5.1 does not work here. To see why, notice
that substituting y, = A cos 2x + B sin 2x for y in (3.5.5) yields

Yy +4yp = —4(A cos 2x + B sin 2x) + 4(A cos 2x + B sin 2x),

which reduces to zero for any choice of A and B. This is due to the fact that both
cos 2x and sin 2x are solutions of the complementary equation for (3.5.5). For example if
y = cos 2x, then

y” + 4y = —4 cos 2x + 4 cos 2x,

which reduces to zero. (You should verify that sin 2x is also a solution.) We should
therefore try a particular solution of the form

Yp = x(A cos 2x + Bsin 2x). (3.5.6)
Then
Yp = Acos2x+ Bsin2x + 2x(—Asin 2x + B cos 2x)
and Yl = —4Asin2x + 4B cos 2x — 4x(A cos 2x + B sin 2x)
—4A sin 2x + 4B cos 2x — 4y,
SO

y{,’ +4yp = —4Asin 2x + 4B cos 2x.
Therefore yy, is a solution of (3.5.5) if

—4A sin 2x + 4B cos 2x = 8 cos 2x + 12 sin 2x,
which holds if A = —3 and B = 2. Therefore
Yp = —x(3 cos 2x — 2 sin 2x)

is a particular solution of (3.5.5). [ |
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Example 3.5.3 Find a particular solution of

y” + 3y’ + 2y = (16 + 20x) cosx + 10 sin x. (3.5.7)

Solution The coefficients of cos x and sin x in (3.5.7) are polynomials of degree one and
zero, respectively. Therefore Theorem 3.5.1 tells us to look for a particular solution of
(3.5.7) of the form

Yp = (Ao + Ax)cosx + (Bg + Brx) sinx. (3.5.8)
Then
y]; = (A1 +Bg+Bix)cosx + (B; —Ag — Ajx) sinx (3.5.9)
and
y{,’ = (2B — Ag — A1x) cosx — (2A1 + By + Byx) sinx, (3.5.10)
SO
y{,/ + 313{, +2yp = [Ag +3A1+ 3By + 2By + (A1 + 3B1)x] cosx

+[Bp +3B; —3A0 —2A1 + (B1 — 3A1)x]sinx. (3.5.11)

(You should verify this.) Comparing the coefficients of x cosx, xsinx, cosx, and sinx
here with the corresponding coefficients in (3.5.7) shows that y,, is a solution of (3.5.7) if

A1+3B1 = 20

—-3A1+ By = 0
Ag+3Bg+3A1+2B; = 16
—3A0+ Bp—2A;+3B; = 10.

Solving the first two equations yields A; = 2, B; = 6. Rearranging terms in the last two
equations yields

Ag+3By = 16—3A; —2B;
—3A0+ By = 10+ 2A;— 3By,

so that substituting the known values for A; and B; gives

Ag+3By = —2
—3A0+ By = —4.
Solving this system of two equations yields Ay = 1, Bj = —1. Substituting Ag = 1,

A1 =2,By =—1, By =6 into (3.5.8) shows that

Yp = (1 +2x) cosx — (1 — 6x) sinx
is a particular solution of (3.5.7). [
A Useful Observation

In (3.5.9), (3.5.10), and (3.5.11) the polynomials multiplying sinx can be obtained by
replacing Ag, A1, Bg, and By by By, B1, —Ag, and —Aj, respectively, in the polynomials
mutiplying cosx. An analogous result applies in general, as follows.
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Theorem 3.5.2 If
Yp = A(x) cos wx + B(x) sin wx,

where A(x) and B(x) are polynomials with coefficients Ag ..., Ay and By, ..., By, then the
polynomials multiplying sin wx in

Yp, VYp, and ayy +byl +cyp

can be obtained by replacing Ay, ..., Ax by By, ..., Bxand By, ..., Bx by —Ay, ..., —Ax in
the corresponding polynomials multiplying cos wx.

We will not use this theorem in our examples, but we recommend that you use it to
check your manipulations when you work the exercises.

Example 3.5.4 Find a particular solution of
y” +1y = (8 — 4x) cosx — (8 + 8x) sinx. (3.5.12)
Solution According to Theorem 3.5.1, we should look for a particular solution of the

form
Yp = (Aox + A1x?) cosx + (Box 4+ B1x?) sin x, (3.5.13)

since cos x and sin x are solutions of the complementary equation. However, let us try
Yp = (Ao + A1x)cosx + (Bg + Brx) sinx (3.5.14)
first, so you can see why it does not work. From (3.5.10),
Yp = (2B1 — Ag — Arx) cosx — (2A1 + By + Byx) sinx,
which together with (3.5.14) implies that
y{,’ +Yp = 2By cosx —2A; sinx.

Since the right side of this equation does not contain x cosx or xsinx, (3.5.14) canot
satisfy (3.5.12) no matter how we choose Ay, A1, By, and B;.
Now let y, be as in (3.5.13). Then

U{; = [Ao+ (2A1 +Bo)x + le2] cos X
+ [Bo + (2B1 — Ag)x — Alxz} sin x
and 91/9/ = [2A1 + 2By — (Ag — 4B1)x — Alxﬂ CoS X

+ [2B1 — 2A0 — (Bg + 4A1)x — B1x?] sinx,

so that
yg +Yp = (2A1 + 2Bg + 4B1x) cosx + (2B — 2A¢ — 4A x) sinx.
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Comparing the coefficients of cos x and sin x here with the corresponding coefficients in

(3.5.12) shows that yy, is a solution of (3.5.12) if

4By = —4

—4A; = -8
2Bg+2A1 = 8
—2A0+ 2B = 8.

The solution of this system is A; =2, By = —1, A9 = 3, By = 2. Therefore
Yp = x[(3+2x) cosx + (2 —x) sinx]

is a particular solution of (3.5.12).

Forcing Functions with Exponential Factors

To find a particular solution of

ay” + by’ + cy = e™ (P(x) cos wx + Q(x) sin wx)

(3.5.15)

when A # 0, we recall from Section 3.4 that substituting y = ue** into (3.5.15) will
produce a constant coefficient equation for u with the forcing function P(x) cos wx +
Q(x) sin wx. We can find a particular solution u,, of this equation by the procedure that

we used in Examples 3.5.1-3.5.4. Then y, = u,e*

Example 3.5.5 Find a particular solution of

y” — 3y’ + 2y = e 2¥[2cos 3x — (34 — 150x) sin 3x] .

Solution Lety = ue2*. Then

y' =3y’ +2y = e ¥ [(u”’ —4u' +4u)—3(u —2u) +2u]
e X (u” —7u +12u.

Comparing this to (3.5.16) reveals that we need to solve the equation
u” —7u’ 4+ 12u = 2 cos 3x — (34 — 150x) sin 3x.
Since cos 3x and sin 3x are not solutions of the complementary equation
u”/ — 7 +12u =0,
Theorem 3.5.1 tells us to look for a particular solution of (3.5.17) of the form

Up = (Ag + A1x) cos 3x + (Bo + B1x) sin 3x.

is a particular solution of (3.5.15).

(3.5.16)

(3.5.17)

(3.5.18)
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In this case,

u, = (A1 +3Bg+3Bix)cos3x + (By —3Ag — 3A;1x) sin 3x
and w) = (—9Ag+6B1 — 9A1x) cos 3x — (9Bg + 6A1 + 9B1x) sin 3x,
so that
u{D’ — 7u]'D +12u, = [3A¢0—21Bg—T7A; +6B1 + (3A; —21B;)x] cos 3x

+[21A0 + 3B — 6A1 — 7By + (21A; + 3B1)x] sin 3x.

Comparing the coefficients of x cos 3x, xsin 3x, cos 3x, and sin 3x here with the corre-
sponding coefficients on the right side of (3.5.17) shows that u,, is a solution of (3.5.17)
if

3A1 —21B; = 0
3A0 — 2130 —TA1+ 6B = 2 (3519)
21A0+ 3Bo—6A1— 7B1 = —34.

Solving the first two equations yields A; = 7, B; = 1. Substituting these values into the
last two equations of (3.5.19) and rearranging terms gives

3A0—21By = 45
21A0+ 3By = 15.

Solving this system yields Ay = 1, Bg = —2. Substituting Ag =1, A; =7, Bp = —2, and
B; = 1 into (??) shows that

Up = (14 7x) cos 3x — (2 — x) sin 3x
is a particular solution of (3.5.17). Therefore
Yp =€ X [(1 4 7x) cos 3x — (2 — x) sin 3x]
is a particular solution of (3.5.16). [
Example 3.5.6 Find a particular solution of

y” +2y’ +5y = e *[(6 — 16x) cos 2x — (8 + 8x) sin 2x] . (3.5.20)

Solution Lety = ue™*. Then

y”"+2y"+5y = e ¥ [(u”—2u'+u)+2(u —u)+5u]
e “(u” +4u).

Comparing this to (3.5.20) reveals that we need to solve the equation

u” +4u = (6 — 16x) cos 2x — (8 + 8x) sin 2x. (3.5.21)
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Notice that (cos2x)” = —4cos2x and (sin2x)” = —4sin2x so that both satisfy the
equation u” + 4u = 0. Since cos 2x and sin 2x are solutions of

u’ +4u =0,

they must also be solutions of the complementary equation y” + 2y’ + 5y = 0 (because
e~ * is never zero). Therefore, Theorem 3.5.1 tells us to look for a particular solution of
(3.5.21) of the form

Up = (Agx + A1x?) cos 2x + (Box + B1x?) sin 2x.

In this case,

w, = [Ag+ (2A1 + 2Bg)x + 2B1x%] cos 2x
+ [Bo + (2B1 — 2A0)x — 2A1x?] sin 2x
and w! = [2A1+4Bg — (4Ag — 8B1)x — 4A1x%] cos 2x

+ [2B1 —4A¢ — (4Bg + 8A1)x — 4B1x?] sin 2x,
so that
upy +4up, = (2A; +4Bg 4 8B1x) cos 2x + (2B1 — 4Ag — 8A1X) sin 2x.

Equating the coefficients of x cos 2x, x sin 2x, cos 2x, and sin 2x here with the correspond-
ing coefficients on the right side of (3.5.21) shows that u,, is a solution of (3.5.21) if

8B; = —16
Boton — o (35.22)
—4A0+2B; = 8.
The solution of this systemis A; =1, By = —2, By =1, Ag = 1. Therefore
up = x[(1 4 %) cos 2x 4 (1 — 2x) sin 2x]
is a particular solution of (3.5.21), and
Yp =xe "~ [(1+x)cos2x + (1 — 2x) sin 2x]
is a particular solution of (3.5.20). [

You can also find a particular solution of (3.5.20) by substituting
Yp =xe [(Ag+ Ayx)cos 2x + (Bg + Byx) sin 2x]

for y in (3.5.20) and equating the coefficients of xe™™ cos 2x, xe™* sin 2x, e~ * cos 2x, and
e~ *sin 2x in the resulting expression for

Yp + 2y, + 5yp
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with the corresponding coefficients on the right side of (3.5.20). This leads to the same
system (3.5.22) of equations for Ay, Aj, Bg, and B; that we obtained in Example 3.5.6.
However, if you try this approach you will see that deriving (3.5.22) this way is much
more tedious than the way we did it in Example 3.5.6.

3.5 Exercises

In Exercises 1-17 find a particular solution.

1. y”+3y’+2y="Tcosx—sinx

2. y”"+3y’+y=(2—6x)cosx —9sinx

3. y"+4+2y'+y=-e*(6cosx+ 17sinx)

4. y" + 3y’ —2y = —e?*(5cos 2x + 9sin 2x)

5. y"—y'+y=e¥(2+x)sinx

6. y” +3y’—2y=-e 2¥[(4420x)cos 3x + (26 — 32x) sin 3x]

7. y” +4y =—12cos2x — 4sin2x

8. y”+y=(—4+8x)cosx+ (8 —4x)sinx

9. 4y” +y=—4cosx/2— 8xsinx/2

10. y” +2y’' +2y =e *(8cosx — 6sinx)

11. y” —2y’ + 5y = e* [(6 4 8x) cos 2x + (6 — 8x) sin 2x]

12. y” +2y’ +y =8x%cosx — 4xsinx
13. y” + 3y’ +2y = (12 + 20x + 10x?) cos x + 8x sinx
14. y” + 3y’ +2y = (1 —x —4x?) cos 2x — (1 + 7x + 2x?) sin 2x
15. y” — 5y’ +6y = —e* [(4+ 6x —x?) cosx — (2 — 4x + 3x?) sin x|
16. y” —2y’+y=—e*[(3+4x—x?)cosx + (3 — 4x — x?) sin x|

17. y” —2y’ +2y = e [(2 — 2x — 6x?) cos x + (2 — 10x + 6x?) sin x]
In Exercises 18-21 find a particular solution and graph it.

18. y”+2y'+y=-e *[(5—2x)cosx — (3 + 3x)sinx]

19. y” +9y =—6cos3x —12sin3x

20. y” +3y’ +2y = (1 —x—4x?) cos2x — (1 + 7x + 2x?) sin 2x

21. y”+4y’ +3y=e ¥ [(24+x+x?) cosx + (5 + 4x + 2x?) sin x|
In Exercises 22-26 solve the initial value problem.
22, y" =Ty +6y=—e*(17cosx — 7sinx), y(0) =4, y’(0) =2
23. y” -2y’ +2y=—e*(6cosx +4sinx), y(0)=1,
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24, y" +6y’ + 10y = —40e*sinx, y(0)=2, y’(0)=-3

25. y” —6y’ + 10y = —e**(6cosx +4sinx), y(0)=2, y'(0)=7

26. y” —3y’ +2y=e>*[2lcosx — (11 + 10x)sinx], y(0) =0, y’(0) =6
In Exercises 27-32 use the principle of superposition to find a particular solution. Where
indicated, solve the initial value problem.

27. y” —2y’ — 3y = 4e>* + e*(cosx — 2sinx)

28. Yy’ +y=4cosx —2sinx+xe* +e

29. y” — 3y’ +2y = xe* + 2e?* +sinx

30. y” —2y’+2y =4xeXcosx +xe X +1+x2

31. y” — 4y’ +4y = e (1 +x) + e?*(cosx —sinx) +3e>* + 1 +x

32. y” —4y’ +4y =6e*>* +25sinx, y(0) =5, y'(0) =3

In Exercises 33-35 solve the initial value problem and graph the solution.

33. y”’+4y=—e2[4—Tx)cosx+ (2—4x)sinx], y(0) =3, y'(0)=1
34. y” 44y’ +4y =2cos2x +3sin2x+e %, y(0)=—-1, y'(0) =2
35. y” +4y =e*(11+ 15x) + 8cos2x — 12sin2x, y(0) =3, y'(0) =5

3.6 REDUCTION OF ORDER

In this section we give a method for finding the general solution of
Pa(x)y” + Pi(x)y’ + Po(x)y = F(x) (3.6.1)

if we know a nontrivial solution y; of the complementary equation
Po(x)y” + P1(x)y’ + Po(x)y = 0. (3.6.2)

The method is called reduction of order because it reduces the task of solving (3.6.1) to
solving a first order equation. Unlike the method of undetermined coefficients, it does
not require Py, P1, and Py to be constants, or F to be of any special form.

By now you should not be surprised that we look for solutions of (3.6.1) in the form

Y =uy (3.6.3)

where u is to be determined so that y satisfies (3.6.1). Substituting (3.6.3) and

/

y = uy+uy]
/! — u//yl+2u/y{+uy{/
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into (3.6.1) yields
P2 (x) (uy1 + 2u'y] +uyy) + Pr(x) (wys +wyi) + Po(x)uys = F(x).
Collecting the coefficients of u, u’, and u” yields
(Pay1)u” 4 (2P2yy + Pryi)u’ + (Poyy’ + Pryj 4+ PoyrJu =F. (3.6.4)
However, the coefficient of u is zero, since y; satisfies (3.6.2). Therefore (3.6.4) reduces to
Q2(x)u” + Q1(x)u’ =F, (3.6.5)

with
Q2 =Poy1 and Qi =2Pay; + P1ys.

(It is not worthwhile to memorize the formulas for Q2 and Q;!) Since (3.6.5) is a linear
first order equation in u’, we can solve it for u’ by variation of parameters as we did
in the introductory chapter, integrate the solution to obtain u, and then obtain y from
(3.6.3).

Example 3.6.1

(a) Find the general solution of
xy” — (2x+ Dy’ + (x + 1)y = %2, (3.6.6)
given that y; = e* is a solution of the complementary equation

xy” —(2x+ 1)y’ + (x+ 1)y = 0. (3.6.7)

(b) Using the results from part (a), find a fundamental set of solutions of (3.6.7).

Solution (a) If y = ue*, theny’ =u’e* +ue* and y” =u”e* + 2u’e* + ue*, so

xy”" —(2x+ 1y’ + (x+ 1)y = x(u”e*+2u'e* +ue¥)
—(2x + 1) (u'e* +ue*) + (x + 1)ue®

1

= (xu” —u')e*.

Therefore y = ue* is a solution of (3.6.6) if and only if

2
(xu” —u')e* = x*,

which is a first order equation in u’. We rewrite it as

/
n u

u’— — =xe . (3.6.8)
X
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To focus on how we apply variation of parameters to this equation, we temporarily write

z =1u’, so that (3.6.8) becomes

r —Xx
— == . 3.6.9
z < xe ( )

We leave it to you to show (by separation of variables) that z; = x is a solution of the

complementary equation

z
2/ —==0
X

for (3.6.9). By applying variation of parameters, we can now see that every solution of
(3.6.9) is of the form

z=vx where Vvix=xe X, so vV =e X and v=-—e *+C;.

Since u’ = z = vx, u is a solution of (3.6.8) if and only if

u' =vx = —xe X+ Cyx.

Integrating this yields
u=(x+1e *+ %x2 + Co.

Therefore the general solution of (3.6.6) is
x Ci 2 % x
y=1ue :x+1+7x e* + Cqe”. (3.6.10)

(b) By letting C; = C3 = 01in (3.6.10), we see that y,, = x + 1 is a solution of (3.6.6). By
letting C; = 2 and Cy = 0, we see thatyp, = x+1+x%e* is also a solution of (3.6.6). Since
the difference of two solutions of (3.6.6) is a solution of (3.6.7), y2 = Yp, — Yp, = x?e* is
a solution of (3.6.7). Since y»/y; is nonconstant and we already know thaty; = e*isa
solution of (3.6.6), Theorem 3.1.6 implies that {e*, x?e*} is a fundamental set of solutions
of (3.6.7). [

Although (3.6.10) is a correct form for the general solution of (3.6.6), it is silly to leave
the arbitrary coefficient of x2e* as C;/2 where C; is an arbitrary constant. Moreover, it
is sensible to make the subscripts of the coefficients of y; = e* and ys = x2eX consistent
with the subscripts of the functions themselves. Therefore we rewrite (3.6.10) as

y=x+1+cre +cox?e”

by simply renaming the arbitrary constants. We will also do this in the next two examples,
and in the answers to the exercises.

Example 3.6.2

(a) Find the general solution of

x2y”+xy’—y :X2+1,
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given that y; = x is a solution of the complementary equation
xy” +xy’ —y =0. (3.6.11)
Using this result, find a fundamental set of solutions of (3.6.11).

(b) Solve the initial value problem

Py xy' —y=x*+1, y(1) =2, y'(1) = -3, (3.6.12)

Solution (a) If y = ux, theny’ =u'x+uwandy” = u"x+2u’, so
Xy +xy' —y = x*(u'x+2u')+x(u'x+u) —ux
xu” + 3x*u.
Therefore y = ux is a solution of (3.6.12) if and only if
xu” + 3% =x% +1,
which is a first order equation in u’. We rewrite it as

1 1

To focus on how we apply variation of parameters to this equation, we temporarily write
z =1u’, so that (3.6.13) becomes

3
2+ 2=+ . (3.6.14)

We leave it to you to show by separation of variables that z; = 1/x3 is a solution of the
complementary equation

3

2/ +-z2=0

X

for (3.6.14). By variation of parameters, every solution of (3.6.14) is of the form

v vio1 1 x3
z=— where —=-+4+—, so VvV =x*4+1 and v=-"+x+Cy.
x3 x5 x %3 3

Since u’ = z = v/x3, uis a solution of (3.6.14) if and only if

Integrating this yields
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Therefore the general solution of (3.6.12) is

X2

Cy
=ux=——1—— ) .6.1
y=ux=- o + Caox (3.6.15)
Reasoning as in the solution of Example 3.6.1(a), we conclude thaty; =xand y» = 1/x
form a fundamental set of solutions for (3.6.11).

As before, we rename the constants in (3.6.15) and rewrite it as

2
y:§;—1+qx+%u (3.6.16)

(b) Differentiating (3.6.16) yields

2X Co
v =g +a— 3 (3.6.17)

Setting x = 1 in (3.6.16) and (3.6.17) and imposing the initial conditions y(1) = 2 and
y’(1) = —3yields

8
C1+Co = g

11
CI—CQ - —E

Solving these equations yields ¢; = —1/2, c; = 19/6. Therefore the solution of (3.6.12) is

X2 X 19
973 27" 6x
|
As expected, using reduction of order to find the general solution of a homogeneous
linear second order equation leads to a homogeneous linear first order equation in u’

that can be solved by separation of variables. The next example illustrates this.
Example 3.6.3 Find the general solution and a fundamental set of solutions of
x*y” —3xy’ 4+ 3y =0, (3.6.18)

given that y; = x is a solution.

Solution Ify =uxtheny’ =u'x+uandy” =u"x+2u’, so

Xy =3xy’+3y = x*(u"x+2u') = 3x(u'x+u) + 3ux

= xu” —x*u'.

Therefore y = ux is a solution of (3.6.18) if and only if

3

x LL// —X2

u' =0.
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Separating the variables u” and x yields

u
i
SO
Infu'|=Inlx|+ %k, or equivalently, u’= Cyx.
Therefore
u= %x2 + Co,

so the general solution of (3.6.18) is

C
Yy=ux= 71)(3 + Cox,

which we rewrite as

y=cix+ 02x3.

Therefore {x, x?} is a fundamental set of solutions of (3.6.18).

3.6 Exercises
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In Exercises 1-17 find the general solution, given that y; satisfies the complementary
equation. Then use the result to find a fundamental set of solutions of the complementary

equation.
L (2x+1)y" =2y —(2x+3)y=(2x+1)% yr=e ¥
4
2 _ 4, _
2. xg”—l—xy/—y—@, Yy =x
3. Xy —xy'+y=x; yi=x

4. y" -3y +2y=——; vy =e>
Y Yy +2y 1+ ex U1
3/2ex; ylzex

Yy =2y +y=T7x
y” —2y’ +2y =e*secx; y; =e~cosx
y”+4xy’+(4x2~l—2)y :8efx(x+2); Yy =e ¥

xX*y"” +xy’ — 4y = —6x —4; y; =x>

2

I N

10. x%y” +2x(x — 1y’ + (x> — 2x + 2)y = x3e?*; y; =xe ¥
1. x%y” —x(2x — 1)y’ + (x* —x — D)y =x%e*; y; = xe*

12, (1—2x)y” +2y’ + (2x —3)y = (1 —4dx + 4x%)e*; y; = e~
13. x%y” —3xy’ +4y =4x*; y; =2

14. 2xy” + (Ax + Dy’ + (2x+ 1)y =3x1/2e ™, y,=e

AxPy" 4 (4x — 8x2)y’ 4 (4x% —dx — 1)y = 4x/2eX(1 +4x);  yp = x1/%eX
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15. xy”" —(2x+ 1)y’ + (x+1)y=—e*; y; =¢€*
16.  4x%y” —4x(x 4+ 1)y’ + (2x + 3)y = 4x%/2e¥*;  y; =x1/2
17. x%y” —b5xy’ +8y =4x%; y; =x2

In Exercises 18-30 find a fundamental set of solutions, given that y is a solution.

18. xy”"+(2—2x)y'+(x—2)y=0; y;=e*
19. x*y”" —4xy’+6y=0; y;=x

20. x*(Inpx)%y” — (2xInx)y’ 4+ (2+In|x)y =0; y; =Infx|

21. 4xy” +2y' +y=0; y; =sinyx

22, xy”" —(2x+2)y' + (x+2)y=0; y;=e*

23. x*y” —(2a—1)xy’ +a’y=0; y; =x°

24. X*y" —2xy’ + (x> +2)y =0; y; =xsinx

25. xy”—(4x+ 1)y’ + (@x+2)y=0; y; =e*

26. 4x*(sinx)y” —4x(xcosx +sinx)y’ + (2xcosx + 3sinx)y = 0; y; =x
27. 4%y —4xy’ + (3—16x2)y =0; y; =x!/2e

28. (2x+1)xy” —2(2x> — 1)y’ —4(x+ 1y =0; y; =1/x

29. (x®—2x)y"+ 2Ny +(2x—2)y=0; y; =e*

30. xy” —(4x+ 1)y’ + (4x+2)y=0; y;=e*

1/2

In Exercises 31-33 solve the initial value problem, given that y, satisfies the complementary

equation.

3. x*y” —3xy’ +4y =4t y(—-1)=7, y'(-1)=-8 vy =x

32. (B3x—1)y” —(Bx+2)y’ —(6x—8)y =0, y(0)=2, y'(0) =3; y; =e**

33. (x+1)%y"—2(x+1)y — (x*+2x—1)y = (x+1)%e*, y(0)=1, y'(0)= —1;
Y1 = (x+1)e*

In Exercises 34 and 35 solve the initial value problem and graph the solution, given that y,
satisfies the complementary equation.

3. X%y +2xy’ —2y=x2, y(l) =

35. (x*—4)y"+4xy'+2y=x+2, yl0)=—, y'0)=-1; y =

3.7 VARIATION OF PARAMETERS
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In this section we give a method called variation of parameters for finding a particular
solution of
Po(x)y” + P1(x)y’ + Po(x)y = F(x) (3.7.1)

if we know a fundamental set {y1, yo} of solutions of the complementary equation
P2(x)y” + P1(x)y’ + Po(x)y = 0. (3.7.2)

Having found a particular solution y,, by this method, we can write the general solution
of (3.7.1) as
Y =Yp + C1Y1 + C2Y2.

Since we need only one nontrivial solution of (3.7.2) to find the general solution of
(3.7.1) by reduction of order, it is natural to ask why we are interested in variation of
parameters, which requires two linearly independent solutions of (3.7.2) to achieve the
same goal. Here are two answers:

* If we already know two linearly independent solutions of (3.7.2), then variation of
parameters will probably be simpler than reduction of order.

* Variation of parameters generalizes naturally to a method for finding particular
solutions of linear systems of equations (which we will study later), while reduction
of order does not.

We will now derive the method. As usual, we consider solutions of (3.7.1) and (3.7.2)
on an interval (a, b) where Py, Py, Py, and F are continuous and P3 has no zeros. Suppose
that {y1,y2} is a fundamental set of solutions of the complementary equation (3.7.2). We
look for a particular solution of (3.7.1) in the form

Yp = U1Y1 + U2y2 (3.7.3)

where u; and u; are functions to be determined so that y,, satisfies (3.7.1). You may not
think this is a good idea, since there are now two unknown functions to be determined,
rather than one. However, since u; and u; have to satisfy only one condition (that y,
is a solution of (3.7.1)), we can impose a second condition that produces a convenient
simplification, as follows.

Differentiating (3.7.3) yields

[

Yp = WY] +U2ys + Uiy +usye. (3.7.4)
As our second condition on u; and uy we require that
Wy 4 ujys = 0. (3.7.5)

Then (3.7.4) becomes
I

Yp = Wiyq + Uays; (3.7.6)
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that is, (3.7.5) permits us to differentiate y, (once!) as if u; and uy are constants. Differ-
entiating (3.7.4) yields

Yp = wiyy + Uoys + ujyy + usys. (3.7.7)

(There are no terms involving u;” and u here, as there would be if we had not required
(3.7.5).) Substituting (3.7.3), (3.7.6), and (3.7.7) into (3.7.1) and collecting the coefficients
of u; and uy yields

ul(ng{' + Ply{ + POUI) + uQ(ngél + Plyé + P0y2) + PQ(u{y{ + uéyé) =F.

As in the derivation of the method of reduction of order, the coefficients of u; and us
here are both zero because y; and ys; satisfy the complementary equation. Hence, we
can rewrite the last equation as

Po(wy) +ujys) =F. (3.7.8)

Therefore y,, in (3.7.3) satisfies (3.7.1) if

Wy +uyz = 0
F 3.7.9
uiy{ fufyl = 5 (3.7.9)

where the first equation is the same as (3.7.5) and the second is from (3.7.8).

We will now show that you can always solve (3.7.9) for u{ and u). (The method that
we use here will always work, but simpler methods usually work when you are dealing
with specific equations.) To obtain u{, multiply the first equation in (3.7.9) by y4 and the
second equation by y». This yields

uiy1ys + usyayy = 0
Fy2

WY ye + Upypys = P,

Subtracting the second equation from the first yields

F
ui(Y1y3 —yiyz) = —P%Q. (3.7.10)

Since {y1, Y2} is a fundamental set of solutions of (3.7.2) on (a, b), Theorem 3.1.6 implies
that the Wronskian y1y), — y{y2 has no zeros on (a, b). Therefore we can solve (3.7.10)
for uf, to obtain

Fyg
U = — : 3.7.11
P Palyiyl — yye) ( :
We leave it to you to start from (3.7.9) and show by a similar argument that
F
W, = LE (3.7.12)

Pa(y1ys —Yiya)
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We can now obtain u; and uy by integrating u; and u;. The constants of integration
can be taken to be zero, since any choice of u; and uy in (3.7.3) will suffice.

You should not memorize (3.7.11) and (3.7.12). On the other hand, you do not want to
derive the whole procedure for every specific problem. We recommend a compromise:
(a) Write

Yp = WY1 + Ugy2 (3.7.13)
to remind yourself of what you are doing.

(b) Write the system
Wy +uyys = 0
wy{+ufyy = o G719
for the specific problem you are trying to solve.
() Solve (3.7.14) for uj and uj by any convenient method.

(d) Obtain u; and uy by integrating u{ and us, taking the constants of integration to be
zero.

(e) Substitute u; and us into (3.7.13) to obtain yy.
Example 3.7.1 Find a particular solution y, of
X2y —oxy’ + 2y =x2, (3.7.15)
given thaty; =xand yp = x2 are solutions of the complementary equation
x*y” —2xy’ + 2y = 0.
Then find the general solution of (3.7.15).

Solution We set
Yp = Uix + u2x2,

where
upx+ wx? = 0
9/2
X
/ /
up +2ux = —-.
1 2 x2
From the first equation, u{ = —ujx. Substituting this into the second equation yields
ux = x*/2, sou) = x3/2 and therefore u] = —ujx = —x*/2. Integrating and taking the

constants of integration to be zero yields

7/2 2 5/2

and ug = -x

u—gx
1= 77 5
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Therefore yp, = ux + ugx? yields

2 7/2 2 5/2.2 4 9/2
_Zz z = —x
7x X + 5x X 35 ,

and the general solution of (3.7.15) is

4
y = £x9/2 + c1x 4 cox?
|
Example 3.7.2 Find a particular solution y, of
(x—1y" —xy' +y=(x—1)2, (3.7.16)
given that y; = x and y, = e* are solutions of the complementary equation
(x—1y" —xy'+y=0.
Then find the general solution of (3.7.16).
Solution We set
Yp = U1X + uge’™,
where
/ !/ X
wmx+ue” = 0
(x —1)?
/ ! X
S oL
u; +uge 1 X
Subtracting the first equation from the second yields —uj(x —1) = x —1,so u; = —1.

From this and the first equation, uj = xe ™. Integrating and taking the constants of
integration to be zero yields

u=—x and uy=—(x+1)e ~.
Therefore y, = uix + uze™ yields
(—x)x + (—(x +1)e ¥)e¥ = —x? —x — 1,
so the general solution y = yp + c1x + cz2e* of (3.7.16) is
—x?—x—1+cix+cge* =—x?>—14 (¢ — 1)x + coe®. (3.7.17)

However, since c¢; is an arbitrary constant, so is ¢; — 1; therefore, we improve the
appearance of this result by renaming the constant and writing the general solution as

y=—x>—14cix+coe*. m (3.7.18)
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There is nothing wrong with leaving the general solution of (3.7.16) in the form
(3.7.17); however, we think You will agree that (3.7.18) is preferable. We can also view
the transition from (3.7.17) to (3.7.18) differently. In this example the particular solution
yp = —x% —x — 1 contained the term —x, which satisfies the complementary equation.
We can drop this term and redefine y, = —x?—1, since —x? —x—1 is a solution of (3.7.16)
and x is a solution of the complementary equation; hence, —x2—1=(—x2—x—1)+xis
also a solution of (3.7.16). In general, it is always legitimate to drop linear combinations
of {y1,y2} from particular solutions obtained by variation of parameters. We will do
this in the following examples and in the answers to exercises that ask for a particular
solution. Therefore, do not be concerned if your answer to such an exercise differs from
ours only by a solution of the complementary equation.

Example 3.7.3 Find a particular solution of

" "+2y = . 7.1
v 3y 2y = o (3.7.19)
Then find the general solution.
Solution
The characteristic polynomial p(r) of the complementary equation
y ' +3y' +2y=0 (3.7.20)

istT?+3r+2=(+1)(r+2),s0y; = e *and y = e 2* form a fundamental set of
solutions of (3.7.20). We look for a particular solution of (3.7.19) in the form

Yp =ure 4+ uge 2%,
where
ue X+ uje > = 0
—uje X —2uje > = .
1+ ex

Adding the two equations in the system yields an equation in x for u}:

B 1 62X
—ube ¥ = , SO up=— :
1+ex 1+ex

From the first equation in the system, we find an expression for u{ and then substitute
us(x): ~

T l+eX

Finally, to solve for u;, integrate by means of the substitution v = e* and take the
constant of integration to be zero so that

J eX J dv
dx = .
14 ex 14wV

—uye
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Replacing v with e* gives u; = In(1 + e*).
The expression for uy can be transformed with the same substitution of v = e*:

2x
e
—J dx = —J Y dv.
1+ ex I+v
(Notice that e** = e*e*.) Next, use long division to rewrite the improper integral as
1
[[ih e
I+v

Finally, we integrate (using zero as the constant of integration) and replace v with e* to
find that usy is

In(14+v)—v=In(1+e*)—e~.
Therefore
Yp = we “+ uge 2%
= [n(1+e¥)e ™ +[In(1+e¥) —eX]e X,
SO
Yp = (e X +e ) In(l+e¥)—e ™

Since the last term on the right satisfies the complementary equation, we drop it and
redefine
yp = (e +e ) In(1 +e¥).

The general solution y of (3.7.19) is

Yp +cre *+coe P = (e +e ) In(1+e¥) +cre ¥ +coe 2N

|
Example 3.7.4 Solve the initial value problem
2
(x* = 1)y" +4xy’ +2y = 1 YO =-1 y'0)=-5 (3.7.21)
given that
= and _ !
L Y2 T

are solutions of the complementary equation

(x2 —1)y" +4xy’ +2y =0.
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Solution We first use variation of parameters to find a particular solution of

2
2 " /
—Dy" +4xy’ +2y = ——
(x Jy Xy Y x+1

on (—1,1) in the form

. Uy U9
yp_x—l x+1’
where
u! u
L 2 = 0 (3.7.22)
x—1 x+1
B u] B u B 2
(x—12 (x+1?  (x+1Dx2-1)

Multiplying the first equation by 1/(x — 1) and adding the result to the second equation
yields
1 1 , 2
o1 k) 2T r e -1 (3.7.23)

Now we use algebra to rewrite the rational expression in x on the left side of (3.7.23) as

(x+1)—(x—1) P

(x+1)(x2—1) (x+1)(x2—1)’

which implies that uj = 1. Therefore,
Uo = J dx = x.

From the first equation of the system (3.7.22), u] has the form

x—lu,_ x—1
x+1 2 x40

since we have shown that u} = 1. Now apply some clever algebra to rewrite the rational
expression before integrating:

_JMdX:J L—l dx
x+1 x+1

Finally, integrate (taking the constants of integration to be zero) To see that
u =2In(x+1) —x.
Therefore, the particular solution we seek is

up Ug 1 1
~ 21 1) — .
o T Tl LA G ) R o Sk S
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We can use algebra to rewrite the solution as

2In(x + 1) N 11 721n(x+1)_ 2x
x—1 x+1 x—1 x—1 (x+1)(x—1)’

which allows us to see that

2x [ 1
(x+1)(x—1) L—i—l +x—1]

is a solution of the complementary equation. Therefore we use the particular solution

_ 2In(x+1)

L —

in the general solution of (3.7.24) to get
2 ln(x + 1) C1 Co
= ) 3.7.24

x—1 * x—1 * x+1 ( )

Differentiating this yields
r_ 2 _ 2In(x + 1) _ C1 _ Co
YT -2 =12 (x+

Setting x = 0 in the last two equations and imposing the initial conditions y(0) = —1

and y’(0) = —5 yields the system

—Cc1+cy = —1
—2—¢c1—Cy = —H.

The solution of this system is ¢; = 2, ¢ = 1. Substituting these into (3.7.24) yields

2ln(x+1) 2 1
x—1 x—1 x+1
2Iln(x+1) 3x+1
x—1 +x2—1

as the solution of (3.7.21). Figure 3.1 is a graph of the solution. |
Comparison of Methods

We have now considered three methods for solving nonhomogeneous linear equations:
undetermined coefficients, reduction of order, and variation of parameters. It is natural to
ask which method is best for a given problem. The method of undetermined coefficients
should be used for constant coefficient equations with forcing functions that are linear
combinations of polynomials multiplied by functions of the form e**, e** cos wx, or
e sin wx. Although the other two methods can be used to solve such problems, they
will be more difficult except in the most trivial cases, because of the integrations involved.
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40 |
20 |
‘ X
1 1
_20 1
—40 |

2In(x +1) +3x+1
x—1 x2—1

Figure3.1y =

If the equation is not a constant coefficient equation or the forcing function is not of
the form just specified, the method of undetermined coefficients does not apply and
the choice is necessarily between the other two methods. The case could be made that
reduction of order is better because it requires only one solution of the complementary
equation while variation of parameters requires two. However, variation of parameters
will probably be easier if you already know a fundamental set of solutions of the
complementary equation.

3.7 Exercises

In Exercises 1-6 use variation of parameters to find a particular solution.

1. y”+9y =tan3x 2. y" + 4y = sin 2xsec? 2x

4. y" -2y’ +2y =3e*secx
3. y/ -3y +2y=-
YO =T

5. y//_2y/+y:14x3/2ex 6. y”—y
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In Exercises 7-29 use variation of parameters to find a particular solution, given the solutions
Y1, Yo of the complementary equation.

7.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

1
Yy Yy =242 yi=x, Y=<
X
XY+ 2=y + (x =2y =e¥; yi=e*, y2= %
APy 4 (4x — 8x2)y’ 4 (4x% —dx — 1)y = 4x1/2e*, x> (;
y1 = x1/2ex, yo =x"1/2ex

Y axy’ + (3 42y =4e X0y = e Yy =xe”
Xy —dxy + 6y =x% x> 0; yr=x% Yo =x°

X2y —3xy’ + 3y = 2 sinx; Y1 =x, ys =%

(2x+1)y” —2y’ — (2x+3)y = (2x+ 1)%e™™; y; =e X, 1y =xe*
dxy” 4+ 2y’ +y =siny/x; yip =cosyx, Yz =sin/x

xy” — (2x+ 20y’ + (x +2)y = 6x%e*; y1 =€, ys=xe"

x2y” — (2a—1)xy’ + a’y =x

x2y” —2xy’ + (x? +2)y =x3cosx; Y1 =xcosx, Yz =xsinx

oy =x9, ya=x%Inx

Xy// _y/ _4X3y — 87(5; Yy = eXQ’ Yo = e—x2
(sinx)y” +(2sinx—cosx)y’+(sinx—cosx)y =e~; yy=e ~, ys=e ~
Py —dxy’ + (3—16x%)y = 8x¥% Yy = V/xe®™, ya = /xe >

Ax2y” —dxy’ + (4x% 4 3)y =x7/2;  y; = /xsinx, Yz = \/xcosx
x2y” 2xy’ — (x2 —2)y = 3x%;  y; =xeX, yp =xe ¥
X2y —2x(x + 1y’ + (x> +2x + 2)y =x3e¥; y; =xe¥, yo =x%e*

Ky’ —xy’ =3y =X yi=1/x, Y2 =%

Xy —x(x + 4y’ +2(x+ 3y =x*e*; yr=x% y2 =x%e*

x2y" — 2x(x + 2)y’ + (x® + 4x + 6)y :2xex; yp =x%e¥, yg =x3e*
Xy —dxy’ + (x® +6)y =x*; yi1 =x%cosx, Yz =xZsinx
(x—Dy” —xy’ +y=2(x—1)%% yi=x, yaz=e*

Py —dx(x+1)y" + (2x+3)y =x2eX; y1 =X, Yo =/xe¥

COS X

In Exercises 30-32 use variation of parameters to solve the initial value problem, given yi,ys
are solutions of the complementary equation.

30.

31.

(3x —1)y” — (3x +2)y’ — (6x — 8)y = (3x — 1)%e?*, y(0) =1, y'(0) =2;
Yy = e2x , Y2 =xe ¥
(x—12y" —2(x—1)y'+2y = (x—1)2, y(0)=3, y’(0) =—6;

yr=x—1, yo=x2—1
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Figure 3.2 A spring — mass system with

Figure3.1 @y >0 (b)y=0, (dy<0 damping

32.

(x—1%y" = —1Dy' + (x+ Dy = (x—1)%e*, y(0)=4, y'(0)=-6;
yr=(x—1)e*, ya=x-1

In Exercises 33-35 use variation of parameters to solve the initial value problem and graph the
solution, given that yi,ys are solutions of the complementary equation.

33.

34.
35.

1 1

2 1 / !/
(x" = 1y" +4xy" +2y = 2x,  y(0) =0, y'(0) S D Y2 = o

X_
1
x2y"+2xy’—2y :_2)(27 y(l) :1’ y/(l) :_1; Yy =X, 92:@
(x+D(2x+3)y”" +2(x +2)y’ —2y = (2x +3)%2, y(0) =0, y’(0)=0;
1

= 2 = —
yr=x+2oy x+1

3.8 APPLICATIONS TO SPRINGS

We consider the motion of an object of mass m, suspended from a spring of negligible
mass. We say that the spring—mass system is in equilibrium when the object is at rest and
the forces acting on it sum to zero. The position of the object in this case is the equilibrium
position. We define y to be the displacement of the object from its equilibrium position
(Figure 3.1), measured positive upward.

Our model accounts for several kinds of forces acting on the object:

¢ The force due to gravity is represented by —mg. This force is also known as weight.

* Another force Fs is exerted by the spring resisting change in its length. The natural

length of the spring is its length with no mass attached. We assume that the spring
obeys Hooke’s law: If the length of the spring is changed by an amount AL from
its natural length, then the spring exerts a force F; = kAL, where k is a positive
number called the spring constant. If the spring is stretched, then AL > 0 and
Fs > 0, so the spring force is upward; if the spring is compressed, then AL < 0 and
Fs <0, so the spring force is downward.

In some models, there may be a damping force Fq = —cy’ that resists the motion
with a force proportional to the velocity of the object. It may be due to air resistance
or friction in the spring. However, a convenient way to visualize a damping force
is to assume that the object is rigidly attached to a piston with negligible mass
immersed in a cylinder filled with a viscous liquid (Figure 3.2). As the piston
moves, the liquid exerts a damping force. We say that the motion is undamped if
¢ =0, or damped if ¢ > 0.
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* In some models, there may be an external force F, other than the force due to
gravity, that may vary with t, but is independent of displacement and velocity. We
say that the motion is free if F = 0, or forced if F # 0.

From Newton’s second law of motion, whenever the net force acting on an object is
not zero, the net force must be proportional to its acceleration. Thus, in our model, my”
must equal the sum of the forces acting on the object. More precisely,

my” =-mg+Fs—cy' +F. (3.8.1)

We now relate Fg to y. In the absence of external forces, the object stretches the spring by
an amount AA to assume its equilibrium position. Since the sum of the forces acting on
an object in equilibrium is zero, Hooke’s Law implies that mg = kAA. However, if the
object is displaced y units from its equilibrium position, the total change in the length of
the spring becomes AL = AA —y, and Hooke’s law now implies that

Fs = kAL = KAA — ky.
Substituting this into (3.8.1) yields
my” = —mg+kAL—ky —cy’ +F.
Since mg = kAA this can be written as
my” +cy’+ky=F. (3.8.2)

We call this the equation of motion.

Simple Harmonic Motion

We first consider spring—mass systems without damping where the motion is also free;
that is, both ¢ = 0 and F=0. We begin with an initial value problem.

Example 3.8.1 An object stretches a spring 6 inches in equilibrium.
(a) Set up the equation of motion and find its general solution.

(b) Find the displacement of the object for t > 0 if it’s initially displaced 18 inches above
equilibrium and given a downward velocity of 3 ft/s.

Solution (a) Setting ¢ = 0 and F = 0 in (3.8.2) yields the equation of motion

my” +ky =0,

which we rewrite as K

Although we would need the weight of the object to obtain k from the equation mg =
kA we can determine the coefficient k/m using AA because we know the acceleration
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3 3
Figure 3.3y = 5 cos 8t — 3 sin 8t

due to gravity. Consistent with the units used in the problem statement, we take g = 32
ft/s2. Although AA is stated in inches, we must convert it to feet to be consistent with
this choice of g; thatis, AA = 1/2 ft. Using k/m = g/AA, we see that

2
L
and (3.8.3) becomes
y” +64y =0. (3.8.4)
The characteristic equation of (3.8.4) is
464 =0,

which has the zeros r = £8i. Therefore the general solution of (3.8.4) is
Yy = cq cos 8t + cg sin 8t. (3.8.5)

(b)The initial upward displacement of 18 inches is positive and must be expressed in
feet. The initial downward velocity is negative; thus,

y(0) = g and y’(0) = —3.

Differentiating (3.8.5) yields
y’ = —8cy sin 8t + 8¢, cos 8t. (3.8.6)

Setting t = 0in (3.8.5) and (3.8.6) and imposing the initial conditions shows that ¢c; = 3/2
and ¢y = —3/8. Therefore
= 3 3 8t — §sir18t
Yy = 5 cos 3 ,
where y is in feet (Figure 3.3). [ |
We now consider the equation

my” +ky =0

where m and k are arbitrary positive numbers. Dividing through by m and defining

wp = y/k/myields

y” + wiy =0.
The general solution of this equation is
Yy = ¢ cos wot + co sin wot. (3.8.7)

We can rewrite this in a more useful form by defining

R=/c?+c3 (3.8.8)
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Figure 34 R = \/cf+¢c3; c¢1 =Rcos¢p; c2=Rsind

and
¢yt =Rcos¢ and c¢o = Rsin . (3.8.9)

Substituting from (3.8.9) into (3.8.7) and applying the identity
cos wot cos ¢ + sin wotsin ¢ = cos(wot — )

yields
y = Reos(wot — ). (3.8.10)

From (3.8.8) and (3.8.9) we see that the R and ¢ can be interpreted as polar coordinates
of the point with rectangular coordinates (c1, c2) (Figure 3.4). Given ¢; and ¢y, we can
compute R from (3.8.8) and find ¢ by noting that

tanp = Q.
€1
There are infinitely many angles ¢, differing by integer multiples of 27, that satisfy this
equation. We will always choose ¢ so that — < ¢ < 7.

The motion described by (3.8.7) or (3.8.10) is simple harmonic motion. We see from either

of these equations that the motion is periodic, with period

T =271/wy.

This is the time required for the object to complete one full cycle of oscillation (for
example, to move from its highest position to its lowest position and back to its highest
position). Since the highest and lowest positions of the object arey = Rand y = —R,
we say that R is the amplitude of the oscillation. The angle ¢ in (3.8.10) is the phase angle,
measured in radians. Equation (3.8.10) is the amplitude—phase form of the displacement. If
t is in seconds then wy is in radians per second (rad/s); this is the frequency of the motion.
It is also called the natural frequency of the spring—mass system without damping.

Example 3.8.2 We found the displacement of the object in Example 3.8.1 to be
Y= gcos8t— gsin8t.

Find the frequency, period, amplitude, and phase angle of the motion.

Solution The frequency is wy = 8 rad/s, and the period is T = 2mt/wy = 1/4 s. Since
c1 = 3/2 and cy = —3/8, the amplitude is

P — 3\2  /3\%? 3
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The phase angle is determined by
3
tan ¢ = —%. (3.8.11)
2

Using a calculator, we find from (3.8.11) that
¢ ~ —.245 rad.

Since cos ¢ > 0 and sin ¢ < 0, the angle is in the fourth quadrant and that the calculated
value of the phase angle is correct. |

Example 3.8.3 The natural length of a spring is 1 m. An object is attached to it and the
length of the spring increases to 102 cm when the object is in equilibrium. Then the
object is initially displaced downward 1 cm and given an upward velocity of 14 cm/s.
Find the displacement for t > 0. Also, find the natural frequency, period, amplitude,
and phase angle of the resulting motion. Express the answer in terms of centimeters.

Solution To use centimeters, we convert gravity to g = 980 cm/ s2. Since AN = 2 cm,
w3 = g/AN = 490. Therefore

y” +490y =0, y(0)=-1, y'(0)=14.
The general solution of the differential equation is
Yy = Cj Ccos 7V10t + Co sin 7\/Et,

SO

y' = 7V/10 (—cl sin 7v/10t + Co COS 7\@‘() .

Substituting the initial conditions into the last two equations yields ¢; = —1 and ¢y =

2/4/10. Hence,
2
= —cos TV10t + —— sin 7V10t.
Y V10

The frequency is 7v/10 rad /s, and the period is T = 27t/(7+/10) s. The amplitude is

2
R:\/cf—i—c%:\/(—l)?—i— (\/21»()) :\/zcm.

The phase angle is determined by

ﬁ‘w
[e=]

tan p = Y.
an 3

Here it is important to notice that since cos ¢ < 0 and sin ¢ > 0, the phase angle is in the
second quadrant. This means that we must add 7t to the calculated value of the angle
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provided by the definition of the inverse tangent function. With the aid of a calculator,
we find that
d ~ 2.58 rad.

Undamped Forced Oscillation

In many mechanical problems a device is subjected to periodic external forces. For
example, soldiers marching in cadence on a bridge cause periodic disturbances in the
bridge, and the engines of a propeller—driven aircraft cause periodic disturbances in its
wings. In the absence of sufficient damping forces, such disturbances — even if small in
magnitude — can cause structural breakdown if they are at certain critical frequencies.
To illustrate, this we consider the motion of an object in a spring—mass system without
damping, subject to an external force

F(t) = Fpcos wt
where F is a constant. In this case the equation of motion (3.8.2) is
my” + ky = Fy cos wt,

which we rewrite as .
Yy + wiy = EO cos wt (3.8.12)

with wy = y/k/m. We will see from the next two examples that the solutions of (3.8.12)
with w # w( behave very differently from the solutions with w = wy.

Example 3.8.4 Solve the initial value problem

y” + wiy = %Cos wt, y(0)=0, y’(0)=0, (3.8.13)
given that w # wy.
Solution We first obtain a particular solution of (3.8.12) by the method of undetermined
coefficients. Since w # wy, cos wt is not a solution of the complementary equation
y'+ w%y =0.
Therefore (3.8.12) has a particular solution of the form
Yp = Acos wt + Bsin wt.

Since
Yp = —w?(A cos wt + Bsin wt),

F
" 2 0

+w = —cos wt
yp OUP m
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if and only if
(w% — w?) (A cos wt + Bsinwt) = % cos wt.
This holds if and only if
A= m(w%FO_ 7] and B =0,
SO

cos wt.

The general solution of (3.8.12) is

Fo

2

——5 5, Coswt + ¢y coswot + C2 sin wot, (3.8.14)
m(wg — w?)

y:

SO
/ —wky . .
Yy = ——5— - sinwt + wo(—c1sinwot + 2 cos wot).
m(wg — w?)

The initial conditions y(0) = 0 and y’(0) = 0 in (3.8.13) imply that

Fo

——v d =0.
m(w[% — w2) an Co

Ci =—

Substituting these into (3.8.14) yields

Fo

2

——5 5 (coswt — cos wot). (3.8.15)
m(wg — w?)

y:

|
It is revealing to write this solution in a different form. We start with the trigonometric
identities

cos(x—pB) = coscecos B + sinosin

cos(x+pB) = cosccos —sinasinf.

Subtracting the second identity from the first yields

cos(ox — B) —cos(ax+ ) = 2sin asin B (3.8.16)
Now let
x—RB=wt and «a+ B = wet, (3.8.17)
so that
o= (wo + w)t and B = M. (3.8.18)

2 2
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Figure 3.5 Undamped oscillation with beats

Substituting (3.8.18) and (3.8.17) into (3.8.16) yields

(wp—w)t . (wo+ w)t

cos wt — cos wot = 2sin sin ,
2 2
and substituting this into (3.8.15) yields
t
y = R(t) sin (“’UJQF“’) (3.8.19)
where oF : )
. lwg—w)t
R(t) = 0 : 8.2
(t) i —w?) T2 (3.8.20)

From (3.8.19) we can regard y as a sinusoidal variation with frequency (wo+w)/2 and
variable amplitude [R(t)|. In Figure 3.5 the dashed curve above the t axis isy = [R(t)|,
the dashed curve below the t axis is y = —|R(t)|, and the displacement y appears as an
oscillation bounded by them. The oscillation of y for t on an interval between successive
zeros of R(t) is called a beat.

You can see from (3.8.20) and (3.8.19) that

2[Fo

mlw% —

ly(t)] <

Y

w?|

moreover, if w + wy is sufficiently large compared with w — wy, then |y| assumes values
close to (perhaps equal to) this upper bound during each beat. However, the oscillation
remains bounded for all t. (This assumes that the spring can withstand deflections of
this size and continue to obey Hooke’s law.) The next example shows that this is not the
case if w = wy.

Example 3.8.5 Find the general solution of

F
Yy + wly = n—z cos wot. (3.8.21)

Solution We first obtain a particular solution y, of (3.8.21). Since cos wot is a solution
of the complementary equation, the form for y,, is

Yp = t(A cos wot + Bsin wot). (3.8.22)

Then
Yp = A cos wot + B sin wot + wot(—Asin wot 4 B cos wot)

and

yg = 2w (—Asin wgt + B cos wgt) — w%t(A cos wot + Bsin wot). (3.8.23)
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Figure 3.6 Unbounded displacement due to resonance

From (3.8.23) and (3.8.22), we see that y,, satisfies (3.8.21) if

F
—2A wq sin wgt 4+ 2Bwq cos wot = 0 cos wot;
m

that is, if
F
A=0 and B= o
2mw0
Therefore
Fot L wont
= Sin
Yr 2mwy 0

is a particular solution of (3.8.21). The general solution of (3.8.21) is

ot
-~ 2mwy

y sin wgt + ¢1 cos wot + co sin wgt.

The graph of y,, is shown in Figure 3.6, where it can be seen that y, oscillates between

the dashed lines
= FOt and = — ot
Yy 9 0 Yy

2mwy

with increasing amplitude that approaches co as t — oo. Of course, this means that the
spring must eventually fail to obey Hooke’s law or break. |

This phenomenon of unbounded displacements of a spring—-mass system in response
to a periodic forcing function at its natural frequency is called resonance. More compli-
cated mechanical structures can also exhibit resonance-like phenomena. For example,
rhythmic oscillations of a suspension bridge by wind forces or of an airplane wing
by periodic vibrations of reciprocating engines can cause damage or even failure if
the frequencies of the disturbances are close to critical frequencies determined by the
parameters of the mechanical system in question.

Free Vibrations With Damping

We now consider the motion of an object in a spring—-mass system with damping but
with unforced motion. In this case, the equation of motion is

my” +cy’+ky =0. (3.8.24)

Now suppose the object is displaced from equilibrium and given an initial velocity.
Intuition suggests that if the damping force is sufficiently weak, the resulting motion
will be oscillatory, as in the undamped case. On the other hand, if the damping force
is sufficiently strong, the object may just move slowly toward the equilibrium position
without ever reaching it. We will confirm these intuitive ideas mathematically. The
characteristic equation of (3.8.24) is

mr +cr+k=0.
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Figure 3.7 Underdamped motion

The roots of this equation are

—c —+vc2 —4mk —c++/c?2 —4mk
T = om and To = om . (3825)

We have seen that the form of the solution of (3.8.24) depends upon whether c? — 4mk is
positive, negative, or zero. We now consider these three cases.

Underdamped Motion

We say the motion is underdamped if ¢ < v/4mk. In this case r; and 12 in (3.8.25) are
complex conjugates, which we write as

c . C .
T1=————1iw; and T =-——+1iw;y,
2m 2m
where
vAmk — c2
w=—":
2m

The general solution of (3.8.24) in this case is

y= e S/ 2M () cos wit + co sin wit).

By the method used to derive the amplitude—phase form of the displacement of an object
in simple harmonic motion, we can rewrite this equation as

y = Re 2™ cos(wit — &), (3.8.26)

R=,/c?+ci

The factor Re= /2™ in (3.8.26) is called the time—varying amplitude of the motion. A
typical graph of (3.8.26) is shown in Figure 3.7. As illustrated in that figure, the graph of
y oscillates between the dashed exponential curves y = +Re~¢t/2m,

where
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Overdamped Motion

We say the motion is overdamped if ¢ > v/4mk. In this case the zeros r; and r2 of the
characteristic polynomial are real, with 1y < 1o < 0 (see (3.8.25)), and the general solution
of (3.8.24) is

y =cre™t +cgemt

Again lim¢_,, y(t) = 0 as in the underdamped case, but the motion is not oscillatory,
since y cannot equal zero for more than one value of t unless ¢y = ¢y = 0.

Critically Damped Motion

We say the motion is critically damped if c = v4mk. In this case 11 = 12 = —c/2m and
the general solution of (3.8.24) is

Yy =e V2M(c; 4 cot).

Again lim¢_, y(t) = 0 and the motion is nonoscillatory, since y cannot equal zero for
more than one value of t unless ¢; = co = 0.

Example 3.8.6 Suppose a 64 Ib weight stretches a spring 6 inches in equilibrium and

experiences a damping force of c Ib for each ft/sec of velocity.

(a) Write the equation of motion of the object and determine the value of ¢ for which
the motion is critically damped.

(b) Find the displacement y for t > 0 if the motion is critically damped and the initial
conditions are y(0) = 1 and y’(0) = 20.

() Find the displacement y for t > 0 if the motion is critically damped and the initial
conditions are y(0) = 1 and y’(0) = —20.

Solution (a) Here m = 2 (since the force of weight is —mg = 64) and k = 64/.5 = 128
Ib/ft. Therefore the equation of motion (3.8.24) becomes

2y” + cy’ + 128y = 0. (3.8.27)

The characteristic equation is
2r* + cr + 128 =0,

which has roots

_ —Cc*++Vc?2-8-128
- I .

Therefore the damping is critical if
c = V8- 128 = 32 Ib-sec/ft.
(b) Setting ¢ = 32 in (3.8.27) and cancelling the common factor 2 yields

y” + 16y + 64y = 0.
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Figure 3.8 (a) y = e °t(1 +28t) (b) y = e 8t(1 —12t)
The characteristic equation is
2 4167 4+ 64y = (r+8)? =0.
Hence, the general solution is
y=e *(c1 +cat). (3.8.28)

Differentiating this yields
y' = 8y +coe B (3.8.29)

Imposing the initial conditions y(0) = 1 and y’(0) = 20 in the last two equations shows
that 1 = ¢y and 20 = —8 + co. Hence, the solution of the initial value problem is

y = e SY(1 +28t).

Therefore the object approaches equilibrium from above as t — oco. There’s no oscillation.
(c)Imposing the initial conditions y(0) = 1 and y’(0) = —20 in (3.8.28) and (3.8.29)
yields 1 = c¢; and —20 = —8 + c2. Hence, the solution of this initial value problem is

y=-e 51 —12t).

Therefore the object moves downward through equilibrium just once, and then ap-
proaches equilibrium from below as t — co. Again, there is no oscillation. The solutions
of these two initial value problems are graphed in Figure 3.8.

Example 3.8.7 Find the displacement of the object in Example 3.8.6 if the damping
constant is ¢ = 4 Ib-sec/ft and the initial conditions are y(0) = 1.5 ft and y’(0) = —3
ft/sec.
Solution With c = 4, the equation of motion (3.8.4) becomes
y’ +2y' +64y =0 (3.8.30)
after cancelling the common factor 2. The characteristic equation
P 42r+64=0

has complex conjugate roots

—2++v4—-4-64
T = =
2

—1 4 3V7i.

Therefore the motion is underdamped and the general solution of (3.8.30) is

y=-e Y(cy cos 3V7t + cosin 3V Tt).
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Differentiating this yields

y' = —y +3v7e *(—c1 sin3v/7t + co cos 3V Tt).

Imposing the initial conditions y(0) = 1.5 and y’(0) = —3 in the last two equations
yields 1.5 = ¢y and —3 = —1.5 + 3v/7¢y. Hence, the solution of the initial value problem
is 5 )
=e = t— ——si t). 8.31
y=e <2cos3\f7 Q\ﬁsm?)\f?) (3 )

The amplitude of the function in parentheses is

) ) i e

Therefore we can rewrite (3.8.31) as

e teos(3VTt — ).

S

y:
|

Example 3.8.8 Let the damping constant in Example 1 be ¢ = 40 Ib—sec/ft. Find the
displacement y for t > 0if y(0) = 1 and y'(0) = 1.

Solution With c = 40, the equation of motion (3.8.27) reduces to
y” +20y’ + 64y =0 (3.8.32)
after cancelling the common factor 2. The characteristic equation
2 4+20r+64=(r+16)(r+4) =0
has the roots r; = —4 and r; = —16. Therefore the general solution of (3.8.32) is
y=cre 4 cye 16t (3.8.33)

Differentiating this yields
y' = —4e 4t — 16c0e 161,

The last two equations and the initial conditions y(0) = 1 and y’(0) = 1 imply that

c1 + co =1
—4c1 — 16cy =1.

The solution of this system is ¢; = 17/12, co = —5/12. Substituting these into (3.8.33)
yields
17 44 o ie—lﬁt

Y= R 12
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as the solution of the given initial value problem. |

3.8 Exercises

In Exercises 1-12, assume that there is no damping.

1.

10.

An object stretches a spring 4 inches in equilibrium. Find and graph its displace-
ment for t > 0 if it’s initially displaced 36 inches above equilibrium and given a
downward velocity of 2 ft/s.

An object stretches a string 1.2 inches in equilibrium. Find its displacement for
t > 0 if it’s initially displaced 3 inches below equilibrium and given a downward
velocity of 2 ft/s.

A spring with natural length .5 m has length 50.5 cm with a mass of 2 gm sus-
pended from it. The mass is initially displaced 1.5 cm below equilibrium and
released with zero velocity. Find its displacement for t > 0.

An object stretches a spring 6 inches in equilibrium. Find its displacement for
t > 0 if it’s initially displaced 3 inches above equilibrium and given a downward
velocity of 6 inches/s. Find the frequency, period, amplitude and phase angle of
the motion.

An object stretches a spring 5 cm in equilibrium. It is initially displaced 10 cm
above equilibrium and given an upward velocity of .25 m/s. Find and graph its
displacement for t > 0. Find the frequency, period, amplitude, and phase angle of
the motion.

A 10 kg mass stretches a spring 70 cm in equilibrium. Suppose a 2 kg mass is
attached to the spring, initially displaced 25 cm below equilibrium, and given an
upward velocity of 2 m/s. Find its displacement for t > 0. Find the frequency,
period, amplitude, and phase angle of the motion.

A weight stretches a spring 1.5 inches in equilibrium. The weight is initially
displaced 8 inches above equilibrium and given a downward velocity of 4 ft/s.
Find its displacement for t > 0.

A weight stretches a spring 6 inches in equilibrium. The weight is initially dis-
placed 6 inches above equilibrium and given a downward velocity of 3 ft/s. Find
its displacement for t > 0.

A 64 Ib weight is attached to a spring with constant k = 8 1Ib/ft and subjected to
an external force F(t) = 2sint. The weight is initially displaced 6 inches above
equilibrium and given an upward velocity of 2 ft/s. Find its displacement for
t>0.

A unit mass hangs in equilibrium from a spring with constant k = 1/16. Starting
att = 0, a force F(t) = 3sint is applied to the mass. Find its displacement for
t>0.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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A 4 1b weight stretches a spring 1 ft in equilibrium. An external force F(t) =
.25sin 8t Ib is applied to the weight, which is initially displaced 4 inches above
equilibrium and given a downward velocity of 1 ft/s. Find and graph its displace-
ment for t > 0.

A 2 1b weight stretches a spring 6 inches in equilibrium. An external force F(t) =
sin 8t 1b is applied to the weight, which is released from rest 2 inches below
equilibrium. Find its displacement for t > 0.

A 64 1b object stretches a spring 4 ft in equilibrium. A damping force is exerted with
damping constant ¢ = 8 Ib-sec/ft. The object is initially displaced 18 inches above
equilibrium and given a downward velocity of 4 ft/sec. Find its displacement and
time-varying amplitude for t > 0.

A 16 b weight is attached to a spring with natural length 5 ft. With the weight
attached, the spring measures 8.2 ft. The weight is initially displaced 3 ft below
equilibrium and given an upward velocity of 2 ft/sec. Find and graph its displace-
ment for t > 0 if the medium resists the motion with a force of one b for each
ft/sec of velocity. Also, find its time—varying amplitude.

An 8 Ib weight stretches a spring 1.5 inches. A damping force is exerted with
damping constant c=8 lb-sec/ft. The weight is initially displaced 3 inches above
equilibrium and given an upward velocity of 6 ft/sec. Find and graph its displace-
ment for t > 0.

A 96 Ib weight stretches a spring 3.2 ft in equilibrium. A damping force is ex-
erted with damping constant c=18 lb-sec/ft. The weight is initially displaced 15
inches below equilibrium and given a downward velocity of 12 ft/sec. Find its
displacement for t > 0.

An 8 Ib weight stretches a spring .32 ft. The weight is initially displaced 6 inches
above equilibrium and given an upward velocity of 4 ft/sec. Find its displacement
for t > 0 if the medium exerts a damping force of 1.5 Ib for each ft/sec of velocity.

A 32 ]b weight stretches a spring 2 ft in equilibrium. A damping force is exerted
with a constant ¢ = 8 Ib-sec/ft. The weight is initially displaced 8 inches below
equilibrium and released from rest. Find its displacement for t > 0.

A mass of 20 gm stretches a spring 5 cm. A damping force is exerted with a
constant 400 dyne sec/cm. Determine the displacement for t > 0 if the mass is
initially displaced 9 cm above equilibrium and released from rest.

A 64 Ib weight is suspended from a spring with constant k = 25 lIb/ft. It is
initially displaced 18 inches above equilibrium and released from rest. Find its
displacement for t > 0 if the medium resists the motion with 6 1b of force for each
ft/sec of velocity.

An 8 lb weight stretches a spring 2 inches. A damping force is exerted with a
constant c=4 Ib-sec/ft. The weight is initially displaced 3 inches above equilibrium
and given a downward velocity of 4 ft/sec. Find its displacement for t > 0.
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22. A 21b weight stretches a spring .32 ft. The weight is initially displaced 4 inches
below equilibrium and given an upward velocity of 5 ft/sec. The medium provides
damping with constant ¢ = 1/8 Ib-sec/ft. Find and graph the displacement for
t>0.






CHAPTER 4

LSERIES SOLUTIONS OF SECOND ORDER EQUATIONS

IN THIS CHAPTER we study a class of second order differential equations that occur in
many applications but do not possess solutions in terms of elementary functions. The
equations considered in this chapter have variable coefficients that can be written in the
form

Pa(x)y” + Pi(x)y’ 4 Po(x)y =0, (A)

where Py, P, and Py are polynomials with no common factor. We will see that if
P2(0) # 0, then solutions of (A) can be written as power series

o0
y=) anx"
n=0

that converge in an open interval centered at x = 0. For most equations that occur
in applications, these polynomials are of degree two or less, so we will impose this
restriction throughout the chapter.

SECTION 4.1 reviews the properties of power series.

SECTIONS 4.2 AND 4.3 are devoted to finding power series solutions of (A) in the case
where P2(0) # 0. The situation is more complicated if P2(0) = 0; however, if P; and Py
satisfy assumptions that apply to most equations of interest, then we are able to use a
modified series method to obtain solutions of (A).

SECTION 4.4 introduces the appropriate assumptions on P; and P in the case where
P2(0) = 0, and deals with Cauchy—Euler equation

ax*y” +bxy’ +cy =0,

where a, b, and c are constants. This is the simplest equation that satisfies these assump-
tions.

180
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4.1 REVIEW OF POWER SERIES

Many applications give rise to differential equations with solutions that cannot be
expressed in terms of elementary functions such as polynomials, rational functions,
exponential and logarithmic functions, and trigonometric functions. However, the
solutions of some of the most important of these equations can be expressed in terms of
power series. We will study such equations in this chapter. In this section we review
relevant properties of power series but will omit proofs, which can be found in any
standard calculus text.

Definition 4.1.1 An infinite series of the form

o0

Z an(x —xo)™, (4.1.1)

n=0

where xg and ag, ai, ..., an, ...are constants, is called a power series in x — xo. We say
that the power series (4.1.1) converges for a given x if the limit

N
lim Z an(x —xo)™
N—o0

n=0

exists; otherwise, we say that the power series diverges for the given x.

A power series in x — xo must converge if x = x, since the positive powers of x — x
are all zero in this case. This may be the only value of x for which the power series
converges. However, the next theorem shows that if the power series converges for
some x # Xg then the set of all values of x for which it converges forms an interval.

Theorem 4.1.2 For any power series

o
Z an(x _XO)na
n=0

exactly one of these three statements is true:
(i) The power series converges only for x = xg.

(ii) The power series converges for all values of x.
(iii) There’s a positive number R such that the power series converges if [x — xo| < R and
diverges if [x — xg| > R.

In case (iii) we say that R is the radius of convergence of the power series. For conve-
nience, we include the other two cases in this definition by defining R = 0 in case (i) and
R = oo in case (ii). We define the open interval of convergence of 337, an(x —xo)™ to be

(xo—R,xp+R) if O0<R<oo, or (—o0,00) if R=o0.
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If R is finite, no general statement can be made concerning convergence at the endpoints
x = xo £ R of the open interval of convergence; the series may converge at one or both
points, or diverge at both.

Recall from calculus that a series of constants ) 7 «r, is said to converge absolutely if
the series of absolute values ) |on | converges. It can be shown that a power series
Y oo an(x —xo)™ with a positive radius of convergence R converges absolutely in its
open interval of convergence; that is, the series

o0
> lanlx —xol™
n=0

of absolute values converges if [x — xo| < R. However, if R < oo, the series may fail to
converge absolutely at an endpoint xo £ R, even if it converges there.

The next theorem provides a useful method for determining the radius of convergence
of a power series. It is derived in calculus by applying the ratio test to the corresponding
series of absolute values.

Theorem 4.1.3 Suppose there is an integer N such that an, # 0ifn > Nand

An+1
an

lim =1,

n—oo

where 0 < L < oo. Then the radius of convergence of 3 an(x — x)™ is R = 1/L, which
should be interpreted to mean that R =0if L = oo, 0or R =00 if L = 0.

Example 4.1.1 Find the radius of convergence of the series:

o0 o0 Xn o0
@ ) nx™ b ) (D" @ ) mix-DM
n=0 n=10 ’ n=0
Solution (a) Here a,, = n!, so
1)!
lim |22 = Jim M = lim (n+1) = oo.
n—oco| an n—o0 n! n—o0
Hence, R = 0.
(b) Here a, = (1)™/n! forn > N =10, so
. An+1 . n!
lim = lim = - =
n—oo| dn n—oo (M+1) nocomn+1

Hence, R = .
(c) Here a,, = 2™n?, so

an+1
an

2n+1 12 1 2
lim i 2D o <1+> —9
n—o0 o2nn?2 n—o0 n

n—o0
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Hence, R =1/2. []
Taylor Series

If a function f has derivatives of all orders at a point x = x, then the Taylor series of f
about x is defined by
(.¢]
£ (x

> o

n=0 '
In the special case where xy = 0, this series is also called the Maclaurin series of f.

Taylor series for most of the common elementary functions converge to the functions

on their open intervals of convergence. For example, you are probably familiar with the
following Maclaurin series:

© on
e = Y X —o<x<oo, (4.1.2)
—nl
sinx = i(—l)nﬂ —00 < X < 00 (4.1.3)
N — en+ 1) ’ -
o X2n
cosx = Z(—l)“(2n)!, —00 < X < 00, (4.1.4)
n=0
1 — .
= —1 1. 4.1.
— nZ_Ux , <x< (4.1.5)

Differentiation of Power Series

A power series with a positive radius of convergence defines a function

f(x) =) an(x—xo)"
n=0

on its open interval of convergence. We say that the series represents f on the open
interval of convergence. A function f represented by a power series may be a familiar
elementary function as in (4.1.2)—(4.1.5); however, it often happens that f is not a familiar
function, so the series actually defines f.

The next theorem shows that a function represented by a power series has derivatives
of all orders on the open interval of convergence of the power series. The theorem also
provides power series representations of the derivatives.

Theorem 4.1.4 A power series

fx) =) an(x—x)"
n=0


http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Maclaurin.html
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with positive radius of convergence R has derivatives of all orders in its open interval of
convergence, and successive derivatives can be obtained by repeatedly differentiating term by

term; that is,

o0

f'(x) = Znan(x—Xo)nfla
f”(x) — Zn —Dan(x—x)™ 27
n=2
FR () = Z (m—k+1an(x—xo)"

Moreover, all of these series have the same radius of convergence R.

Example 4.1.2 Let f(x) = sinx. From (4.1.3),

o0 N x2n+1
) :nZ_O(_ S enr
From (4.1.6), the derivative of f(x)
o o d x2n+1 B ot o x21
T;(_ . [(2n+ 1)'] _;(_1) (2n)!”

which is the series (4.1.4) for cosx.

Uniqueness of Power Series

(4.1.6)

4.1.7)

-k, (4.1.8)

The next theorem shows that if f is defined by a power series in x — xo with a positive
radius of convergence, then the power series is the Taylor series of f about xy.

Theorem 4.1.5 If the power series

has a positive radius of convergence, then

£ (xg)

an = ;

n!

thatis, 37 an(x —xo)™ is the Taylor series of f about x.

(4.1.9)
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The next theorem lists two important properties of power series that follow from
Theorem 4.1.5.

Theorem 4.1.6

(@ If
D an(x—x0)" =) bnlx—xo)"
n=0 n=0

for all x in an open interval that contains xg, then an =by forn=0,1,2,....

b If
Z an(x —x0)" =0
n=0

for all x in an open interval that contains xg, then an =0forn=0,1,2,....

Shifting the Summation Index

In Definition 4.1.1 of a power series in x — X, the n-th term is a constant multiple of
(x —xp)™. This is not true in (4.1.6), (4.1.7), and (4.1.8), where the general terms are
constant multiples of (x —x¢)™ !, (x —x¢)™ 2, and (x — xo)™" K, respectively. However,
these series can all be rewritten so that their n-th terms are constant multiples of (x —x¢)™.
For example, letting n = k + 1 in the series in (4.1.6) yields

o0

/(x) = Y (k+ Daer1(x—xo)¥, (4.1.10)
k=0

where we start the new summation index k from zero so that the first term in (4.1.10)
(obtained by setting k = 0) is the same as the first term in (4.1.6) (obtained by setting
n = 1). However, the sum of a series is independent of the symbol used to denote the
summation index, just as the value of a definite integral is independent of the symbol
used to denote the variable of integration. Therefore we can replace k by n in (4.1.10) to

obtain
o0

f/(x) = > (n+ Danp1(x—xo)™, (4.1.11)
n=0
where the general term is a constant multiple of (x —xo)™.

It is not necessary to introduce the intermediate summation index k. We can obtain
(4.1.11) directly from (4.1.6) by replacing n by n + 1 in the general term of (4.1.6) and
subtracting 1 from the lower limit of (4.1.6). More generally, we use the following
procedure for shifting indices.
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Shifting the Summation Index in a Power Series

For any integer k, the power series

can be rewritten as
o0
mn
D> bakx—xo)™
n=ng—k

In words, replacing n by n + k in the general term and subtracting k from the lower
limit of summation leaves the series unchanged.

Example 4.1.3 Rewrite the power series from (4.1.7) and (4.1.8) so that the general term
in each is a constant multiple of (x —xo)™:

(a) in(n—l)ctn(x—x())“_2 (b) in(n—l)'~(n—k+ D) an(x —x)™ <.
n=k

n=2

Solution (a) Replacing n by n + 2 in the general term and subtracting 2 from the lower
limit of summation yields

D nn—Danlx—x)" =) (n+2)(n+1analx—x)"™
n=2 n=0

(b) Replacing n by n + k in the general term and subtracting k from the lower limit of
summation yields

Z nn—1)-- (n—k+1)an(x—xo)" * = Z (Mm+k)(n+k—1) - (n+1)ansk(x—x0)™.
n=k n=0

|
Example 4.1.4 Given that
f(x) = Z anx'",
n=0

write the function xf” as a power series in which the general term is a constant multiple
of x™.
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Solution From Theorem 4.1.4 with xo = 0,

Therefore
xf' (x Z nn—1)a,x"

Replacing n by n + 1 in the general term and subtracting 1 from the lower limit of
summation yields

o
xf’ (x E (M4 Dnanpx™
n=1
We can also write this as
o0
xf" (x E M+ Dnan1x™
n=0

since the first term in this last series is zero. However, we will see later that sometimes it
is useful to include zero terms at the beginning of a series. |

Linear Combinations of Power Series

If a power series is multiplied by a constant, then the constant can be placed inside the

summation; that is,
Cc E Cln X—XO E C(In X—XQ

Two power series

o0 oo

f(x) = Z an(x —%xp)" and g(x) = Z bn(x —xg)™

with positive radii of convergence can be added term by term at points common to their
open intervals of convergence; thus, if the first series converges for [x — xo| < R; and the
second converges for [x — xg| < Rg, then

Z an+bn *XO)n

for [x — x| < R, where R is the smaller of R; and Ry. More generally, linear combinations
of power series can be formed term by term; for example,

0
le( + C2f Z C1an + chn)(x — Xo)n
n=0
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Example 4.1.5 Find the Maclaurin series for cosh x as a linear combination of the Maclau-

rin series for e* and e *.

Solution By definition,

1
h — X X
coshx 26 +2€
Since
X - Xn X - TLXn
e :ZT and e :Z(—l) o
n=0 n=0
it follows that
o0 1 o n
coshx = ) S+ (=DM (4.1.12)
n=0
Since

1[1 F(—1)M = 1 ifn =2m, an even integer,
2 - | 0 ifn=2m+1, an odd integer,

we can rewrite (4.1.12) more simply as
o0 2m

coshx = Z (Sim)l

This result is valid on (—o0, 00), since this is the open interval of convergence of the
Maclaurin series for e* and e™*. [ |

Example 4.1.6 Suppose
y= Z anx™
n=0

on an open interval I that contains the origin.
(a) Express
(2—x)y" +2y

as a power series in x on L.

(b) Use the result of (a) to find necessary and sufficient conditions on the coefficients
{an} for y to be a solution of the homogeneous equation

2—x)y"+2y=0 (4.1.13)

on L.
Solution (a) From (4.1.7) with xg = 0,

o0
y” = Z nm—1ax™2.
n=2
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Therefore

2—x)y"+2y = 2y’ —xy' 42y
oo

= i 2nn—1)anx™™ Z —Dapx™ ' + Z 2anx™.
n=2

n=2 n=0
(4.1.14)
To combine the three series we shift indices in the first two to make their general terms
constant multiples of x™; thus,

Z —Danx™ %= 3 2(n+2)(n+Danx" (4.1.15)
n=2 n=0
and
0 o
Z nn—1lax" 1= Z (n+1)nanp1x™. (4.1.16)
= n=1

Notice that we can add a zero term to the series in (4.1.16) by changing the lower index of
summation so that when we substitute (4.1.15) and (4.1.16) into (4.1.14), all three series
will start with n = 0. The result is then

ee]

2—x)y" +2y = Z 2Mm+2)(n+ Danse — M+ Dnany + 2an]x™. (4.1.17)

n=0

(b) From (4.1.17) we see that y satisfies (4.1.13) on [ if
2n+2)(n+1anye— M+ 1nans1 +2a, =0, n=0,1,2,.... (4.1.18)

Conversely, Theorem 4.1.6 (b) implies thatif y = >, anx™ satisfies (4.1.13) on I, then
(4.1.18) holds. [ |

Example 4.1.7 Suppose
oo
y= Z an(x—1)"
n=0
on an open interval I that contains xg = 1. Express the function
(1+xy” +2(x—1)%y’ +3y (4.1.19)

as a power seriesinx — 1 on L.

Solution Since we want a power series in x — 1, we rewrite the coefficient of y”
(4.1.19)as1+x =24 (x — 1), so (4.1.19) becomes

2y” 4+ (x — 1)y” +2(x — )%y’ + 3y.
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From (4.1.6) and (4.1.7) with xg = 1,
o0 [e¢]
y' = Znan(x—l)“*1 and y” = Zn(n—l)an(x—l)“ﬂ.
n=1 n—=

At this point, we have constructed four series.

2y” = Z n—1ap(x—1)"2
.
x—1)y”" = Z n—1an(x —1)" !
20x — 1%y’ = Z2nan — 1)+t

3y = Z 3ap(x—1)"

Before adding these four series, we shift indices in the first three so that their general
terms become constant multiples of (x — 1)™. The four series now look like this.

M@

20" = 2(n +2)(n + 1) ansolx — 1™ (4.1.20)
n=0

(x—1)y" = i M+ 1nan1(x—1" (4.1.21)
n=0

20x — 1)xy' = i 2m — Dan_1(x —1)™ (4.1.22)
n=1

y = i 3an(x—1)" (4.1.23)

3
g

Notice that we added initial zero terms to the series in (4.1.21) and (4.1.22). Adding
(4.1.20) — (4.1.23) yields

(IT+x)y”+2(x—1)%y"+3y = 29"+ (x—1y” +2(x—1)*y’ +3y

= i bn(x - 1)n
n=0

where

by = 4as+ 3ag, (4.1.24)
bn = 2Mn+2)(n+1apnsos+ n+1nans1 +2(n—1)an_1 + 3an, n > @.1.25)
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The formula (4.1.24) for by cannot be obtained by setting n = 0 in (4.1.25), since the
summation in (4.1.22) begins with n = 1, while those in (4.1.20), (4.1.21), and (4.1.23)
begin withn = 0. ]

4.1 Exercises

1. For each power series, use Theorem 4.1.3 to find the radius of convergence R. If
R > 0, find the open interval of convergence

@) (;T)I (x—1" (b)ZQ” n(x -2
n=0
< nl

@Y oo (d)Z M gy
n=0
= ™ 3n

@ ) (—1)m—x" Oy ————(x+7)"
nZ_O n! nZ_o4 tln+1)2

In Exercises 2—6 find a power series solution y(x) = Y o, anx™.

2. (2+x)y” +xy’ +3y 3. (1+3x%)y" +3x%y' —2y

4. (1+2Ay"+(2-3x)y +4y 5. (1+x)y” 4+ (2—x)y’+3y
(1+3x2)y” —2xy’ + 4y

Suppose y(x) = Y} 3_,an(x + 1)™ on an open interval that contains xg = —1.
Find a power series in x + 1 for

xy” + (4 +2x)y" + (2+x)y.

8. Suppose y(x) =Y o an(x —2)™ on an open interval that contains xg = 2. Find

a power series in x — 2 for

x2y” 4 2xy’ — 3xy.

9. Suppose the series } 7, anx™ converges on an open interval (—R, R), let r be an
arbitrary real number, and define

o0 o0
x) =x" E anx™ = E anx™t
n=0 n=0

on (0,R). Use Theorem 4.1.4 and the rule for differentiating the product of two
functions to show that

o0
y/(x) — Z TI+T anxn"‘r*l’

n=0

Mm+1r)n+r—1)anx™"2,

M ¢

y’(x) =

3
Q

o0
y M) = Zn—i—r Jn+r—1)--(n+r—klapx™k
n=0
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n (0,R).

In Exercises 10-15 let y be as defined in Exercise 9, and write the given expression in the form
X"y 2o bax™

10.

//

x2(1—x)y" +x(4 +x)y’ + (2 —x)y
11. x3(1 —i—x)y "+ x(14+2x)y’ — (4 + 6x)y
12, x2(1+x)y” —x(1 —6x —x2)y’ + (1 + 6x +x%)y
13, x2(1+3x)y” +x(2 + 12x +x2)y’ + 2x(3 + x)y
14, x2(1+2x2)y” +x(4 +2x2)y’ +2(1 —x?)y

x*(

15. x?(2+x2)y” +2x(5 +x*)y’ +2(3 —x?)y

4.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I

Many physical applications give rise to second order homogeneous linear differential
equations of the form

Pa(x)y” + P1(x)y’ 4 Po(x)y =0, (4.2.1)

where Py, P, and P are polynomials. Some examples are: Airy’s equation,

Y i XYy = 0,
which occurs in astronomy and quantum physics; Bessel’s equation,

Xy +xy’ + (x* — vy =0,
which occurs in problems displaying cylindrical symmetry such as diffraction of light
through a circular aperture, propagation of electromagnetic radiation through a coaxial
cable, and vibrations of a circular drum head; and Legendre’s equation,

(1—x2y"” —2xy’ 4+ a(x+ 1)y =0,

which occurs in problems displaying spherical symmetry (particularly in electromag-
netism). Usually the solutions of these types of equations cannot be expressed in terms
of familiar elementary functions. Therefore we will consider the problem of representing
solutions of (4.2.1) with series.

We assume throughout that Py, P; and Py have no common factors. Then we say
that xo is an ordinary point of (4.2.1) if Pa(xo) # 0, or a singular point if Pa(x¢) = 0. For
Legendre’s equation,

(1—xHy” —2xy’ + (e + 1)y = 0, (4.2.2)
xo = 1 and x¢p = —1 are singular points and all other points are ordinary points. For
Bessel’s equation,

Xy +xy’ + (x* =)y =0,
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xp = 0 is a singular point and all other points are ordinary points. If Py is a nonzero
constant as in Airy’s equation,
y" —xy =0, 4.2.3)

then every point is an ordinary point.

Since polynomials are continuous everywhere, P1 /P2 and Py/P2 are continuous at any
point x that is not a zero of Py. Therefore, if x( is an ordinary point of (4.2.1) and ag and
a; are arbitrary real numbers, then the initial value problem

Po(x)y” +Pi(x)y’ +Po(x)y =0, y(xo) =ao, Yy'(xo) =a (4.2.4)

has a unique solution on the largest open interval that contains x¢ and does not contain
any zeros of Py. To see this, we rewrite the differential equation in (4.2.4) as

" P (X) /
+ +
YT

and apply Theorem 3.1.1 with p = P;/P3 and q = P(/Ps. In this section and the next we
consider the problem of representing solutions of (4.2.1) by power series that converge
for values of x near an ordinary point xy.

We state the next theorem without proof.

Theorem 4.2.1 Suppose Py, P1, and Py are polynomials with no common factor and Py is not
identically zero. Let xo be a point such that Po(xo) # 0, and let p be the distance from xg to the
nearest zero of Py in the complex plane. (If Py is constant, then p = cc.) Then every solution of

P2 (x)y” + Pl (x)y’ + Po(X)y =0 (425)

can be represented by a power series

o0

Z (x —xo)" (4.2.6)

n=

that converges at least on the open interval (xo — p,xo + p). ( If P2 is nonconstant, so that
p is necessarily finite, then the open interval of convergence of (4.2.6) may be larger than
(xo — p,x0 + p). If Py is constant then p = oo and (xo — p,xo + p) = (—00, 0).)

We call (4.2.6) a power series solution in x — xq of (4.2.5). We will now develop a method
for finding power series solutions of (4.2.5). For this purpose we write (4.2.5) as Ly = 0,
where

Ly = sz " + Plyl + Poy. (4.2.7)

Theorem 4.2.1 implies that every solution of Ly = 0 on (xg — p, X + p) can be written

as o
y=) anlx—x)"
n=0
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Setting x = x in this series and in the series

o0
E nan(x —xo)™ !

shows that y(xo) = ap and y’(xo) = a;. Since every initial value problem (4.2.4) has a
unique solution, this means that ap and a; can be chosen arbitrarily, and as, as, ...are
uniquely determined by them.

To find as, as, ..., first write Py, P1, and P; in powers of x — x, then substitute

e¢]

n
U_z an(x —x0)",
n=0
0
§ n—1
TL(ln X—Xo ,
n=1

- Z n(n —an(x —xp)"
n=2

into (4.2.7) and collect the coefficients of like powers of x — x. This yields

Ly=) balx—xo)", (4.2.8)
n=0
where {bg, by,...,bn,...} are expressed in terms of {ag, ai, ..., an, ...} and the coeffi-

cients of Py, P1, and Py, written in powers of x —x¢. Since (4.2.8) and (a) of Theorem 4.1.6
imply that Ly = 0 if and only if b, = 0 for n > 0, all power series solutions in x — xg
of Ly = 0 can be obtained by choosing ay and a; arbitrarily and computing a», as, ...,
successively so that b, = 0 for n > 0. For simplicity, we call the power series obtained
this way the power series in x — xq for the general solution of Ly = 0, without explicitly
identifying the open interval of convergence of the series.

Example 4.2.1 Let x¢ be an arbitrary real number. Find the power series in x — xq for
the general solution of

y'+y=0. (4.2.9)
Solution Here
Ly=y"+y.
If -
y=3 anlx—xo)",
n=0
then

o

Z _1 an _XU)TLiQa

n=2
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SO o -
Ly = Z nmn—1an(x —xo)" 2+ Z an(x —x)™.
n=2 n=0
To collect coefficients of like powers of x — x(, we shift the summation index in the first
sum. This yields

Ly=) Mm+2)(n+Dan2x—x0)"+ Y anlx—x))" =) bnlx—x0)™,
n=0 n=0 n=0

with
bp=M+2)n+1)ani2 + an.

Therefore Ly = 0 if and only if

anio = | —dn n>0, (4.2.10)

n+2)(n+1)’

where ap and a; are arbitrary. Since the indices on the left and right sides of (4.2.10)
differ by two, we write (4.2.10) separately for n even (n =2m) and n odd (n =2m + 1).
This yields

—a2m

>0, 42.11
and
Qomas Gl m> 0. (4.2.12)
(2m+3)(2m+2)’

Computing the coefficients of the even powers of x — xo from (4.2.11) yields

a —_— _ﬂ
27 T2
as 1 ( ap ) ap
a = — - - = ;
4.3 4.3 2.1 4.3-2-1
a Ly 7_1( ap )7_ ag
6~ "6.5 6-5\4-3.2.1)  6-5-4-3-2-1
and, in general,
_(_1ym_90
asm = (—1) Gm)l m > 0. (4.2.13)

Computing the coefficients of the odd powers of x — x( from (4.2.12) yields

a = 7(11
57 3.2
as 1 ( ap ) ap
a5 = —_ = — —_ = s
5.4 5.4\ 3.2/ 5.4.3.2
a _ as _ 1 < ap > _ ap
T T 76 76\5.4.3.2) 7 7.6.5-4-3-2
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and, in general,
—1)™ay

=a s 4214
em+1) ™ ( )

Aom+1 =

Thus, the general solution of (4.2.9) can be written as

o0 o0
2m 2m+1
E m(x —x0)"™ + E A2m+1(x —xo) :
m=0 m=0

or, from (4.2.13) and (4.2.14), as

B (x—xo m (x —x0)FmHL
y=ao ) ()™ e @ Z P (4.2.15)
m=0
If we recall from calculus that
0 o 2m 0 _ 2m+1
2 )(23 = cos(x —xp) and ; (—1)"1% = sin(x — xg),
m=0 m=0
then (4.2.15) becomes
= ag cos(x —xg) + aj sin(x — xq),
which should look familiar. []

Equations like (4.2.10), (4.2.11), and (4.2.12), which define a given coefficient in the
sequence {an, } in terms of one or more coefficients with lesser indices are called recurrence
relations.

In the remainder of this section, we consider the problem of finding power series
solutions in x — xq for equations of the form

(1+ oc(x—xo)2)y” +B(x—x0)y’ +vyy =0. (4.2.16)

Many important equations that arise in applications are of this form with xg = 0,
including Legendre’s equation (4.2.2) and Airy’s equation (4.2.3).
Since
Pa(x) = 1+ alx —xo)°

in (4.2.16), the point x( is an ordinary point of (4.2.16), and Theorem 4.2.1 implies that
the solutions of (4.2.16) can be written as power series in x — x that converge on the
interval (xg — 1/\ﬂoc|,x0 + 1/\ﬂoc|) if x #£ 0, or on (—oo, 00) if « = 0. We will see that the
coefficients in these power series can be obtained by methods similar to the one used in
Example 4.2.1.

To simplify finding the coefficients, we introduce some notation for products:

S
[Ib5=bsbrir---bs if s>
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Thus,
7
] [ b5 = babsbabsbeby,
j=2
4
[12i+1) = M3)(5)(7)(9) = 945,
j=0
and
2
Hj2 — 22 — 4
j=2
We define

S
[[ps=1 if s<r
j=r

no matter what the form of b;.

Example 4.2.2 Find the power series in x for the general solution of

(14 2x%)y” +6xy’ +2y = 0.

Solution Here
Ly = (14 2x%)y” + 6xy’ + 2y.

If
0
= Z anx™
n=0
then
o0 o0
y' = Z na,x" !t and vy’ = Z nn—1anx™2,
n=1 =
SO

Ly = (1+2x% Z nmn—1)anx""2 +6x Z napx™ 142 Z anpx™

n=2 n=1 n=0
(ee] o0
= Zn( —Dax™ Z n—1)+6n+2 ax™
n=2

o0

o0
= Zn(n—l)anx“ 24 Z (n+1)%anx™.

197

4.2.17)

To collect coefficients of x™, we shift the summation index in the first sum. Ly is now

oo o0 o0
Z M+2)n+1aniox™+2 Z (n+1)2apx™ = Z bnx™,
n=0

n=0
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with
bn=M+2)(n+1anse+2n+1)2%a,, n=0.

To obtain solutions of (4.2.17), we set b,, = 0 for n > 0. This is equivalent to the

recurrence relation
n+1

n+2

Since the indices on the left and right differ by two, we write (4.2.18) separately for
n =2mand n = 2m + 1, as in Example 4.2.1. This yields

Anio = —2 an, mn=0. (4.2.18)

22111—1—1 2m+1

_ __2m+1 >0, 42.19
Ao2m 2 om + 202m ——— agm, M ( )
and
2m +2 m+1
ao2m+3 = —2ma2m+1 = —4ma2m+17 m > 0. (4220)

Computing the coefficients of even powers of x from (4.2.19) yields

1
Ay = _Ia(]a
w = S (3 1) 213,
4 = 9 2 — 9 1 0_12 0,
= _Dgq, 513 __1-3-5
6 = T3 T 3\ \1.2)7" T 12370
w o T T( 135\ 1357
8 7 4T T\ 12.3) Y T 12034 Y
In general,
mo(2j—1
o = (=B (4.221)

m!

(Note that (4.2.21) is correct for m = 0 because we defined ]_[?:1 b; = 1 for any b;.)
Computing the coefficients of odd powers of x from (4.2.20) yields

as = —4%a1,

as = —4§a3 = —4% (—4;) a; = 42%@,

a; = —4§a5:—4§<42;§) a; = — 3;??(11,
= e (Y 0k 2
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In general,
(—1)™4™m!

M om0 4222
Hjn;1(2] +1) ! ( )

Ao2m+1 =

From (4.2.21) and (4.2.22),

2j 4™ m!
) 1( ] 2m m: 2m—+1
Yy=ao E +ap 5 —) 1(2j+1)x )

is the power series in x for the general solution of (4.2.17). Since P2(x) = 1 + 2x*
has no real zeros, Theorem 3.1.1 implies that every solution of (4.2.17) is defined on
(—o0, o). However, since P2(41/1/2) = 0, Theorem 4.2.1 implies only that the power
series converges in (—1/ V2,1/y/2) for any choice of agp and a;.

The results in Examples 4.2.1 and 4.2.2 are consequences of the following general
theorem.

Theorem 4.2.2 The coefficients {a } in any solutiony = Y 37 an(x —xo)™ of
(14 alx—x0)*)y" +B(x—x0)y' +yy =0 (4.2.23)

satisfy the recurrence relation

. p(n)
Ant2 = mromTD an, n =0, (4.2.24)
where
rn)=ann—1)+pn+vy. (4.2.25)

Moreover, the coefficients of the even and odd powers of x — xo can be computed separately as

p(2m)
- > 422
ag2m+2 Gmt2@em 1) azm, m2=0 ( 6)

and

- r(2m+1)
(2m—+3)(2m+2

A2m+3 ) A2m+1, m > O, (4.2.27)

where ag and ay are arbitrary.

Proof Here
Ly = (1 + alx —x0)*)y” + B(x —xo)y’ + vy.

y=) anlx—x)",
n=0

If

then . o
y' = Z nan(x —xg)" ' and y” = Z nn —1)an(x —xg)™ 2.
n=1
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Hence,
Ly = Z nm—1Dan(x —xo)" 2+ Z lon(n —1) + B+ vyl an(x —xo)™
n=2 n=0
= ) nn—Danx—x)" 7+ ) pm)an(x—xo)",
n=2 n=0

from (4.2.25). To collect coefficients of powers of x — xo, we shift the summation index in
the first sum. This yields

o]

Ly = Z [(M+2)(n+ Dante +pn)anl (x —xo)™.

n=0
Thus, Ly = 0 if and only if
M+2)n+1ant2+pn)an, =0, n>=0,

which is equivalent to (4.2.24). Writing (4.2.24) separately for the cases where n = 2m
and n = 2m + 1 yields (4.2.26) and (4.2.27). [ |

Example 4.2.3 Find the power series in x — 1 for the general solution of
(2 +4x — 2%)y" —12(x — 1)y’ — 12y = 0. (4.2.28)
Solution We must first write the coefficient Py(x) = 2 + 4x — x? in powers of x — 1. To

do this, we write x = (x — 1) + 1 in P2(x) and then expand the terms, collecting powers
of x — 1; thus,

24+4x —2x2 = 2+44[(x—1)+1—2[(x—1)+ 1)
= 4—2(x—1)>2

Therefore we can rewrite (4.2.28) as
(4—2(x—1)*)y” —12(x — 1)y’ — 12y =0,
or, equivalently,
<1 . %(x— 1)2) " —3(x— 1)y’ — 3y = 0.
This is of the form (4.2.23) with « = —1/2, f = —3, and 'y = —3. Therefore, from (4.2.25)

. nn-1) __(n+2)(n+3)
p(n)——T—Bn—S— —
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Hence, Theorem 4.2.2 implies that

a = — p(2m) a
ame2 2m+2)2m+1) ™
(2m+2)(2m+3)a . 2m+3 a m> 0
22m+2)2m+1) 2™ 22m+1) 0™ 7
and
a _ p(2m+1) a
ms 2m+3)2m+2) ™!
B (2m—|—3)(2m+4)a o om+2 a m>0
~ o22m+3)em+2) T o(m 1) 2mtb =
We leave it to you to show that
2m+1 m-+1

dom = ap and agmy1 = a;, mz=0,

2m 2m

which implies that the power series in x — 1 for the general solution of (4.2.28) is

y_aOZQm—i-l 2m—|—alz 2m+1 .

In the examples considered so far we were able to express the coefficients in the power
series solutions by using summation notation. In some cases this is impossible, and
we must settle for computing a finite number of terms in the series. The next example
illustrates this with an initial value problem.

Example 4.2.4 Compute ag, a1, ..., a7 in the series solution y = Y 7, anx™ of the

initial value problem

n=0
(1+23)y” +10xy’ +8y =0, y(0)=2, y'(0)=-3. (4.2.29)

Solution Since o« =2, f = 10, and y = 8 in (4.2.29),
pm)=2nn—1)+10m+8=2(n+2)%

Therefore
(n+2)? = o H2
m+2)n+1) " n4+1 Y

Writing this equation separately for n = 2m and n = 2m + 1 yields

An4o = — n=0.

(2m +2) m+1
= 22— =—4 >0 4.2.30
a2m+2 om+ 1 dom om & 1a2m, m ( )

and
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2m + 3 2m+ 3

- ma2m+1 = _T—Q—la2m+1’ m = 0. (4.2.31)

a2m+-3

From the initial condition for the function, we start with ap = 2 and then we compute
as, a4, and ag from (4.2.30):

1
Ay = —4 I = —8,
2 64
= —4 —(— =
ay 3( 8) 3 y
3 /64 256
g = A=) =-22
5\ 3 5
Based on the initial condition for the derivative of the function, we start with a; = —3
and compute a3, a5 and ay from (4.2.31):
3
a; = —(-3) =9,
5 45
as = —59 = —?,
0 = () _105
T 3\ 2) " 2

Therefore the solution of (4.2.29) is

44 455 2 1
04 4 455 26,6, 1057

y:2—3x—8x2+9x3+§x 2x 5x 5 + -

4.2 Exercises

In Exercises 1 -8 find the power series in x for the general solution.

1. (1+x3)y”"+6xy’+6y=0 2. (1+x*)y”+2xy’ —2y=0

3. (14+x%)y”" —8xy’' +20y=0 4. (1—x*)y” —8xy' —12y=0
2\, 1 / _ 1

5. (I1+2x7)y" +Txy’+2y=0 6. (1+x2)g”+2xy’+1y20

7. 1—x2)y"—5xy’'—4y=0 8. (1+x*)y” —10xy’+28y =0
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In Exercises 9 13 find the power series in x — xq for the general solution.

9. y'—y=0; x=130. y’" - (x =3y —y =
0; x0=3

11 (1 —4x+2x2)y" +10(x —1)y'+6y =0; xo=1
12, (11 —8x+ 2x%)y” —16(x — 2)y’ + 36y =0; xo =2
13. (5+6x+3x%)y”" +9x+ 1)y’ +3y=0; xo=-1
In Exercises 14 19 find ay, ..., an for N at least 5 in the power seriesy = Y 1 an(x—xo)™
for the solution of the initial value problem. Take x to be the point where the initial conditions
are imposed.
14. (x> —4)y” —xy’'—3y=0, y0)=-1, y'(0)=2
15. y”"+(x—3)y'+3y=0, yB3)=-2, y'(3)=3
16. (5—6x+3x%)y" "+ (x—1)y' +12y=0, y(l)=-1, y'(1)=1
17. (%2 —24x+37y" +y=0, yi3)=4, y'(3)=-6
18. (x> —8x+14)y” —8(x—4)y’ +20y =0, y4) =3, y'(4) =—4
19. (22 +4x+5)y”" —20(x+ 1)y’ +60y =0, y(—1)=3, y'(—1)=-3

4.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II

In this section we continue to find series solutions
o0
n
y=) an(x—xo)
n=0

of initial value problems
P2(x)y” + Pi(x)y" + Po(x)y =0, ylxo) =ao, y'(xo) =au, (43.1)

where Py, Py, and P; are polynomials and P>(x) # 0, so x¢ is an ordinary point of (4.3.1).
However, here we consider cases where the differential equation in (4.3.1) is not of the
form

(1+ alx—x0)%)y” + B(x —xo)y’ +vy =0,

so Theorem 4.2.2 does not apply and the computation of the coefficients {a,, } is more
complicated. For the equations considered here it is difficult or impossible to obtain an
explicit formula for a, in terms of n. Nevertheless, we can calculate as many coefficients
as we wish. We provide three examples to illustrate this.
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Example 4.3.1 Find the coefficients ay, ..., a5 in the series solutiony = } 7, anx™ of
the initial value problem

(I+x+22y"+ 1 +7)y’ +2y=0, y(0)=-1, y'(0)=-2. (4.3.2)

Solution Here
Ly =(1+x+2x}y" + (14 ™)y’ + 2.

The zeros (—1+1v/7)/4 of Py(x) = 1+x+2x? have absolute value 1/1/2, so Theorem 4.2.2
implies that the series solution converges to the solution of (4.3.2) on (—1//2,1/v/2).
Since

o0 0 o0
y= E anx™, y' = E na,x™ ! and y” = E nm—1)anx™ 2,
n=0 n=1 n=2

0 0 o
Ly = Z nm—1)anx"2 + Z nn—1apnx™ 142 Z nn—1)axm
n=2 n=2 n=2

o0 o0 o0
+ Z nanx™ 147 Z napx™ + 2 Z anx™.
n=1 n=1 n=0

Shifting indices so the general term in each series is a constant multiple of x™ yields

o0 o0 o0
Ly = Z M4+2)(n+1)anox™+ Z M+ 1nan 1 x™+2 Z nmn—1)a,x"
n=0 n=0 n=0
o0 o0 o0 o0
+ Z (n+1anix™+7 Z nanx™ + 2 Z anx" = Z bnx™,
n=0 n=0 n=0 n=0

where
br=Mm+2)n+Danie+ Mm+1D%an,1+M+2)2n+ ay.

Thereforey = Y o

n—po Anx™ is a solution of Ly = 0 if and only if

n+1 n+1

2 = e I T

an, n = 0. (4.3.3)

From the initial conditions in (4.3.2), ap = —1 and a; = —2. Setting n = 0in (4.3.3) yields

1 1
dy =—5a —dp = —5(—2) —(=1) =2
Setting n = 1 in (4.3.3) yields
2 3 2 3 5
a3 =—02— ;a1 =—5(2) —5(=2) = .

3 2 3 2 3
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We leave it to you to compute a4 and a5 from (4.3.3) and show that

5 55 3
—1_9 92 1 253 4 5
y x+x+3x 12x+4x+
| ]
Example 4.3.2 Find the coefficients ay, ..., a5 in the series solution
y=) an(x+1)"
n=0
of the initial value problem
B+xy”"+(1+2x)y' —(2—x)y=0, y-1)=2, y'(-1)=-3. (4.3.4)

Solution Since the desired series is in powers of x+1 we rewrite the differential equation
in (4.3.4) as Ly = 0, with

Ly=2+(x+1)y"—1—-2(x+1)y" —B—(x+1))y.

Since

y= Z an(x+1)", y' = Z na,(x+1)"! and y” = Zn(n—l)an(x—i—l)“*2

n=1 n=2

n=2

o0 o0
QZn —1Dan(x+1)™" 2+Zn(n—1)an(x+1)“_1
n=2

(oe]
Z nan(x +1)"" 1+2Znanx—|—1)

n=1

oo o0
=3 an(x+ 1M+ ) an(x+1)"H
n=0

n=0
Shifting indices so that the general term in each series is a constant multiple of (x + 1)™
yields

o0 (0¢]

Ly = 2) (+2)n+Daneax+ D"+ Y (n+Dnana(x+1)"

n=0 n=0

[e¢] [e¢]

— Z(n—i— Dang1(x+1)™+ Z(Qn—i})an(x—i- D™+ Z an_1(x+1)"

n=0 n=0 n=1

= Z bn(x+1)"
n=0
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where
bo = 402 —a; — 3(10

and
brn=2Mn+2)(n+ Danso + (M2 —1any +2n—3)an +an_1, n>1.

Thereforey = ) 5 an(x +1)™ is a solution of Ly = 0 if and only if

1
ap = Z(al + 3ag) (4.3.5)
and
1 2
=_ —1 2n —3 _ > 1. 4.3.6
2 = o T T ) [(M*—Dan+2n—3)an+an-1], n (4.3.6)
From the initial conditions in (4.3.4), ap = 2 and a; = —3. We leave it to you to compute

as, ..., as with (4.3.5) and (4.3.6) and show that the solution of (4.3.4) is

_ 3 2 O 3, 7 o 1 5
y=-2 3(x+1)—|—4(x+1) 12(x+1) +48(x—|—1) 60(x+1) + e

Example 4.3.3 Find the coefficients ay, ..., a5 in the series solutiony = Y 7, anx™ of
the initial value problem

Yy’ +3xy' + 4+ 2%y =0, y(0)=2, y’(0)=-3. (4.3.7)

Solution Here
Ly =y” +3xy’ + (4 +2x*)y.

Since

o0 o0 o0
y= E anx™, y' = E na,x™ 1, and y” = E nn—1ax" 2,

o0 o o0 o0
Ly = Z nmn—1Danx™2+3 Z nax™ +4 Z Anx™ +2 Z anx" 2,
n=2 n=1 n=0 n=0

Shifting indices so that the general term in each series is a constant multiple of x™ yields
Ly as

o0

(e 9] o0 o
M+2)m+1anox™ + Z (Bn+4)anx™ +2 Z Ap_9oX" = Z bnx™
n=0

n=0 n=0 n=2
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where
bg = 2as +4ay, by =6asz+ 7ay,
and
bn=M+2)n+1Danso+ Bn+4)an +2an_2, n=2.
Thereforey = ) 7, anx™ is a solution of Ly = 0 if and only if
7
ao = —2(10, as = —6a1, (438)
and )
=——F (3 4 2an— > 2. 439
2 =~ T [(Bn+4)an +2an—2], n (4.3.9)
From the initial conditions in (4.3.7), ap = 2 and a; = —3. We leave it to you to compute
as, ..., as with (4.3.8) and (4.3.9) and show that the solution of (4.3.7) is
7 79
o oy a2 '3 4_ M5
Yy =2—3x—4x +2X + 3x 4OX+
|

4.3 Exercises

In Exercises 1-12 find the coefficients ay,..., an for N at least 5 in the series solution

Yy = ¥, anx™ of the initial value problem.

1. (1+3x)y”"+xy’+2y=0, y(0)=2, y'(0)=-3

2. (T+x+22y"+(2+8)y +4y=0, y(0)=-1, y’(0)=2
3. (1—-2x®)y"+(2—6x)y'—2y=0, y(0)=1, y’(0)=0

4. (1+x+3x2)y"+ 2+ 15x)y’+12y =0, y(0)=0, y'(0)=1
5. 2+x)y"+(1+x)y'+3y=0, y(0)=4, y'(0)=3

6. (3+3x+xy”"+(6+4x)y’+2y=0, y0)=7, y'(0)=3
7. A+x)y"+2+x)y'+2y=0, y0)=2, y'(0)=5

8. (2—3x+23%)y”"—(4—6x)y’ +2y=0, y(1)=1, y'(1)=-1
9. (Bx+2x2)y” +10(1+x)y' +8y =0, y(-1)=1, y'(-1)=-1
10. (1—x+x2y”"—(1—4x)y’+2y=0, y(1)=2, y'(1)=-1
11. 2+x)y"+2+x)y"+y=0, y(-1)=-2, y'(-1)=3

12. x*y”" —(6—-7x)y' +8y =0, y(l)=1, y'(1)=-2

In Exercises 13-22 find the coefficients ay, ..., aN for N at least 5 in the series solution

0]

-3 el

n=

of the initial value problem. Take x¢ to be the point where the initial conditions are imposed.



208

Chapter 4 Series Solutions of Second Order Equations

13. 24+4x)y”" —4y’'—(6+4x)y =0, y(0)=2, y'(0)=-7

4. (1+2x)y"—(1—-2x)y'—(3—2x)y=0, y(l)=1, y'(1)=-2
15. (5+2x)y —y' ' +B+x)y=0, y(-2)=2, y'(-2)=-1

16. (4+x)y”"—(4+2x)y " +(6+x)y=0, y(-3)=2, y'(-3)=-2
17. 24+ 3x)y”" —xy’'+2xy =0, y(0)=-1, y'(0)=2

18. (3+2x)y”+3y —xy=0, y-1)=2, y'(-1)=-3

19. 3+2x)y”" -3y’ —(2+x)y=0, y(-2)=-2, y'(-2)=3

20. (10—2x)y” +(1+x)y=0, y(2) =2, y'(2)=-4

2. (7T+x)y"+ 8+ 2x)y' '+ (5+x)y=0, y(—4) =1, y'(-4) =2
22, (6+4x)y”"+(1+2x)y=0, y(-1)=-1, y'(-1)=2

In Exercises 23-29 find the coefficients ay, ...

Yy = > ¥, anx™ of the initial value problem.

23. y”"+2xy'+(3+2x2)y =0, y(0)=
24. y" —3xy'+(5+2xHy =0, y(0) =
25. y” +5xy’ —(3—x%)y=0, y(0)=6
26. y”"—2xy’' —(2+3x*)y =0, y(0)=
27. y” —3xy'+(2+4x3)y =0, y(0)=
28. 2y" +5xy’ + (4+2x%)y =0, y(0)

29. 3y”"+2xy’+(4—xy=0, y(0) =

, an for N at least 5 in the series solution

L, y'(0)=-2
L y'(0) =-2
, y'(0)=-2
2, y'(0)=-5
3, y'(0)=6
=3, y'(0)=-2
-2, y'(0)=
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4.4 SERIES SOLUTIONS NEAR A SINGULAR POINT

We continue to study equations of the form
Pa(x)y” +P1(x)y’ + Po(x)y =0 4.4.1)

where Py, Py, and P, are polynomials, but the emphasis will be different from that of
Sections 4.2 and 4.3, where we obtained solutions of (4.4.1) near an ordinary point x in
the form of power series in x—Xy. In this section, we consider cases where x is a singular
point of (4.4.1) (that is, where P(x¢) = 0). The solutions of such equations cannot in
general be represented by power series in x — xo. Nevertheless, it is often necessary in
physical applications to study the behavior of solutions of (4.4.1) near a singular point.
Although this can be difficult in the absence of some sort of assumption on the nature
of the singular point, equations that satisfy the requirements of the next definition can
be solved by series methods discussed in the next three sections. Fortunately, many
equations arising in applications satisfy these requirements.

Definition 4.4.1 Let Py, P, and P; be polynomials with no common factor and suppose
P2(x0) = 0. Then xq is a regular singular point of the equation

Pa(x)y" + P1(x)y’ + Po(x)y =0 (4.4.2)
if (4.4.2) can be written as
(x —x0)?A(x)y” + (x — x0)B(x)y’ + C(x)y =0 (4.4.3)

where A, B, and C are polynomials and A(xq) # 0; otherwise, xg is an irreqular singular
point of (4.4.2).

Example 4.4.1 Bessel’s equation,

Xy +xy’ + (x2—v3y =0, (4.4.4)

has the singular point xg = 0. Since this equation is of the form (4.4.3) with xy = 0,
A(x) =1,B(x) = 1,and C(x) = x? — v?, it follows that x¢ = 0 is a regular singular point
of (4.4.4).

Example 4.4.2 Legendre’s equation,
(1—x%)y" —2xy’ + a(x + 1)y = 0, (4.4.5)
has the singular points xg = 1. Mutiplying through by 1 — x yields
(x— 1) (x+Dy” +2x(x — 1)y’ — a(ac+ 1) (x — 1)y =0,

which is of the form (4.4.3) with xg = 1, A(x) = x+ 1, B(x) = 2x, and C(x) = —a(x +
1)(x — 1). Therefore xg = 1 is a regular singular point of (4.4.5). We leave it to you to
show that xg = —1 is also a regular singular point of (4.4.5).
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Example 4.4.3 The equation

XBy"—i—xy'—i—y -0

has an irregular singular point at xo = 0. (Verify.)

|

For convenience we restrict our attention to the case where xy = 0 is a regular singular

point of (4.4.2). This is not really a restriction, since if xo # 0 is a regular singular point of

(4.4.2) then introducing the new independent variable t = x — X and the new unknown

Y(t) = y(t + xo) leads to a differential equation with polynomial coefficients that has a
regular singular point at to = 0.

Euler Equations

The simplest kind of equation with a regular singular point at xo = 0 is the Euler
equation, defined as follows.

Definition 4.4.2 An Euler equation is an equation that can be written in the form

ax®y” +bxy’ +cy =0, (4.4.6)

where a, b, and c are real constants and a # 0.

Theorem 3.1.1 implies that (4.4.6) has solutions defined on (0, c0) and (—o0, 0), since
(4.4.6) can be rewritten as

b C
ay”—l— ;y/'i‘ @y =0.

For convenience we restrict our attention to the interval (0,c0). The key to finding
solutions on (0, o) is that if x > 0 then x" is defined as a real-valued function on (0, co)
for all values of 1, and substituting y = x" into (4.4.6) produces

ax?(x")” +bx(x") +cx" = ax®r(r—1)x" 2+ bxrx" !+ ex”

= [lar(r—1)+br+clx". (4.4.7)

The polynomial
p(r)=ar(r—1)+br+c

is called the indicial polynomial of (4.4.6), and p(r) = 0 is its indicial equation. From (4.4.7)
we can see that y = x" is a solution of (4.4.6) on (0, co) if and only if p(r) = 0. Therefore,
if the indicial equation has distinct real roots r; and 2 then y; = x™ and yo = x™ form
a fundamental set of solutions of (4.4.6) on (0, 00), since y2/y; = x"2~ ! is nonconstant.
In this case

y=c1x"t + cox™?

is the general solution of (4.4.6) on (0, co).


http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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Example 4.4.4 Find the general solution of
Xy —xy’ =8y =0 (4.4.8)

on (0, co0).

Solution The indicial polynomial p(r) of (4.4.8) is

rr—1)—r—8=(r—4)(r+2).

2

Therefore y; = x* and y, = x 2 are solutions of (4.4.8) on (0, 00), and its general solution

on (0,00) is
Yy = 01x4 + %
|
Example 4.4.5 Find the general solution of
6x%y” + 5%y’ —y =0 (4.4.9)
on (0, co).
Solution The indicial polynomial p(r) of (4.4.9) is
6r(r—1)+5r—1=(2r—1)(3r+1).
Therefore the general solution of (4.4.9) on (0, c0) is
y = cix/2 4 cox /3,
]
If the indicial equation has a repeated root 11, then y; = x™ is a solution of
ax®y” +bxy’ +cy =0, (4.4.10)

on (0, 00), but (4.4.10) has no other solution of the form y = x". If the indicial equation
has complex conjugate zeros then (4.4.10) has no real-valued solutions of the formy = x".
Fortunately we can use the results of Section 3.2 for constant coefficient equations to
solve (4.4.10) in any case.

Theorem 4.4.3 Suppose the roots of the indicial equation
ar(r—1)4+br+c=0 (4.4.11)
are v and ro. Then the general solution of the Euler equation

ax®y” +bxy’ +cy =0 (4.4.12)
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on (0,00) is
y = ci1x"t 4 cox'? if vy and ro are distinct real numbers ;
y = x"'(ci+celnx)ifry =19,
y = xM [e1 cos (wInx) + ¢y sin (wInx)] ifri, 72 = A £ iw with w > 0.

Proof We first show thaty = y(x) satisfies (4.4.12) on (0, c0) if and only if Y(t) = y(e")
satisfies the constant coefficient equation
azy

ay
— +(b—a)—+cY = 441
adt2+( a)dt—l—c 0 ( 3)

on (—oo, 00). To do this, it is convenient to write x = e*, or, equivalently, t = Inx; thus,
Y(t) = y(x), where x = e'. From the chain rule,

dy dydx
dt  dxdt
and, since
dx _ et =x
dt ’
it follows that . d
== xdii. (4.4.14)
Differentiating this with respect to t and using the chain rule again yields the second
derivative as
d /dyy d dy
i(a) = wla)

dxdy | dy dx
dt dx dx? dt
dy | ,d%y (

= X7 +X

dx dx2

since % =X
at )’

From this and (4.4.14),
oy _ &Y ay
dx?  dt?  dt’
Substituting this and (4.4.14) into (4.4.12) yields (4.4.13). Since (4.4.11) is the character-
istic equation of (4.4.13), Theorem 3.2.1 implies that the general solution of (4.4.13) on

(—o0, 00) is

Y(t) = cie"t 4+ cqoe™tif 1 and o are distinct real numbers;
Y(t) = eY(cq +cot)ifry =1y
Y(t) = eM(cjcoswt+cosinwt) if 1y, 1o = A & iw with w # 0.

Since Y(t) = y(e'), substituting t = In x in the last three equations shows that the general
solution of (4.4.12) on (0, co) has the form stated in the theorem. [ |
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Example 4.4.6 Find the general solution of
x*y"” —5xy’ +9y =0 (4.4.15)

on (0, c0).

Solution The indicial polynomial p(r) of (4.4.15) is
rr—1)—=5r4+9=(r—3)>2%
Therefore the general solution of (4.4.15) on (0, co) is

y=x3(c; +calnx).

|
Example 4.4.7 Find the general solution of
xy" +3xy’+2y =0 (4.4.16)
on (0, c0).
Solution The indicial polynomial p(r) of (4.4.16) is
rr—1)4+3r+2=(r+1)2+1.
The roots of the indicial equation are r = —1 £ i and the general solution of (4.4.16) on
(0,00) is
y= % [c1 cos(Inx) + cosin(Inx)].
|

4.4 Exercises

In Exercises 1-18 find the general solution of the given Euler equation on (0, co).

1. x%y” +7xy’ +8y =0 2. Xy —Txy' +7y =0
3. X%y’ —xy' +y=0 4 Xy 45y 4y =0
5 x%y” +xy’+y=0 6. x*y” —3xy’+13y =0

7. Xy +3xy’ — 3y =0 8. 12x%y" —5xy” +6y =0
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11.

13.

15.

17.
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Ity 4+ 8y’ +y =0 10. 3x*y” —xy' +y=0
2x2y" —3xy’ +2y =0 12. x%y” +3xy’ +5y =0
X2y + 15xy’ +y =0 14. x*y" —xy’' +10y=0
x?y"” —6y =0 16. 2x*y” +3xy’ —y =0

x2y” —3xy’ +4y =0 18. 2x%y” +10xy’ +9y =0



CHAPTER B

LAPLACE TRANSFORMS

IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of
the basic problem solving techniques in mathematics: transform a difficult problem into
an easier one, solve the latter, and then use its solution to obtain a solution of the original
problem. The method discussed here transforms an initial value problem for a constant
coefficient equation into an algebraic equation whose solution can then be used to solve
the initial value problem. In some cases this method is merely an alternative procedure
for solving problems that can be solved equally well by methods that we considered
previously; however, in other cases the method of Laplace transforms is more efficient
than the methods previously discussed. This is especially true in physical problems
dealing with discontinuous forcing functions.

SECTION 8.1 defines the Laplace transform and developes its properties.

SECTION 8.2 deals with the problem of finding a function that has a given Laplace
transform.

SECTION 8.3 applies the Laplace transform to solve initial value problems for constant
coefficient second order differential equations on (0, co).

SECTION 8.4 introduces the unit step function.

SECTION 8.5 uses the unit step function to solve constant coefficient equations with
piecewise continuous forcing functions.

SECTION 8.6 deals with the convolution theorem, an important theoretical property of
the Laplace transform.

SECTION 8.7 introduces the idea of impulsive force, and treats constant coefficient
equations with impulsive forcing functions.

SECTION 8.8 is a brief table of Laplace transforms.

5.1 INTRODUCTION TO THE LAPLACE TRANSFORM

215
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Definition of the Laplace Transform

To define the Laplace transform, we first recall the definition of an improper integral. If
g is integrable over the interval [a, T] for every T > a, then the improper integral of g over
la, 0o0) is defined as

00 T
| “otrar=tim | grorae (5.1.1)

a T—o0 Jq

We say that the improper integral converges if the limit in (5.1.1) exists; otherwise, we say
that the improper integral diverges or does not exist. Here’s the definition of the Laplace
transform of a function f.

Definition 5.1.1 Let f be defined for t > 0 and let s be a real number. Then the Laplace
transform of f is the function F defined by

F(s) = J:O e Stf(t) dt, (5.1.2)

for those values of s for which the improper integral converges.

It is important to keep in mind that the variable of integration in (5.1.2) is t, while s
is a parameter independent of t. We use t as the independent variable for f because in
applications the Laplace transform is usually applied to functions of time.

The Laplace transform can be viewed as an operator £ that transforms the function
f = f(t) into the function F = F(s). Thus, (5.1.2) can be expressed as

F=L(f).
The functions f and F form a transform pair, which we’ll sometimes denote by
f(t) <> F(s).

It can be shown that if F(s) is defined for s = sy then it’s defined for all s > sg (Exer-
cise 14(b)).

Computation of Some Simple Laplace Transforms

Example 5.1.1 Find the Laplace transform of f(t) = 1.

Solution From (5.1.2) with f(t) =1,

00 T
F(s) :J e Stdt= lim J e Stdt.
0 T—oo 0

If s # 0 then

S (5.1.3)
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Therefore

T 1 0
limJ estat={ 3 579 (5.1.4)
T—o0Jo 0o, s<0.

If s = 0 the integrand reduces to the constant 1, and
T T
lim J 1dt = lim J 1dt= lim T = oo.
T—o0 Jg T—o0 Jg T—oo
Therefore F(0) is undefined, and
00 —st 1
F(s) = e Stdt=-, s>0.
0 S

This result can be written in operator notation as

or as the transform pair

1< -, s>0.
s

REMARK: It is convenient to combine the steps of integrating from 0 to T and letting
T — oo. Therefore, instead of writing (5.1.3) and (5.1.4) as separate steps we write

1
Sl -, s>0,
= S
0 0o, s<0.

We'll follow this practice throughout this chapter.

o 1
J e Stdt = ——e St
0 S

Example 5.1.2 Find the Laplace transform of f(t) = t.

Solution From (5.1.2) with f(t) =t,

o0
F(s) = J e Sttdt. (5.1.5)
0
If s # 0, integrating by parts yields
o0 t —st |0 1 0 t 1 i
J e sttdt = —— +J e_Stdt:—[+g] e st
0 S o SJo s S 0

1
_ 57, S > 07
oo, s < 0.
If s = 0, the integral in (5.1.5) becomes

00 t2
J tdt =—
0 2

00
= OQ.
0
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Therefore F(0) is undefined and

1
F(S) = ?7
This result can also be written as
1
or as the transform pair
1
ter 5,

Example 5.1.3 Find the Laplace transform of f(t) = e®t, where a is a constant.

Solution From (5.1.2) with f(t) =

However, we know from Example 5.1.1 that

o 1
J e Stdt==, s>0.
0
Replacing s by s — a here shows that
1
F(s) = s>a
s—a
This can also be written as
1
L(e)=——, s>a, or e*t &
s—a

s > 0.

Example 5.1.4 Find the Laplace transforms of f(t) = sin wt and g(t) = cos wt, where w

is a constant.

Solution Define

F(s) :J e S'sinwtdt

and

G(s) :J e St cos wt dt.

(5.1.6)

(5.1.7)
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If s > 0, integrating (5.1.6) by parts yields

e st 0 w [*®
F(s) = — sinwt‘ + J e St cos wt dt,
S 0 S Jo

SO w
F(s) = ?G(s). (5.1.8)

If s > 0, integrating (5.1.7) by parts yields

—st s Wt [ o0
G(s) = _ﬂ‘ — wJ e Stsin wt dt,
S 0 S Jo
SO .
G(s) = — — F(s).
s s

Now substitute from (5.1.8) into this to obtain
2

1 w
G(s) = - — —Gls).
s s
Solving this for G(s) yields
3
G(S) = m7 s > 0.
This and (5.1.8) imply that
F(s) = L s>0
$2 + w?’ ’

Tables of Laplace transforms

Extensive tables of Laplace transforms have been compiled and are commonly used in
applications. The brief table of Laplace transforms in the Appendix will be adequate for
our purposes.

Example 5.1.5 Use the table of Laplace transforms to find £(t3e%t).

Solution The table includes the transform pair

!
n,at n
te 4 m
Setting n = 3 and a = 4 here yields
!
L(t3ett) = d 6 .

(s—4)t  (s—4)

We’ll sometimes write Laplace transforms of specific functions without explicitly
stating how they are obtained. In such cases you should refer to the table of Laplace
transforms.

Linearity of the Laplace Transform

The next theorem presents an important property of the Laplace transform.
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Theorem 5.1.2 [Linearity Property] Suppose L(f;) is defined for s > si, 1 < i< n). Let so be
the largest of the numbers sy, sa, ...,Sn, and let cy, ca,..., cn be constants. Then

L(cify +cafe + -+ confn) = a1 L(f1) + c2Ll(fa) + - - - + cnL(fn) for s > so.

Proof We give the proof for the case where n = 2. If s > s then

Llerfy +cafs) = L et (erfi(t) + cafa(t))) dt

= ClJ eStfl(t)dt—i-CzJ e Sty (t) dt
0 0

= Clﬁ(fl) + Cgﬁ(fg).

Example 5.1.6 Use Theorem 5.1.2 and the known Laplace transform

1
L (eat) —
s—a
to find £(cosh bt) (b # 0).
Solution By definition,
bt | ,—bt
cosh bt = e te
Therefore
Lot , I bt
L(coshbt) = £ ie + 56
1 1
= iﬁ(ebt) + §L(e_bt) (linearity property) (5.1.9)
1 1 1 1

25— b 2510

where the first transform on the right is defined for s > b and the second for s > —b;
hence, both are defined for s > |b|. Simplifying the last expression in (5.1.9) yields

L(coshbt) = s > |bl.

S
32 _ b2 )
The First Shifting Theorem

The next theorem enables us to start with known transform pairs and derive others. (For
other results of this kind, see Exercises 6 and 13.)

Theorem 5.1.3 [First Shifting Theorem] If
F(s) = J e SYf(t) dt (5.1.10)
0

is the Laplace transform of f(t) for s > so, then F(s — a) is the Laplace transform of e**f(t) for
$>So+ a.
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PROOF. Replacing s by s — a in (5.1.10) yields

o
F(s—a) = J e~ (57 t(¢) at (5.1.11)
0

if s — a > sg; that s, if s > sg + a. However, (5.1.11) can be rewritten as

o0

F(s —a) :J e *t (e?'f(t)) dt,

0

which implies the conclusion.

Example 5.1.7 Use Theorem 5.1.3 and the known Laplace transforms of 1, t, cos wt, and
sin wt to find

L(e), L(te®l), L(eMsinwt),and £(eMt cos wt).

Solution In the following table the known transform pairs are listed on the left and the
required transform pairs listed on the right are obtained by applying Theorem 5.1.3.

f(t) < F(s) edtf(t) < F(s —a)
1 at 1
l< -, s>0 et , S>a
S (s—a)
1
te—, s>0 tett s ——— s>a
s2 (s —a)?
. w }\t . w
Slnwtﬁm, s>0 e Slnwtﬁm,s>}\
S At &
coswt<—>7$2+w2, s>01e Slnwt%(s—)\)2+w27s>)\

Existence of Laplace Transforms

Not every function has a Laplace transform. For example, it can be shown (Exercise 3)
that

for every real number s. Hence, the function f(t) = et” does not have a Laplace
transform.
Our next objective is to establish conditions that ensure the existence of the Laplace
transform of a function. We first review some relevant definitions from calculus.
Recall that a limit
lim f(t)

t—to
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Figure 5.1 A jump discontinuity
exists if and only if the one-sided limits

lim f(t) and lim f(t)

t—to— t—to+

both exist and are equal; in this case,

lim f(t) = lim f(t)= lim f(t).

t—to t—to— t—to+

Recall also that f is continuous at a point ty in an open interval (a, b) if and only if

dim £(t) = f(to),

which is equivalent to
lim f(t) = lim f(t) = f(to). (5.1.12)

t—to+ t—to—
For simplicity, we define

f(to+) = lim f(t) and f(to—) = lim f(t),
t—to+ t—=to—

s0 (5.1.12) can be expressed as
f(to+) = f(to—) = f(to).

If f(tp+) and f(to—) have finite but distinct values, we say that f has a jump discontinuity
at tg, and
f(to+) — f(to—)

is called the jump in f at to (Figure 5.1).

If f(to+) and f(tp—) are finite and equal, but either f isn’t defined at t( or it’s defined
but

f(to) # f(to+) = f(to—),

we say that f has a removable discontinuity at to (Figure 5.2). This terminolgy is appropriate
since a function f with a removable discontinuity at t; can be made continuous at tg by
defining (or redefining)

f(to) = f(to+) = f(to—).

Figure 5.3 A piecewise continuous function
Figure 5.2 on [a, b]

REMARK: We know from calculus that a definite integral isn’t affected by changing the
values of its integrand at isolated points. Therefore, redefining a function f to make it
continuous at removable discontinuities does not change £(f).
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Definition 5.1.4
(i) A function f is said to be piecewise continuous on a finite closed interval [0, T]
if f(0+) and f(T—) are finite and f is continuous on the open interval (0, T) ex-
cept possibly at finitely many points, where f may have jump discontinuities or
removable discontinuities.

(ii) A function f is said to be piecewise continuous on the infinite interval [0, co) if it’s
piecewise continuous on [0, T] for every T > 0.

Figure 5.3 shows the graph of a typical piecewise continuous function.

It is shown in calculus that if a function is piecewise continuous on a finite closed
interval then it’s integrable on that interval. But if f is piecewise continuous on [0, co),
then so is e 3'f(t), and therefore

-
J e SHf(t) dt
0

exists for every T > 0. However, piecewise continuity alone does not guarantee that the
improper integral

0o T
J e SH(t) dt = limJ e SYf(t) dt (5.1.13)
0 T—oo 0

converges for s in some interval (sg,c0). For example, we noted earlier that (5.1.13)
diverges for all s if f(t) = et”. Stated informally, this occurs because et” increases too
rapidly as t — oo. The next definition provides a constraint on the growth of a function
that guarantees convergence of its Laplace transform for s in some interval (sg, c0) .

Definition 5.1.5 A function f is said to be of exponential order s if there are constants M
and tg such that
If(t)] < Me°t,  t > 1. (5.1.14)

In situations where the specific value of s is irrelevant we say simply that f is of
exponential order.

The next theorem gives useful sufficient conditions for a function f to have a Laplace
transform. The proof is sketched in Exercise 10.

Theorem 5.1.6 If f is piecewise continuous on [0, co) and of exponential order sq, then L(f) is
defined for s > s.

REMARK: We emphasize that the conditions of Theorem 5.1.6 are sufficient, but not
necessary, for f to have a Laplace transform. For example, Exercise 14(c) shows that f
may have a Laplace transform even though f isn’t of exponential order.

Example 5.1.8 If f is bounded on some interval [tg, c0), say
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then (5.1.14) holds with sy = 0, so f is of exponential order zero. Thus, for example,
sin wt and cos wt are of exponential order zero, and Theorem 5.1.6 implies that £ (sin wt)
and £(cos wt) exist for s > 0. This is consistent with the conclusion of Example 5.1.4.

Example 5.1.9 It can be shown that if lim¢_,, e 5°*f(t) exists and is finite then f is of
exponential order sy (Exercise 9). If « is any real number and so > 0 then f(t) = t* is of
exponential order s, since

lim e So%* =0,
t—o0

by L'Hopital’s rule. If o > 0, f is also continuous on [0, co). Therefore Exercise 9 and
Theorem 5.1.6 imply that £(t%) exists for s > sg. However, since sg is an arbitrary
positive number, this really implies that £(t*) exists for all s > 0. This is consistent with
the results of Example 5.1.2 and Exercises 6 and 8.

Example 5.1.10 Find the Laplace transform of the piecewise continuous function
1, 0<t<l,
flt) = { —3e ', t>1.

Solution Since f is defined by different formulas on [0, 1) and [1, c0), we write

00 1 00
F(s)::J eStﬂt)dt::J est(l)dt+—J e St(—3e 1) dt.
0 0 1
Since ) .
1 —e
J efst dt — S ) S 7& 07
0 1, s =0,
and
00 ) 3ef(s+1)
J e St(—3e t)dt:?)J e sHDt gt = — , s> —1,
1 1 s+ 1
it follows that (s11)
1—e S —(s
€ 3¢ s> 1,540,
F(s) = s 3s+1
1—- , s=0.
e

This is consistent with Theorem 5.1.6, since
Ift) <3e ", t>1,

and therefore f is of exponential order so = —1.
REMARK: In Section 8.4 we’ll develop a more efficient method for finding Laplace
transforms of piecewise continuous functions.
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Example 5.1.11 We stated earlier that

t

for all s, so Theorem 5.1.6 implies that f(t) = e * is not of exponential order, since

t2

2
lim ——— = lim —e' 50t = o
t—oo MeSot t—oo M ’
SO
2
et” > MeSot

for sufficiently large values of t, for any choice of M and s( (Exercise 3).

5.1 Exercises

1. Find the Laplace transforms of the following functions by evaluating the integral
F(s) = [ e Stf(t) dt.

(@t (b) te™* (c) sinh bt
(d) e?t — 3et (e) t2
2. Use the table of Laplace transforms to find the Laplace transforms of the following
functions.
(a) coshtsint (b) sin? t (c) cos? 2t
(d) cosh?t (e) tsinh 2t (f) sintcost
(g) sin (t + g) (h) cos 2t — cos 3t (i) sin 2t 4 cos 4t
3. Show that

for every real number s.

4. Graph the following piecewise continuous functions and evaluate f(t+), f(t—),
and f(t) at each point of discontinuity.

—t, 0<t<?2, 242, 0<t<l,
@ft)={ t—4, 2<t<3, (b)f(t)= 4, t=1,
1, t=3. t, t>1.

t, 0<t<l,
2, t=1,

(© f(t) =dft)=¢ 2—t, 1<t<2,
sint, 0<t<m/2, 3, t=2,
2sint, m/2<t<m, 6, t>2.

cost, t>mm
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10.

11.
12.

13.
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Find the Laplace transform:

et 0<t<l, (1, 0<t<d,
(a)f(t)_{ et 131, (b)f(t)_{ R

t, 0<t<1, [ tet, 0<t<,
(c)f(t)—{L (> 1 (d)f(t)—{ et, t>1.

Prove that if f(t) < F(s) then t*f(t) < (—1)*F(¥)(s). HINT: Assume that it’s
permissible to differentiate the integral [ e~ S'f(t) dt with respect to s under the integral
sign.
Use the known Laplace transforms

s—A
(s —A)2 + w?

w

At _
m and L (e COS wt) =

£(eMsinwt) =

and the result of Exercise 6 to find £(te* cos wt) and £(te sin wt).

Use the known Laplace transform £(1) = 1/s and the result of Exercise 6 to show

that
n!

gn+1l’

L") = n = integer.

(@) Show that if lim¢_, e~ S0tf(t) exists and is finite then f is of exponential order
So-

(b) Show that if f is of exponential order sy then lim_,o e S'f(t) = 0 for all
S > Sp.

(c) Show that if f is of exponential order sp and g(t) = f(t + T) where T > 0, then
g is also of exponential order s;.

Recall the next theorem from calculus.

THEOREM A. Let g be integrable on [0, T] for every T > 0. Suppose there’s a function
w defined on some interval [t,c0) (with T > 0) such that |g(t)] < w(t) for t > tand
7 w(t) dt converges. Then [ g(t) dt converges.

Use Theorem A to show that if f is piecewise continuous on [0, co) and of expo-
nential order sy, then f has a Laplace transform F(s) defined for s > s.

Prove: If f is piecewise continuous and of exponential order then lims_,, F(s) = 0.
Prove: If f is continuous on [0, co) and of exponential order sg > 0, then
t 1
L <J (1) dT) =—L(f), s> sg.
0 S
HINT: Use integration by parts to evaluate the transform on the left.

Suppose f is piecewise continuous and of exponential order, and that lim_,o4 f(t)/t

exists. Show that .
L <f(tt)> :J F(r) dr.

HINT: Use the results of Exercises 6 and 11.
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Suppose f is piecewise continuous on [0, co).

(@) Prove: If the integral g(t) = fg e %0Tf(T) d satisfies the inequality |g(t)| <
M (t > 0), then f has a Laplace transform F(s) defined for s > sg. HINT: Use
integration by parts to show that

- T
L e SH(t)dt = e 5500 Tg(T) + (s — s9) L e (s7s0)g(1) dt.

(b) Show that if £(f) exists for s = sg then it exists for s > sg. Show that the

function
f(t) = tet” cos(et’)
has a Laplace transform defined for s > 0, even though f isn’t of exponential
order.
(c) Show that the function
f(t) = tet cos(et’)

has a Laplace transform defined for s > 0, even though f isn’t of exponential
order.

Use the table of Laplace transforms and the result of Exercise 13 to find the Laplace
transforms of the following functions.

= y _ at _ ,bt
L w)gﬂ%—i m)>m4—iff
0)
cosht—1 sinh?t
@ = & >

The gamma function is defined by

which can be shown to converge if o« > 0.

(a) Use integration by parts to show that
MNoo+1) = al(«), o>0.

(b) Show thatT'(n+1)=nlifn=1,2,3,....
(c) From (b) and the table of Laplace transforms,

Moo+ 1)
L(t“) = W, S > 0,
if « is a nonnegative integer. Show that this formula is valid for any o > —1.

HINT: Change the variable of integration in the integral for T'(o + 1).
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17. Suppose f is continuous on [0, T] and f(t + T) = f(t) for all t > 0. (We say in this
case that f is periodic with period T.)

(@) Conclude from Theorem 5.1.6 that the Laplace transform of f is defined for
s > 0. HINT: Since f is continuous on [0, T] and periodic with period T, it’s bounded
on [0, c0).

(b) (b) Show that

1 T
F(s) = 1—€$‘T,[o e SHf(t)dt, s>0.
HINT: Write
©  ~(n+1)T
F(s)=)_ J e SH(t) dt.
n—0 nT
Then show that

(n+1)T T
J e St (t) dt = e_“STJ e SHf(t) dt,
nT 0

and recall the formula for the sum of a geometric series.

18. Use the formula given in Exercise 17(b) to find the Laplace transforms of the given
periodic functions:

t 0<t<1
p— ? ’ p— >
(@ f(t) {2—t l<t<2 ft+2)=f(t), t=>0
- 1, 0<t<3, -
w)fuy_{_L lotel, flt+1)=1(t), t=>0
(c) f(t) =sint|

sint, 0<t<m,

0. meteon f(t 4 271) = f(1)

M)ﬂﬂ:{

5.2 THE INVERSE LAPLACE TRANSFORM

Definition of the Inverse Laplace Transform

In Section 8.1 we defined the Laplace transform of f by
F(s) = L(f) :J e SHf(t) dt.
0

We’ll also say that f is an inverse Laplace Transform of F, and write
f=L71(F).

To solve differential equations with the Laplace transform, we must be able to obtain
f from its transform F. There’s a formula for doing this, but we can’t use it because it
requires the theory of functions of a complex variable. Fortunately, we can use the table
of Laplace transforms to find inverse transforms that we’ll need.
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Example 5.2.1 Use the table of Laplace transforms to find

1 1 1 s
(@[l <s2—1> and (b) £ <52+9>'

SOLUTION(a) Setting b = 1 in the transform pair

Sinh bt 52—71)2

L1 1 = sinh t.
s2—1

SOLUTION(b) Setting w = 3 in the transform pair

shows that

coswt & ——
s2 + w?

L1 <323—9> =cos3t.

The next theorem enables us to find inverse transforms of linear combinations of
transforms in the table. We omit the proof.

shows that

Theorem 5.2.1 [Linearity Property] If Fi, Fa, ..., Fyy are Laplace transforms and cq, ca, ...,
Cn, are constants, then

Lil(chl +coFo+ -+ cnFn) = ClLil(Fl) + Cgﬁil(FQ) + -+ Cnﬁian.

8 7
Lt —— .
<s+5+52+3>

Solution From the table of Laplace transforms in Section 8.8,

Example 5.2.2 Find

at<_> 1

and sinwt <

e -
s—a s2 + w?

Theorem 5.2.1 with a = —5 and w = /3 yields

8 7 1 1
£t - = 8¢ —— )+t
<s+5+52+3> <S+5>+ s2+3
1
] (i I V3
s+5 V3 s2+3
t.

7
= 8e '+ ——sinV3
V3
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Example 5.2.3 Find
= 3s +38
s24+2s+5/)°
Solution Completing the square in the denominator yields

3s+8  3s+38
s24+2s+5 (s+1)24+4°

Because of the form of the denominator, we consider the transform pairs

1
e ‘cos2t st and e ‘sin2t+ —m-——,
(s+1)2+4 (s+1)2+4

and write

. 3s+8 o 3s+3 1 5
- ((s+1)2—|—4) =4 <(s+1)2+4>+L ((s+1)2+4>

s+ 1 5 2
Y (AL NI i (.
((s+1)2—|—4)+2 ((3—1—1)2—1—4)

5
= e Y(3cos2t+ 3 sin 2t).

REMARK: We'll often write inverse Laplace transforms of specific functions without
explicitly stating how they are obtained. In such cases you should refer to the table of
Laplace transforms in Section 8.8.

Inverse Laplace Transforms of Rational Functions

Using the Laplace transform to solve differential equations often requires finding the
inverse transform of a rational function

P(s)
Q(s)’

where P and Q are polynomials in s with no common factors. Since it can be shown
that limg_, F(s) = 0 if Fis a Laplace transform, we need only consider the case where
degree(P) < degree(Q). To obtain £~ }(F), we find the partial fraction expansion of F,
obtain inverse transforms of the individual terms in the expansion from the table of
Laplace transforms, and use the linearity property of the inverse transform. The next
two examples illustrate this.

F(s) =

Example 5.2.4 Find the inverse Laplace transform of

3s+2
Fls) = —25 "= 2.
()= F 3512 (5-2.1)
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Solution (METHOD 1) Factoring the denominator in (5.2.1) yields
3s+2

F(s) = ——M—. 52.2
(s) 5152 (5.2.2)
The form for the partial fraction expansion is
B
ss+2 _ A B (5.2.3)

(s—1)(s—2) s—1 s—2
Multiplying this by (s — 1)(s — 2) yields

3s+2=(s—2)A+ (s—1)B.
Setting s = 2 yields B = 8 and setting s = 1 yields A = —5. Therefore

5+8
s—1 s—2

F(s) = —

and

1 1
L7HF) = 5071 <S — 1> +8L71 <2> = —5e' + 8e?t.

Solution (METHOD 2) We don’t really have to multiply (5.2.3) by (s—1)(s—2) to compute
A and B. We can obtain A by simply ignoring the factor s — 1 in the denominator of
(5.2.2) and setting s = 1 elsewhere; thus,

B 3s+ 2
s —2

3-1+2
= = —5. 5.2.4
T (5.2.4)

A

s=1
Similarly, we can obtain B by ignoring the factor s — 2 in the denominator of (5.2.2) and
setting s = 2 elsewhere; thus,

_ 3s+2
os—1

3242

=8. 2.
B =8 (5.2.5)

s=2

To justify this, we observe that multiplying (5.2.3) by s — 1 yields

3s+2 B
= —17
) A+ (s )5_2,

and setting s = 1 leads to (5.2.4). Similarly, multiplying (5.2.3) by s — 2 yields

3s+2
S+ —(s—2)

B
s—1 s—2+

and setting s = 2 leads to (5.2.5). (It isn’t necesary to write the last two equations. We
wrote them only to justify the shortcut procedure indicated in (5.2.4) and (5.2.5).) |

The shortcut employed in the second solution of Example 5.2.4 is Heaviside’s method.
The next theorem states this method formally. For a proof and an extension of this
theorem, see Exercise 10.


http://www-history.mcs.st-and.ac.uk/Mathematicians/Heaviside.html
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Theorem 5.2.2 Suppose
P(s)

F(s) = : 526
RS PR PR EEp Py 620
where sy, sa, ..., sy are distinct and P is a polynomial of degree less than n.. Then
A A A
F(s) = ——— 4 ——2 oo 0

s—8;  S—So S—Sn

where A can be computed from (5.2.6) by ignoring the factor s — s; and setting s = s; elsewhere.

Example 5.2.5 Find the inverse Laplace transform of

~ 64 (s+1)(s? —5s +11)

F(s) = 5.2.7
(s) s(s—=1)(s—2)(s+1) (5:2.7)
Solution The partial fraction expansion of (5.2.7) is of the form
A B C D
Fo=2p B C (5.2.8)

s s—1 s—2 s+1°

To find A, we ignore the factor s in the denominator of (5.2.7) and set s = 0 elsewhere.
This yields
6+ (1)(11) 17

A EEm T

Similarly, the other coefficients are given by

6@
B=ene -
_643(5) 7
€= 2(1)(3) 2’
and 6
Ty T Ty R
Therefore
71 10 7 1 1
F(s) =& - — e
s—1 2s—2 s+1
and

17 1 1 7 1 1
LF) = ¢ (=)—1oet | — )+ — ) 27—
(F) 2 (s) 0 (s—1>+2 s —2 s+1

17 7
= 5 - 10e* + §e2t —e t
REMARK: We didn’t “multiply out” the numerator in (5.2.7) before computing the

coefficients in (5.2.8), since it wouldn’t simplify the computations.
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Example 5.2.6 Find the inverse Laplace transform of

8 (s+2)(4s + 10)

F(s) = 2.
(s) (s+1)(s +2)2 (5.2.9)
Solution The form for the partial fraction expansion is
B
F(s) A ¢ (5.2.10)

= + + :
s+1 s+2  (s+2)?

Because of the repeated factor (s + 2)? in (5.2.9), Heaviside’s method doesn’t work.
Instead, we find a common denominator in (5.2.10). This yields

A(s+2)2+B(s+1)(s+2)+C(s+1)

F(s) = ESNEE . (5.2.11)
If (5.2.9) and (5.2.11) are to be equivalent, then
A(s+2)2+B(s+1)(s+2)+ C(s+1) =8 — (s +2)(4s + 10). (5.2.12)

The two sides of this equation are polynomials of degree two. From a theorem of algebra,
they will be equal for all s if they are equal for any three distinct values of s. We may
determine A, B and C by choosing convenient values of s.

The left side of (5.2.12) suggests that we take s = —2 to obtain C = —8, and s = —1
to obtain A = 2. We can now choose any third value of s to determine B. Taking s =0
yields 4A + 2B + C = —12. Since A = 2 and C = —8 this implies that B = —6. Therefore

2 6 8
s+l s+2 (s+2)2

—1 _ -1 1 ap—1 1 qpr—1 1
LR =K <s+1> 64 <s+2> 8L <(s+2)2>

= 2¢ ' —6e 2t —8te 2L,

F(s)

and

Example 5.2.7 Find the inverse Laplace transform of

s2—5s+7
Fs)=>—2> "~
(s) (s +2)3

Solution The form for the partial fraction expansion is

_ A, B
Cs+2 0 (s+2)2 0 (s+2)%

F(s)
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The easiest way to obtain A, B, and C is to expand the numerator in powers of s + 2.
This yields

s2—5s+7=[s+2)—27—5[(s+2)—21+7=(s+2)2—9(s+2)+21.

Therefore
(s +2)2—9(s+2)+21
F(s) =
(s+2)3
S N
s+2 (s+2)2 (s+2)3
and

—1 IS O R Ry 1 2l 2
LR = L <s+2> oL ((s+2)2>+ZL <(s+2)3>

21
= ¢ 2t (1 —9t+ 2t2> .

Example 5.2.8 Find the inverse Laplace transform of

1—s(5+3s)
F(s) = ———5—5. 2.1
A CES VRS 6219
Solution One form for the partial fraction expansion of F is
B
Fs)= 24 BstC (5.2.14)

s (s+1)2+1°

However, we see from the table of Laplace transforms that the inverse transform of
the second fraction on the right of (5.2.14) will be a linear combination of the inverse
transforms

e tcost and e tsint

of
s+1 1

— 5 an —
(s+1)2+1 (s+1)2+1

respectively. Therefore, instead of (5.2.14) we write

A B(s+1+C

F — A L.
(s) s (s+1)2+1 (5:2.15)
Finding a common denominator yields
A 1)?24+1] +B(s+1)s+C
Fis) — [(s+1)2+1] +B(s+1)s + Cs 5216

sl(s+1)2+1]
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If (5.2.13) and (5.2.16) are to be equivalent, then
Alls+1)?+1] +B(s+1)s+Cs=1—5(5+ 3s).

This is true for all s if it’s true for three distinct values of s. Choosing s =0, —1, and 1
yields the system

2A = 1
A—C =
5A+2B+C = —T.
Solving this system yields
1 7 5
A_i’ B__i’ C_—§.
Hence, from (5.2.15),
1 7 s+1 5 1
F(s) = —— = - = .
2s 2 (s+1)241 2(s+1)2+1
Therefore
1 1 7 s+1 ) 1
LF) = )0t —— |- ——
(®) 2 <s> 2 <(s+1)2+1> 2 (s+1)2+1
_ 1 —t 5 ¢
= 3 2e cost 26 sin t.

Example 5.2.9 Find the inverse Laplace transform of

8+ 3s
(s241)(s244)

F(s) = (5.2.17)
Solution The form for the partial fraction expansion is

F(s)—A+BS C+ Ds
os241 s244°

The coefficients A, B, C and D can be obtained by finding a common denominator and
equating the resulting numerator to the numerator in (5.2.17). However, since there’s no
first power of s in the denominator of (5.2.17), there’s an easier way: the expansion of

1
(s2+1)(s2+4)

Fi(s) =

can be obtained quickly by using Heaviside’s method to expand

1 101 1
(x+1)(x+4) 3 <x+1 _X+4>
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and then setting x = s? to obtain

1 11
(s24+1)(s24+4) 3 \s24+1 s244)°

Multiplying this by 8 + 3s yields

F(s) = 84 3s _ 1 /8+3s 8+43s
O (sZ241)(s2+4) 3\s2+1 s244)°
Therefore g A
L7YF) = 3 sint 4 cost — 3 sin 2t — cos 2t.
| USING TECHNOLOGY |

Some software packages that do symbolic algebra can find partial fraction expansions
very easily. We recommend that you use such a package if one is available to you, but
only after you’ve done enough partial fraction expansions on your own to master the
technique.

5.2 Exercises

1. Use the table of Laplace transforms to find the inverse Laplace transform.

3 2s —4 1
@ =7y ® 13 © S a0
2 s?2—1 1
> H -
@ =59 © ® 21
125 — 24 2 s2—4s+3
b b ) y_o Y
® e nresr Wioaro P S PP
2. Use Theorem 5.2.1 and the table of Laplace transforms to find the inverse Laplace
transform.
25 +3 s2—1 s+5
b b) — T
(@) (s —7)% ®) (s —2)6 © s2 + 6s + 18
2s+1 S s+1
—-— —_— f
(d)s2—|—9 (e)52+2s+1 ()52—9
s3+2s2 —5—3 2s +3 1 s
h) —— i) - —
® — 1 ® 1 O~
3s+4 3 4s +1 3 2546
j k) — + —— 1 —
0= Wigters Y e

3. Use Heaviside’s method to find the inverse Laplace transform.
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3—(s+1)(s—2) 7+ (s +4)(18 — 3s)

@ T +2)6-2) ® S =+ 4)

© 24 (s —2)(3—2s) @ 3—(s—1)(s+1)
(s—2)(s+2)(s—3) (s+4)(s—2)(s—1)

© 3+ (s —2)(10 — 2s — s?) ® 3+ (s—3)(2s2+s—21)
(s—2)(s+2)(s—1)(s+3) (s—3)(s—1)(s+4)(s—2)

Find the inverse Laplace transform.

@ 2+ 3s (b) 352425+ 1
(s2+1)(s+2)(s+1) (s24+1)(s2+2s +2)

3s +2 352 4+2s+ 1
(c) (d)

(s —2)(s2+2s +5) (s —1)2(s+2)(s+3)
25 +5+3 ® 35 T2
(s —1)2(s +2)2 (s24+1)(s—1)2
Use the method of Example 5.2.9 to find the inverse Laplace transform.

(e)

@ 3s+ 2 (b) —4s+1 © 5s+ 3
YV E21)(2+9) 2+ 1)(s2416) O (2+1)(s>+4)
@ —s—+1 © 17s — 34 @ 2s — 1

(4s2 +1)(s2+1) (s2+16)(16s2 + 1)
Find the inverse Laplace transform.

(4s2 +1)(9s2 + 1)

@ 17s — 15 (b) 8s + 56
(s2 —2s+5)(s2 +2s + 10) (s2 —6s + 13)(s2 + 2s + 5)
s+9 3s —2
© i —ds113 P (265113
© 3s—1 @ 20s 440
(s2—2s+2)(s2+2s+5) (4s2 — 4s + 5)(4s2 + 4s + 5)
Find the inverse Laplace transform.
1 1
(@) s(s2+1) ®) (s —1)(s2 —2s +17)
3s+2 34 —17s
() (s —2)(s2+2s +10) ) (2s —1)(s2 —2s +5)
© s+ 2 @ 2s —2

(s —3)(s2+2s+5)
Find the inverse Laplace transform.

(s —2)(s2+2s+10)

2s+1 s+ 2
(a) (s24+1)(s—1)(s—3) ®) (s2+2s+2)(s2—1)
2s —1 s—6
© e nmrosre-y  QPEonert g
© 2s —3 ) 5s — 15

s(s—2)(s2 —2s+5) (s2—4s+13)(s —2)(s —1)

237
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9. Given that f(t) <> F(s), find the inverse Laplace transform of F(as — b), where
a>0.

10. (@) Ifsy, sy, ..., sp are distinct and P is a polynomial of degree less than n, then

P A A A
(S) _ 1 + 2 4y n .
(s—s1)(s—s2)---(s—sn) s—s1 s—s2 S —5Sn

Multiply through by s — s; to show that A; can be obtained by ignoring the
factor s — s; on the left and setting s = s; elsewhere.

(b) Suppose P and Q; are polynomials such that degree(P) < degree(Q;) and
Qi(s1) # 0. Show that the coefficient of 1/(s — s1) in the partial fraction
expansion of

P(s)

= o)
is P(s1)/Q1(s1).

(c) Explain how the results of (a) and (b) are related.

5.3 SOLUTION OF INITIAL VALUE PROBLEMS

Laplace Transforms of Derivatives

In the rest of this chapter we’ll use the Laplace transform to solve initial value problems
for constant coefficient second order equations. To do this, we must know how the
Laplace transform of f’ is related to the Laplace transform of f. The next theorem
answers this question.

Theorem 5.3.1 Suppose f is continuous on [0, co) and of exponential order sy, and f' is piece-
wise continuous on [0, 00). Then f and ' have Laplace transforms for s > sg, and

L(f') = sL(f) — £(0). (5.3.1)

Proof
We know from Theorem 8.1.6 that £(f) is defined for s > sy. We first consider the case
where f’ is continuous on [0, co). Integration by parts yields

T T T
J e SH/(t)dt = e*“f(t)‘ + sJ e SUf(t) dt
0 0 U (5.3.2)
= e STH(T) —£(0) + sJ e SH(t) dt
0
for any T > 0. Since f is of exponential order sg, limt_, e STf(T) = 0 and the last
integral in (5.3.2) converges as T — oo if s > s(. Therefore

ro e SY'(t)dt = —f(0)+s JOO e SUf(t) dt
0 0

= —f(0) + sL(f),
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which proves (5.3.1). Now suppose T > 0 and f’ is only piecewise continuous on [0, T],
with discontinuities at t; < ty < -+ < t,,_1. For convenience, let t) = 0 and t,, = T.
Integrating by parts yields

tia

ti
J e SY(t)dt = e SHf(t)

ti1

ty H
4 SJ e SUf(t) dt
tia

ty
= e SUf(ty) —e Stlf(tig) + SJ e *tf(t) dt.

tig

Summing both sides of this equation from i = 1 to n and noting that
(e™5Uf(t1) — e 5" f(tg))+(e 5" f(ta) — e SUf(ty))+ -+ (e S™Nf(tn) — e SN f(tn))

=e S™Nf(tn) —e SWf(t) = e *TF(T) — £(0)
yields (5.3.2), so (5.3.1) follows as before.

Example 5.3.1 In Example 5.1.4 we saw that

s
L (COS (.Ut) = m .
Applying (5.3.1) with f(t) = cos wt shows that

(U2

L(—(L)Slnwt) = Sm —1= —m
Therefore w
Lisinwt) = ———
(sin wt) 1wl
which agrees with the corresponding result obtained in 5.1.4. |

In Section 2.1 we showed that the solution of the initial value problem

y' =ay, y(0)=yo, (5.3.3)

isy = yoe®t. We'll now obtain this result by using the Laplace transform.
Let Y(s) = £(y) be the Laplace transform of the unknown solution of (5.3.3). Taking
Laplace transforms of both sides of (5.3.3) yields

L(y') = L(ay),
which, by Theorem 5.3.1, can be rewritten as
sL(y) —y(0) = al(y),

or
sY(s) —yo = a¥(s).



240 Chapter 5 Laplace Transforms

Solving for Y(s) yields

Y(s) = 22
S—a

1
y= e ) = () —woet () =wet

which agrees with the known result.
We need the next theorem to solve second order differential equations using the
Laplace transform.

SO

Theorem 5.3.2 Suppose f and f’ are continuous on [0, 0o) and of exponential order s¢, and
that " is piecewise continuous on [0, 00). Then f, ', and £" have Laplace transforms for s > s,

L(f') = sL(f) — (0), (5.3.4)

and
L(f") = s2L(f) — £(0) — sf(0). (5.3.5)

Proof Theorem 5.3.1 implies that £(f’) exists and satisfies (5.3.4) for s > sg. To prove
that £(f”) exists and satisfies (5.3.5) for s > sq, we first apply Theorem 5.3.1 to g = f’.
Since g satisfies the hypotheses of Theorem 5.3.1, we conclude that £(g’) is defined and
satisfies

L(g") =sL(g) —g(0)
for s > sg. However, since g’ = f”, this can be rewritten as
L") = sL(f') — £'(0).
Substituting (5.3.4) into this yields (5.3.5).
Solving Second Order Equations with the Laplace Transform

We’ll now use the Laplace transform to solve initial value problems for second order
equations.

Example 5.3.2 Use the Laplace transform to solve the initial value problem

y” —6y’ +5y =3e?, y(0)=2, y’(0)=3. (5.3.6)

Solution Taking Laplace transforms of both sides of the differential equation in (5.3.6)
yields

Lly" =6y’ +5y) = £ (3¢*) = —,

which we rewrite as

L(y") —6L(y") +5L(y) = (5.3.7)
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Now denote £(y) = Y(s). Theorem 5.3.2 and the initial conditions in (5.3.6) imply that
L(y") = sY(s) —y(0) = sY(s) —2

and
Ly") =52Y(s) —y’(0) — sy(0) = s2Y(s) — 3 — 2s.

Substituting from the last two equations into (5.3.7) yields

(S7Y(s) — 3~ 25) — 6 (s¥(s) ~2) + 5¥(s) = .
Therefore
(s2—6s+5)Y(s) = i (34 2s) +6(—2), (5.3.8)
% 3 2)(2s—9
(s—5)(s —1)¥(s) = 2T A9
s—2
e 3+ (s —2)(25 —9)
+(s— s —
Y(s) = .
(s) (s—2)(s—=5)(s—1)
Heaviside’s method yields the partial fraction expansion
1 11 5 1
Yis) “ s tass e
and taking the inverse transform of this yields
1 )
2t o5t 9t
y=-—e"+ 26 + 26
as the solution of (5.3.6). [

It isn’t necessary to write all the steps that we used to obtain (5.3.8). To see how to
avoid this, let’s apply the method of Example 5.3.2 to the general initial value problem

ay” +by’ +cy=f(t), y(0) =ko, y'(0)=ki. (5.3.9)
Taking Laplace transforms of both sides of the differential equation in (5.3.9) yields
al(y”)+bL(y’) +cLly) = F(s). (5.3.10)
Now let Y(s) = £(y). Theorem 5.3.2 and the initial conditions in (5.3.9) imply that
Ly')=sY(s)—ko and L(y”) =s2Y(s) —k; — kos.
Substituting these into (5.3.10) yields

a (SQY(S) —kq — kos) + b (sY(s) — ko) +cY(s) = F(s). (5.3.11)
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The coefficient of Y(s) on the left is the characteristic polynomial
p(s) =as?+bs+c

of the complementary equation for (5.3.9). Using this and moving the terms involving
ko and k; to the right side of (5.3.11) yields

p(s)Y(s) = F(s) + a(k; + kos) + bko. (5.3.12)

This equation corresponds to (5.3.8) of Example 5.3.2. Having established the form of
this equation in the general case, it is preferable to go directly from the initial value
problem to this equation. You may find it easier to remember (5.3.12) rewritten as

p(s)Y(s) =F(s) + a (y'(0) + sy(0)) + by(0). (5.3.13)
Example 5.3.3 Use the Laplace transform to solve the initial value problem

2y” + 3y’ +y=8e2, y(0)=—4, y'(0)=2. (5.3.14)

Solution The characteristic polynomial is
p(s) = 252 +3s+1=(2s+1)(s+1)

and

so (5.3.13) becomes
(2s+1)(s+1)Y(s) = 34-% +2(2 —4s) + 3(—4).

Solving for Y(s) yields
Y(s) = 4(1—(s+2)(s+1))
(s+1/2)(s+1)(s+2)

Heaviside’s method yields the partial fraction expansion

4 1 8 8 1

Y(s) = — — 2
(s) 3s+1/2 s+1+33—|—2’

so the solution of (5.3.14) is

4 8
y=L"HY(s)) = e V2 _get 4 Je
3 3
(Figure 5.1).

Example 5.3.4 Solve the initial value problem

y”"+2y" +2y=1, y(0)=-3, y'(0) =1. (5.3.15)
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4 1
Figure 5.1y = ge*t/Q —8e '+ ge*ﬁ Figure 5.2y = 5 — ge*t cost — ge*t sin t

Solution The characteristic polynomial is
pls)=s2+2s+2=(s+1)?+1

and

so (5.3.13) becomes
[(s+1)2+1] Y(s) = % +1-(1—3s)+2(-3).

Solving for Y(s) yields
~ 1—s5(5+3s)
YO = v 0

In Example 5.2.8 we found the inverse transform of this function to be

17 5
y=-——e ‘cost— §e_t

575 sint

(Figure 5.2), which is therefore the solution of (5.3.15).

REMARK: In our examples we applied Theorems 5.3.1 and 5.3.2 without verifying that
the unknown function y satisfies their hypotheses. This is characteristic of the formal
manipulative way in which the Laplace transform is used to solve differential equations.
Any doubts about the validity of the method for solving a given equation can be resolved
by verifying that the resulting function y is the solution of the given problem.

5.3 Exercises

In Exercises 1-31 use the Laplace transform to solve the initial value problem.

1. y’"+3y’+2y=et, y(0)=1, vy’
2. y'—y'—6y=2, y(0)=1, y'(0
3. y'+y’ —2y=2e" y(0)=-1, y'(0)=4
4.y’ —4dy=2e%", y(0)=1, y'(0)=-1

5. y"+y' —2y=2¢e, y(0)=1,

6. y”"+3y’'+2y==6et, y0)=1, y'(0)=-1
7. y”"+y=sin2t, y(0)=0, y'(0)=1

8. y’—3y' +2y=2e%" y0)=1, y'(0)=-1
9. y” -3y’ +2y=c¢'t, y0)=1, y’(0)=-2
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10. y” -3y’ +2y=e¢3" y(0)=-1, y'(0)=—4
11. y” +3y’ +2y=2e" y(0)=0, y'(0)=-1
12. y"+y’ ' —2y=—4, y(0)=2, y'(0)=3
13. y”"+4y=4, y(0)=0, y'(0)=1

4. y"—y' —6y=2 y(0)=1, y'(0)=0

15. y”+3y’+2y=-et, y(0)=0, y’(0)=1
6. y"—y=1, y0)=1, y'(0)=0

17. y” +4y=3sint, y(0)=1, vy
18. y”+y’ =2 y(0)=-1, y'(0)=4

19. y’"+y=1, y0)=2, y'(0)=0

20. y’"+y=t, y(0)=0, y'(0)=2

21. y”"+y=t—3sin2t, y(0)=1, y'(0)=-3

22. y”"+5y'+6y=2e"t, y0)=1, y'(0)=3

23. y”"+2y’'+y==6sint—4cost, y(0)=-1,y’(0)=1

24. y” —2y’—3y=10cost, y(0) y’'(0) =7
25. y”+4+y=4sint+6cost, y(0)=-6, y'(0) =2
26. y” +4y=38sin2t+9cost, y(0)=1, y'(0)=0
27. y” -5y’ +6y=10etcost, y(0)=2, y’(0)=1

28. y”+2y'+2y=2t, y(0)=2, y'(0)=-7

29. y”"—2y’+2y=>5sint+10cost, y(0)=1, y'(0)=2
30. y” +4y’+ 13y =10e ' —36e', y(0)=0, y'(0) =—16
3. y” +4y’+5y=e Y(cost+3sint), y(0)

32. 2y” -3y’ —2y=4e', y(0)=1, y'(0)=-2

33. 6y’ —y’'—y=3e%, y(0)=0,y'(0)=0

34. 2y”"+2y’+y=2t, y(0)=1, y'(0)=-1

35. 4y” —4y’+5y =4sint—4cost, y(0)=0, y’(0) =11/17
36. 4y” +4y’'+y=3sint+cost, y(0)=2, y'(0)=-1

37. 9y” +6y’ +y=3e3 y(0)=0, y'(0)=-3

38. Suppose a,b, and c are constants and a # 0. Let

as+b a
=L ———— d =L ——.
L <as2+bs+c> and Y2 <as2+bs+c>

Show that

y1(0) =1, yi(0)=0 and y2(0)=0, y5(0)=1.
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HINT: Use the Laplace transform to solve the initial value problems

ay” +by ' +cy = 0, y(0)=1,
ay” +by’+cy = 0, y(0)=0, y'(0)=

5.4 THE UNIT STEP FUNCTION

In the next section we’ll consider initial value problems

ay” +by’ +cy =f(t), y(0)=ko, y'(0)=ki,

245

where a, b, and c are constants and f is piecewise continuous. In this section we’ll
develop procedures for using the table of Laplace transforms to find Laplace transforms
of piecewise continuous functions, and to find the piecewise continuous inverses of

Laplace transforms.

Example 5.4.1 Use the table of Laplace transforms to find the Laplace transform of

2t+1, 0<t<2,
3t, t>2

(Figure 5.1).

Solution Since the formula for f changes at t = 2, we write

L(f) = J;estf(t)dt

= J e_5W2t+—1)dt+:[ e SY(3t) dt.
0 2

To relate the first term to a Laplace transform, we add and subtract

J e SY(2t+1)dt
2

in (5.4.2) to obtain

L(f) = J eSt(2t+1)dt+J e St(3t—2t—1)dt

2
[

%
= ‘[ 6_5W2t4-1)dt+1[ e Stt—1)dt
0 2
= L(2t+1) +J e St(t—1)dt.

2

(5.4.1)

(5.4.2)

(5.4.3)
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To relate the last integral to a Laplace transform, we make the change of variable x = t—2
and rewrite the integral as

J e Stt—1)dt = J e S (x 4+ 1) dx
2

= e 2 J e S*(x+1)dx.
0

Since the symbol used for the variable of integration has no effect on the value of a
definite integral, we can now replace x by the more standard t and write

J e“(t—l)dtzekj e St t4+1)dt=e 2L(t+1).
2 0

This and (5.4.3) imply that
L) =L02t+1)4+e 25L(t+1).

Now we can use the table of Laplace transforms to find that

2 1 1 1
L(f):?'i‘*‘f‘e_Qs <2+> | ]
S S S S

Figure 5.1 The piecewise continuous
function (5.4.1) Figure 52y = u(t — 1)

Laplace Transforms of Piecewise Continuous Functions

We'll now develop the method of Example 5.4.1 into a systematic way to find the Laplace
transform of a piecewise continuous function. It is convenient to introduce the unit step
function, defined as
0, t<0
u(t) = { 1 t>0. 5.4.4)
Thus, u(t) “steps” from the constant value 0 to the constant value 1 at t = 0. If we
replace t by t — Tin (5.4.4), then

0, t<T,
1, t>t ’

u(t—1) :{

that is, the step now occurs at t = 1 (Figure 5.2).
The step function enables us to represent piecewise continuous functions conveniently.
For example, consider the function

fo(t), 0<t<ty,
f(t)z{ ot) oy ! (5.4.5)
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where we assume that fy and f; are defined on [0, 00), even though they equal f only on
the indicated intervals. This assumption enables us to rewrite (5.4.5) as

f(t) = fo(t) +u(t —t1) (f1(t) — fo(t)). (5.4.6)
To verify this, note that if t < t; then u(t —t;) = 0 and (5.4.6) becomes
f(t) = fo(t) + (0) (f1(t) — fo(t)) = fo(t).
Ift > t; thenu(t —t;) =1 and (5.4.6) becomes
f(t) = fo(t) + (1) (f1(t) — folt)) = f1(t).
We need the next theorem to show how (5.4.6) can be used to find £(f).

Theorem 5.4.1 Let g be defined on [0, 00). Suppose T > 0 and £ (g(t + T)) exists for s > s.
Then £ (u(t — T)g(t)) exists for s > sg, and

Llult—T)g(t)) =e "L (g(t+1T)).

Proof By definition,

L(ult—1)g(t)) = J:) e Stu(t —1)g(t) dt.

From this and the definition of u(t — T),

L(u(t—1)g(t)) = LT e SY0)dt + Joo e Stg(t) dt.

The first integral on the right equals zero. Introducing the new variable of integration
x =t — 7 in the second integral yields

L(u(t—T1)g(t)) = J:O e SHg(x 4+ 1) dx = eSTJ e **g(x + T) dx.

Changing the name of the variable of integration in the last integral from x to t yields

L(u(t—T1)g(t) =e *" ro e Stgt+T1)dt=e %"L(g(t+7T)).
0
Example 5.4.2 Find

L(ut—1)(t*+1)).

Solution Here T =1and g(t) =t> + 1, s0
gt+1)=(t+12+1=t>+2t+2.

Since 5 5 5
N)=—=4+=+-
L(g(t+1)) 83—1-82—1-3,

Theorem 5.4.1 implies that

Lut—1t*+1) =e S <323+2+2> .

s2 s
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Figure 5.3 The piecewise contnuous function (5.4.7)

Example 5.4.3 Use Theorem 5.4.1 to find the Laplace transform of the function

3t,

Y

2t+1, 0<t<2,
f(t) =
t>2

from Example 5.4.1.

Solution We first write f in the form (5.4.6) as

f(t) =2t+1+u(t—2)(t—1).

Therefore
L(f) = L2t+1)+L(u(t—-2)(t—1))
= L(2t+1)+e 2L(t+1) (from Theorem 5.4.1)
_ 2 b s (]
= 82+S+€ <52+s>’
which is the result obtained in Example 5.4.1. |

Formula (5.4.6) can be extended to more general piecewise continuous functions. For
example, we can write
fO(t)7 0 t<ty,

<
f(t) =4 fi(t), t1 <t<ty,
fa(t), t>to,
as
f(t) = fo(t) +u(t —t1) (f1(t) — fo(t)) +u(t —t2) (f2(t) — f1(t))

if Ty, f1, and 5 are all defined on [0, co).

Example 5.4.4 Find the Laplace transform of

1, 0<t<2,
—2t+1, 2<t<3,
f(t) = (54.7)
3t, 3<t<b,
t—1, t>5
(Figure 5.3).
Solution In terms of step functions,
flt) = 14ut—2)(—2t+1—1)+u(t—3)(3t+2t—1)

+u(t—>5)(t—1—3t),
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Figure 5.4 The piecewise continuous function (5.4.10)
or
flt) =1—-2u(t—2)t+u(t—3)(5t—1) —u(t—5)(2t +1).
Now Theorem 5.4.1 implies that

L(f) = L(1)—2e25L(t+2)4+e L (5(t+3)—1)—e L (2(t+5)+1)
= L(1)—2e BL(t+2)+e 3L(5t+14) —e OSL(2t + 11)

1 1 2 5 14 2 11
s s2 s s s s s
The trigonometric identities

sin(A+B) = sinAcosB+ cosAsinB (5.4.8)
cos(A+B) = cosAcosB —sinAsinB (5.4.9)

are useful in problems that involve shifting the arguments of trigonometric functions.
We'll use these identities in the next example.

Example 5.4.5 Find the Laplace transform of

sin t, <t<

n
2 )
f(t) = cost —3sint, T,

(5.4.10)

0
s
§<t<
t

3cost, >

(Figure 5.4).

Solution In terms of step functions,
f(t) =sint+u(t —m/2)(cost —4sint) +u(t —m)(2cost + 3sint).
Now Theorem 5.4.1 implies that

L(f) = L(sint)+e 2L (cos (t+ F) —4sin (t+ 3))

- . (5.4.11)
+e ™ L (2cos(t + ) + 3sin(t + 7)) .

Since
Tt . Tt .
cos (t—l— 5) —4sin (t—f— 5) = —sint—4cost

and
2 cos(t 4+ m) 4+ 3sin(t + ) = —2cost — 3sin't,
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we see from (5.4.11) that

L(f) = L(sint) —e ™/2L(sint+4cost) — e ™5 L(2cost + 3sint)
1 _x, (1+44s _ 34 2s
_ _ 5s _ —Ts m
s2+1 ¢ <s2+1> ¢ (s2+1)

The Second Shifting Theorem

Replacing g(t) by g(t — 1) in Theorem 5.4.1 yields the next theorem.

Theorem 5.4.2 [Second Shifting Theorem] If t > 0and L(g) exists for s > sq then £ (u(t — t)g(t — 1))
exists for s > so and
Lu(t—T)g(t— 1)) =e *"L(g(t)),

ot, equivalently,
if g(t) <> G(s), thenu(t —t)g(t —1) <> e *"G(s). (5.4.12)

REMARK: Recall that the First Shifting Theorem (Theorem 5.1.3 states that multiplying
a function by e®! corresponds to shifting the argument of its transform by a units.
Theorem 5.4.2 states that multiplying a Laplace transform by the exponential e™**
corresponds to shifting the argument of the inverse transform by T units.

—2s
_1( €

Solution To apply (5.4.12) we let T = 2 and G(s) = 1/s%. Then g(t) = t and (5.4.12)
implies that

Example 5.4.6 Use (5.4.12) to find

1 6—23
L < >:u(t—2)(t—2).l

g2

Example 5.4.7 Find the inverse Laplace transform h of

1 1 2 4 1
H(s):—Q—e_s <2+>+6_4S <3+>,
S S S S S

and find distinct formulas for h on appropriate intervals.

Solution Let

Then
go(t) =t, gi(t) =t+2, golt) =2t2 + 1.
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Hence, (5.4.12) and the linearity of £~! imply that
h(t) = L£71(Gols)) =L (e 5Gi(s)) + £ (e *5Ga(s))
= t—ut—1[(t—1) +2 +u(t—4) [2(t —4)* +1]
= t—u(t—1)(t+1)+u(t —4)(2t*> — 16t + 33),
which can also be written as
t, 0<t«l,
h(t) = -1, 1<t<4, m
2t — 16t + 32, t>4.

Example 5.4.8 Find the inverse transform of

2s x. 38+ 1 s+ 1
H — __»—5s -—ms___ T -
(s) s2+4 ¢ s2+9—|—e s2 4+ 6s + 10
Solution Let ) 3 n
S S +
G =—— G =
O(S) 52+47 1(3) 82+9 )
and
Gols) = s+1 _(s+3)—2
2T 2165 +10  (s4+3)2+1
Then )
go(t) =2cos2t, gi(t) =—3cos3t— 3 sin 3t,
and
ga(t) = e 3 (cost — 2sint).

Therefore (5.4.12) and the linearity of £~! imply that

h(t) = 2cos2t—u(t—m/2) 3cos3(t—n/2)+;sin3(t—g)]

+u(t —me 3 [cos(t — ) — 2sin(t — 7)) .
Using the trigonometric identities (5.4.8) and (5.4.9), we can rewrite this as

h(t) = 2cos2t+u(t—m/2) (3 sin 3t — % CoS 3t)
(5.4.13)
—u(t—m)e 3t (cost — 2sint)

(Figure 5.5).

Figure 5.5 The piecewise continouous function (5.4.13)
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5.4 Exercises

In Exercises 1-6 find the Laplace transform by the method of Example 5.4.1. Then
express the given function f in terms of unit step functions as in Eqn. (5.4.6), and use

Theorem 5.4.1 to find £(f). Where indicated by , graph f.

t, 0<t<1,
1, 0<t<4, 2. f(t) =
1. f(t) = 1, t>1.
t, t>4
3. |C/G 4. |C/G
2t—1, 0<t<2, 1, o0<t<l,
f(t) = f(t) =
t,  t>2 t+2, t>1

In Exercises 7-18 express the given function f in terms of unit step functions and use Theo-
rem 5.4.1 to find L(f). Where indicated by , graph f.

7. t,

t2 + 3t,

tet, 0<t<1, et 0<t<,

e, t>1 e 2t t>1.

—t, 0<t<?2, 0, 0<t<l,
11. f(t)=<¢ t—4, 2<t<3, 12. f)=< t, 1<t<?2,

1, t>3. 0, t>2.

t, 0<t<l, t, 0<t<,
13. f(t)=<¢ t?, 1<t<?2, 14. f(t)=¢ 2—t, 1<t<2,

0, t>2 6, t>2

n
2
t

cost, > Tt

t
) T
sint, 0<t< bX
15. f(t) =q{ 2sint, St<m,



Section 5.4 The Unit Step Function 253

2, 0<t<l,

16. |C/G|f(t) =4 —2t+2, 1<t<3,
3t, t>3.

3, 0<t<?2,

17. |C/Glf(t)={ 3t+2, 2<t<4,
4, t>4

(t+1)2, 0<t<1,
18- f(t):{ (t+2)2 t>1.

In Exercises 19-28 use Theorem 5.4.2 to express the inverse transforms in terms of step functions,
and then find distinct formulas the for inverse transforms on the appropriate intervals, as in

Example 5.4.7. Where indicated by , graph the inverse transform.

e—S

19. H@):ei% 20 H(s) = 5

e e
21 [C/GIH(s) =5 +
(2 Y s (B L) s (L L
N R

5 1 6 7 3e 08
23. H(s) = (S - 82) +e % <S + S2> + 3

e S(1—2s)
24, H(s) = ———"—
(s) s2+4s+5

1 S _ng [(3s—1

25, [crclne = (5 - ) ve (55

e 3(s—3) s+1
26. H(s)=e? [(54_1)(5—2)_(5—1)(5—2)}

11 2 4
27. H(s)=-+5+e*® <§+52>+e35 <+3>

s s2 s s2
1 2 3 1 e 4s

28. H(S):*—f?)‘f‘e_Qs <—3>+ D)
s s s S S

29. Find £ (u(t—1)).

30. Let{tmJ%_,beasequenceof points such thatty =0, ty1 > tm, and limm o0 tm =
oo. For each nonnegative integer m, let f,;, be continuous on [t,, c0), and let f be
defined on [0, co) by

f(t):fm(t)ytm<t<tm+1 (sz,l,...).
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Show that f is piecewise continuous on [0, co) and that it has the step function
representation

f(t) = fo(t) + D u(t—tm) (fm(t) = fm_1(t)), 0 < t < o0.
m=1

How do we know that the series on the right converges for all t in [0, c0)?

In addition to the assumptions of Exercise 30, assume that

[fm(t)] < Me*' t > ty, m=0,1,..., (A)
and that the series -
Z e Ptm (B)
m=0

converges for some p > 0. Using the steps listed below, show that £(f) is defined
for s > sg and

Lif)=L(fo)+ D> e *"L(gm) (C)

m=1

for s > sg + p, where
gm(t) = fm(t+tm) — fm_1(t +tm).
(@) Use (A) and Theorem 8.1.6 to show that

(.¢]

tmi1
L) =) J et m(t) dt (D)
m=0 tm
is defined for s > sg.
(b) Show that (D) can be rewritten as
L= (J e St (1) dt—J e St (1) dt) . (E)
m=0 \Wtm tmit

(c) Use (A), the assumed convergence of (B), and the comparison test to show
that the series

i JOO e S (t)dt and i JOO e St (1) dt

m=0"tm

both converge (absolutely) if s > s + p.
(d) Show that (E) can be rewritten as

£lf) =l + Y [ € () — (1) at

m=1

if s > sg + p.
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(e) Complete the proof of (C).

32. Suppose {tm )% _,and {fm )35 satisfy the assumptions of Exercises 30 and 31, and
there’s a positive constant K such that t,, > Km for m sufficiently large. Show
that the series (B) of Exercise 31 converges for any p > 0, and conclude from this
that (C) of Exercise 31 holds for s > sg.

In Exercises 33-36 find the step function representation of f and use the result of Exercise 32 to
find L£(f). HINT: You will need formulas related to the formula for the sum of a geometric series.

33. ft)=m+1,m<t<m+1(m=0,1,2,...)
3. ft)=(—1)™, m<t<m+1(m=0,1,2,...)
35, f(t)=(m+1)22 m<t<m+1(m=0,1,2,...)
36. f(B)=(—1)"m,m<t<m+1(m=0,1,2,...)

5.5 CONSTANT COEEFFICIENT EQUATIONS WITH PIECEWISE CONTINUOUS FORC-
ING FUNCTIONS

We'll now consider initial value problems of the form
ay” +by’ +cy=~f(t), y0) =ko, y'(0) =k, (5.5.1)

where a, b, and c are constants (a # 0) and f is piecewise continuous on [0, co). Prob-
lems of this kind occur in situations where the input to a physical system undergoes
instantaneous changes, as when a switch is turned on or off or the forces acting on the
system change abruptly.

It can be shown (Exercises 23 and 24) that the differential equation in (5.5.1) has no
solutions on an open interval that contains a jump discontinuity of f. Therefore we must
define what we mean by a solution of (5.5.1) on [0, c0) in the case where f has jump
discontinuities. The next theorem motivates our definition. We omit the proof.

Theorem 5.5.1 Suppose a,b, and c are constants (a # 0), and f is piecewise continuous on
[0, 00). with jump discontinuities at ti, ..., tn, where

O<ty < - <tn.

Let ko and k; be arbitrary real numbers. Then there is a unique function y defined on [0, co)
with these properties:

(a) U(OJ = ko andg’(O) = k1.

(b) yandy’ are continuous on [0, co).

(c) y” is defined on every open subinterval of [0, co) that does not contain any of the points t,,
oo, tn, and
ay” + by’ +cy = f(t)

on every such subinterval.
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(d) y” has limits from the right and left at ti, ..., tn.

We define the function y of Theorem 5.5.1 to be the solution of the initial value problem

(5.5.1).

We begin by considering initial value problems of the form

t < ty,

fO(t)) O<
t>t17

ay” +by’ +cy =
ST ),

y(O) = kUa

y/(O) = k'lv

where the forcing function has a single jump discontinuity at t;.

We can solve (5.5.2) by the these steps:

Step 1. Find the solution yg of the initial value problem
ay” +by’ +cy =fo(t), y(0) = ko,

Step 2. Compute ¢ = yo(t1) and c; = y{(t1).

Step 3. Find the solution y; of the initial value problem
ay” + by’ +cy =~1(t), y(t1) = co,

Step 4. Obtain the solution y of (5.5.2) as

_ ) Yolt), O<t<ty
k yi(t), t=>t.

(5.5.2)

It is shown in Exercise 23 that y’ exists and is continuous at t;. The next example

illustrates this procedure.

Example 5.5.1 Solve the initial value problem

y"+y="1(t), y(0)=2 y'(0)=-1,

where

Solution The initial value problem in Step 1 is

y"+y=1, y0)=2, y'(0)=-1.

We leave it to you to verify that its solution is

Yo =1+cost —sint.

(5.5.3)
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Figure 5.1 Graph of (5.5.4)

Doing Step 2 yields yo(m/2) = 0 and yg(m/2) = —1, so the second initial value problem

1S
Tt

y'ry=—1, y (7) ~0, y’ (5) — 1.
’ 2 ' 2
We leave it to you to verify that the solution of this problem is
Y; = —1+cost+sint.
Hence, the solution of (5.5.3) is

14 cost—sint, 0<

t
Y= ~ (5.5.4)
2

—1+4cost+sint, t=

(Figure:8.5.1).
If fy and f; are defined on [0, c0), we can rewrite (5.5.2) as

ay” +by’ +cy = fo(t) +ult —t1) (f1(t) — fo(t)), y(0) =ko, y'(0) =k,

and apply the method of Laplace transforms. We’ll now solve the problem considered
in Example 5.5.1 by this method.

Example 5.5.2 Use the Laplace transform to solve the initial value problem

y"+y="~(t), y(0)=2,y'(0)=-1, (5.5.5)
where
s
1, 0<t<-—,
f(t) = X x 2
, t= 5

Solution Here

Tt
£(t) :1—2u(t—5),
so Theorem 5.4.1 (with g(t) = 1) implies that

1—9 —7t8 /2
L(f) = e
s
Therefore, transforming (5.5.5) yields
1—9 —78/2
(8 + ¥(s) = ———— —1+35,

SO
2s —1

Y(S) = (1 — 26_715/2)G(S) + m,

(5.5.6)



258 Chapter 5 Laplace Transforms

with .

o= ey
The form for the partial fraction expansion of G is

1 A Bs+C

_ = — 4 —. 55.7
s(s2+1) s+s2+1 ( )

Multiplying through by s(s? + 1) yields
A(s2+1)+ (Bs+C)s =1,

or
(A+B)s2+Cs+A=1.

Equating coefficients of like powers of s on the two sides of this equation shows that
A=1,B=—A =—1and C = 0. Hence, from (5.5.7),

Therefore
g(t)=1—cost.

From this, (5.5.6), and Theorem 5.4.2,
s s .
y=1—cost—2u (t— 5) (1 — cos (t— 5)) +2cost—sint.
Simplifying this (recalling that cos(t — 7t/2) = sint) yields

T
y=1+4cost—sint—2u (t— 5) (1 —sint),

or
T
< 5,

1+ cost—sint, 0<
y:
t>

t
. T
—1 4 cost +sint, 5

which is the result obtained in Example 5.5.1.

REMARK: It isn’t obvious that using the Laplace transform to solve (5.5.2) as we did in
Example 5.5.2 yields a function y with the properties stated in Theorem 5.5.1; that is,
such that y and y’ are continuous on [0, c0) and y” has limits from the right and left at
t1. However, this is true if f; and f; are continuous and of exponential order on [0, co).
A proof is sketched in Exercises 8.6.11-8.613.

Example 5.5.3 Solve the initial value problem

y”"—y="1(t), y(0)=-1,y'(0)=2, (5.5.8)

t, 0<t<1,
ﬂ”:{1 t>1.

where
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Solution Here
flt)=t—u(t—1)(t—1),
SO
L(f) = L) =L (ult—1)(t—1))
= L(t) — e *L(t) (from Theorem 5.4.1)
1 e s
A
Since transforming (5.5.8) yields
(s> —1)Y(s) = L(f) +2 —s,
we see that 5
—s
Y(s)=(1—e *)H 5.5.9
(5) = (1= e )H(s) + 55—, (55.9)
where ) ) )
H(s) = s2(s2 —1) Ts2—1 2
therefore
h(t) =sinht —t. (5.5.10)
Since
1 2—s .
L 5 = 2sinht — cosh t,
sc—1
we conclude from (5.5.9), (5.5.10), and Theorem 5.4.1 that
y=sinht—t—u(t—1) (sinh(t—1) —t+ 1) + 2sinh t — cosh t,
or
y=3sinht—cosht —t—u(t—1) (sinh(t—1) —t+1) (5.5.11)

We leave it to you to verify that y and y’ are continuous and y” has limits from the right
and left at t; = 1.

Example 5.5.4 Solve the initial value problem

y"+y="~f(t), y(0)=0,y'(0)=0, (5.5.12)
where -
0, 0<t<,
f(t) =< cos 2t, g <t<m,
0, t>m
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Solution Here
f(t) = u(t —7mw/4) cos 2t — u(t — 7) cos 2t,

SO

L(f) = L(u(t—m/4)cos2t) — L (u(t — ) cos2t)
e /1L (cos 2(t + 7/4)) — e L (cos 2(t + 7))
= —e /4L (sin2t) — e L (cos 2t)
267715/4 ge TS

244 2447

Since transforming (5.5.12) yields
(s* +1)Y(s) = £(f),

we see that
Y(s) = e ™/*H;(s) + e " Ha(s), (5.5.13)
where

2 S
(s2+1)(s2 +4) and  Hy(s) = (2 1)(s2+4)

Hi(s) = — (5.5.14)

To simplify the required partial fraction expansions, we first write

1 1T 1 1
(x+1(x+4) 3 {x+1_x+4]'

Setting x = s2 and substituting the result in (5.5.14) yields

Hl(s)—z[ L L ] and Hg(s)—l[ S S }

30241 s2+4 30241 s2+4
The inverse transforms are

2 1 1 1
hy(t) = —3 sint + 3 sin2t and hy(t) = —3 cost+ 3 cos 2t.

From (5.5.13) and Theorem 8.4.2,

y=u (t - g) h (t - g) Fu(t — mha(t — 7). (5.5.15)
Since
hy (t—g) = —%sin (t—g) —|—%sin2 (t—%)
V2

= ———(sint—cost) — ! 2t
= in =
5 (s cos 5 08
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Figure 5.2 Graph of (5.5.16)
and
1 1
ho(t—m) = —3 cos(t—m) + 3 cos2(t —m)
= 1cos.t—i— 1cos2t
-3 3 ’
(5.5.15) can be rewritten as
1 s ) 1
y= —gu (t — Z) (\/5(5111‘( — cost) + cos 2t> + gu(t — 71)(cost + cos 2t)
or -
0 0<t<—,
) < 1
2 1
y= —\S[(Sint —cost) — 3 cos 2t, g <t<m, (5.5.16)
2 1 2
\3[ sint + +3\f cost, t>m

We leave it to you to verify that y and y’ are continuous and y” has limits from the right
and left at t; = /4 and t» = 7 (Figure 5.2).

5.5 Exercises

In Exercises 1-20 use the Laplace transform to solve the initial value problem. Where
indicated by

, graph the solution.

. 3, 0<t<m, ,
1. y'+y= y(0) =0, y(0)=0
) t>7-[7
1" _ 37 0<t<47 _ !/ _
y , 4, 0<t<1, ,
3. y'—2y = y(0) =—6, y'(0)=1
6, t>1,
. et 0<t<?, ,
4. y"—y= y(0) =3, y'(0)=-1
1, t>2,
0, 0<t<1,
5. y' =3y’ +2y=4¢ 1, 1<t<2, y(0)=-3, y'(0)=1
1, t>2,
[sint|, 0<t<2m,
6. y"+4‘J:{ >2 y(0)=-3, y'(0)=1
) t/ 7.[7
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Chapter 5 Laplace Transforms

I, 0<t<l1
y' =5y’ +4y=< —1, 1<t<2, y(0) =3, y'(0)=-5
0, t>2,
37
cost, 0<t<?,
Y+ 9y = - y(0) =0, y'(0) =0
sint, t> —,
2
s
c 0<t<g,
C/Gly" +4y = ﬂ y(0) =0, y'(0)=0
U t>77
2
y t, 0<t<m, ,
y f+y= y(0) =0, y'(0) =0
—t, t=>m
0, 0<t<2,
y”—3y+2y={2t_4 t> 9 » y(0)=0, y'(0)=0
t, 0<<t<2m,
1, 0<t<?2,
y”+3y’+29—{_1’ coo  yl0)=0,y(0)=0
-1, 0<t<1,
y”—4W+39={ L t>1 y(0) =0, y'(0) =0
et, 0<t<l1,
y”+%ﬂ+y={et_1 £> 1 y(0) =3, y'(0) = -1
4et, 0<t<1,
y”+mﬂ+y:{ 0. t>1 y(0) =0, y'(0) =0
et 0<t<1,
y”+3w+2y={ 0. t>1 y(0) =1, y'(0) = -1

2t
"o . e, 0<t<2, _ ey
y 4y+@—{_g3t>z y(0) =0, y'(0) =—1

2, 0<t<l,

C/Gly"={ —t, 1<t<2 y(0)=1,y'(0)=0

t+1, t>2,

1, 0<t<2m,
y"+2y’ +2y = t, 2n<t<3m y(0)=2, y'(0)=-1
—1, t>=3m,

Solve the initial value problem



22,

23.

24.
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where

ft)=m+1, m<t<m+1, m=0,1,2,....

Solve the given initial value problem and find a formula that does not involve step
functions and represents y on each interval of continuity of f.

(a)

(b)

(c)

(d)

(e)

(f)

(a)

(b)
(c)

()

y"+y=~F(t), y0)=0, y'(0)=0;

flt)=m+1, ma<t<(m+1ln, m=0,1,2,....

y"+y="~(t), y(0)=0, y'(0)=0;

ft)=(m+1t, 2ma<t<2m+1)nr, m=0,1,2,... HINT: You'll need
the formula

m(m-+1)

L2+ dm=——

y” +y =f(t), y(O)—O y'(0) =

fit)=(—-1)™, mm (m+ I)m, m=0,1,2,....
y” —y =f(t), y(O)—O y'(0) =

ft)=m+1, m<gt (m+1), m—0,1,2,....
HINT: You will need the formula

Thrd ™= (r#1).

y”"+2y' +2y=~f(t), y(0)=0, y'(0)=0;

f(t) =(m+1)(sint+2cost), 2mn<t<2(m+1)r, m=0,1,2,....
(See the hint in (d).)

y"” =3y’ +2y =1(t), y(0)=0, y'(0)=0;

f(t)=m+1, m<t<m+1, m=0,1,2,....

(See the hints in (b) and (d).)

Let g be continuous on («, 3) and differentiable on the («, tg) and (to, ).

Suppose A = lim¢_,¢,— g’(t) and B = lim{_,¢,4 g’(t) both exist. Use the mean
value theorem to show that

lim 79“) —9(to) =A and lim 79(” —9(to)
t—to— t—1to t—to+ t—1

= B.

Conclude from (a) that g’(ty) exists and g’ is continuous at tq if A = B.

Conclude from (a) that if g is differentiable on («, ) then g’ can’t have a jump
discontinuity on («, ).

Let a, b, and c be constants, with a # 0. Let f be piecewise continuous on
an interval («, 3), with a single jump discontinuity at a point tg in («, f3).
Suppose y and y’ are continuous on (e, 3) and y” on («,ty) and (to, B).
Suppose also that

ay” + by’ +cy = f(t) (A)
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on (o, tg) and (tg, f). Show that

f(to+) — f(to—)
a

y"(to+) —y"(to—) = £ 0.

(b) Use (a) and Exercise 23(c) to show that (A) does not have solutions on any
interval («, 3) that contains a jump discontinuity of f.

25. Suppose Py, P1, and P, are continuous and Py has no zeros on an open interval
(a,b), and that F has a jump discontinuity at a point t; in (a, b). Show that the
differential equation

Po(t)y” + P1(t)y’ + Pa(t)y = F(t)

has no solutions on (a, b).HINT: Generalize the result of Exercise 24 and use Exer-

cise 23(c).
26. Let0O=tg<t; <---<tn. Suppose fn, is continuous on [ty,00) form=1,...,n.
Let

f(t) = fm(t), tm <t<tmyr, m=1,...,n—1,
L (), t>te

Show that the solution of

ay” + by’ +ey =1(t), y(0)=ko, y'(0) =k,
as defined following Theorem 8.5.1, is given by
zo(t), 0<t<ty,

<

zo(t) + z1(t), t <t <ty

ZO+"'+anl(t)7 tn71<t<tna
o+t zlt), t> it

where zg is the solution of
az” + bz’ +cz="fy(t), z(0)=ko, Zz'(0) =¥k
and z., is the solution of
az” +bz 4+ cz=fm(t) = fm_1(t), z(tm)=0, z'(tm)=0

form=1,...,n.

5.6 CONVOLUTION
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In this section we consider the problem of finding the inverse Laplace transform of a
product H(s) = F(s)G(s), where F and G are the Laplace transforms of known functions
f and g. To motivate our interest in this problem, consider the initial value problem

ay” +by' +cy =f(t), y(0)=0, y'(0)=0.
Taking Laplace transforms yields

(as® +bs+c)Y(s) = F(s),

SO
Y(s) = F(s)G(s), (5.6.1)
where .
6l8) = o T os ¢

Until now wen’t been interested in the factorization indicated in (5.6.1), since we dealt
only with differential equations with specific forcing functions. Hence, we could simply
do the indicated multiplication in (5.6.1) and use the table of Laplace transforms to find
y = £71(Y). However, this isn’t possible if we want a formula for y in terms of f, which
may be unspecified.

To motivate the formula for £1(FG), consider the initial value problem

y' —ay =f(t), y(0)=0, (5.6.2)

which we first solve without using the Laplace transform. The solution of the differential
equation in (5.6.2) is of the form y = ue®* where

u = e ().

Integrating this from 0 to t and imposing the initial condition u(0) = y(0) = 0 yields

t
u= J e 4T (1) d.
0

Therefore

t t

e i) dr = | o) d (5:63)
0

y(t) = e“tJ

0

Now we'll use the Laplace transform to solve (5.6.2) and compare the result to (5.6.3).
Taking Laplace transforms in (5.6.2) yields

(s —a)Y(s) = F(s),

SO
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which implies that

yﬁ)=61<Hw ! >. (5.6.4)

then (5.6.3) and (5.6.4) can be written as

t
ylv) =J f(r)g(t — 1) dr
0
and
y =L 1(FG),

respectively. Therefore
t

L7YFG) = J f(t)g(t—7)dt (5.6.5)
0

in this case.
This motivates the next definition.

Definition 5.6.1 The convolution f * g of two functions f and g is defined by

t

(fxg)(t) = JO f(1)g(t — 1) dr.

It can be shown (Exercise 6) that f x g = g * f; that is,

t

t
J f(t—T)g(t)dt = J f(t)g(t—7)dr.
0 0

Eqn. (5.6.5) shows that L7YFG) = f x g in the special case where g(t) = e®*. This next
theorem states that this is true in general.

Theorem 5.6.2 [The Convolution Theorem] If L(f) = Fand £(g) = G, then
L(fxg)=FG.

A complete proof of the convolution theorem is beyond the scope of this book. How-
ever, we'll assume that f * g has a Laplace transform and verify the conclusion of the
theorem in a purely computational way. By the definition of the Laplace transform,

T et (e g)(1) dt = ro ot J f(r)g(t 1) drdt,
0 0

LH*g)—J

0

This iterated integral equals a double integral over the region shown in Figure 5.1.
Reversing the order of integration yields

L(f*g) = J:o (1) JOO e Stg(t—1)dtdr. (5.6.6)
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Figure 5.1

However, the substitution x = t — T shows that

J e Stgt—1)dt = J e ST g(x) dx
T 0

= eSTJ e *g(x)dx =e *TG(s).
0

Substituting this into (5.6.6) and noting that G(s) is independent of T yields

L(fxg) = Eo e S f(1)G(s) dt

= G(s) J:o e S (1) dt = F(s)G(s).

Example 5.6.1 Let
f(t) =e and g(t) =e®t (a#Db).
Verify that £(f * g) = £(f)£(g), as implied by the convolution theorem.

Solution We first compute

t t
(fxg)(t) = J edTeb(t=T) qr = bt | ola=bltgq
0 0
ebte(a_b)T ¢ ebt [e(a—b]t _ 1]
eat _ ebt
B a—>b
Since
at 1 bt 1
e = and e°' & 7
s§s—a s—b
it follows that
1 1 1
L(f = _
(f*g) a_b[s_a S_b}
-1
" (s—a)(s—Vb)

= L(e*)L(eP") = L(f)L(g).

A Formula for the Solution of an Initial Value Problem

267

The convolution theorem provides a formula for the solution of an initial value problem
for a linear constant coefficient second order equation with an unspecified. The next

three examples illustrate this.
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Example 5.6.2 Find a formula for the solution of the initial value problem

y”" =2y’ +y="~(t), y(0)=ko, y'(0)=ki.

Solution Taking Laplace transforms in (5.6.7) yields
(s2 —2s 4+ 1)Y(s) = F(s) + (kq + kos) — 2ko.

Therefore

1 k1 + kos — 2kg

Y(s) = 7(8_1)2F(S)+ 51

1 ko k1 — ko
- F .
(s —1)2 (S)+s—1+(s—1)2

From the table of Laplace transforms,

_ Ko k1 — ko
£t =eb (ko + (k1 — ko)t).
<3_1+(S_1)2> e (ko + (k1 —ko)t)

Since )
m <~ tet and F(S) <~ f(t),

the convolution theorem implies that

1 t
—1
L ((s — 1)2F(s)> = Jo 1e" f(t —7) dT.
Therefore the solution of (5.6.7) is

t
y(t) = e* (ko + (k1 — ko)t) —I—J e f(t —7) dT.
0

Example 5.6.3 Find a formula for the solution of the initial value problem

y”"+4y =f(t), y0)=ko, y'(0)=ki.

Solution Taking Laplace transforms in (5.6.8) yields
(s +4)Y(s) = F(s) + k1 + kos.

Therefore . o+ k
Y(s)= —— F 1T os
() (s2+4) (s)+ s2+4

From the table of Laplace transforms,

ki +k k
o1 (l;:_f) = ko cos 2t + %sin 2t.

(5.6.7)

(5.6.8)
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Since ) )
m < isin 2t and F(S) < f(t),

the convolution theorem implies that
Lt L F(s) ] = 1Jt f(t — ) sin2tdt
(32 + 4) N 2 0 '
Therefore the solution of (5.6.8) is

k 1(t
y(t) = kocos2t + ?lsin2t+ ZJ f(t—T)sin2tdT.
0

Example 5.6.4 Find a formula for the solution of the initial value problem

y”+2y" +2y="~(t), y(0)=ko, y'(0)=Kki.

Solution Taking Laplace transforms in (5.6.9) yields
(s2+2s +2)Y(s) = F(s) + k1 + kos + 2ko.

Therefore

1 k1 + kos + 2k
Y(s) = 7F(SJ+W

(s+1)2+1
1 (k1 +ko) +ko(s +1)

B T L e s i

From the table of Laplace transforms,

-1 ((kl + ko) + ko(s + 1)
(s+1)2+1

) =e " ((k; +ko)sint + kgcost).

Since
1

———— &
(s+1)2+1
the convolution theorem implies that

_ 1 t .
L1 (M)QHF(SO = Jo f(t—7)e TsinTdT.

Therefore the solution of (5.6.9) is

e 'sint and F(s) & f(t),

t
y(t) = et ((ky + ko) sint + kg cost) —i—J f(t—1)e TsinTdrT.
0

Evaluating Convolution Integrals

269

(5.6.9)

(5.6.10)

We'll say that an integral of the form j; u(t)v(t — 1) dt is a convolution integral. The
convolution theorem provides a convenient way to evaluate convolution integrals.
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Example 5.6.5 Evaluate the convolution integral

h(t) = J(:(t —1)%1"dr.

Solution We could evaluate this integral by expanding (t — )5 in powers of T and then
integrating. However, the convolution theorem provides an easier way. The integral is
the convolution of f(t) = t°> and g(t) = t’. Since

5! 7!
2o — and t" o =
s S

the convolution theorem implies that

5171 5171 13!

Mt & G = 131 o

where we have written the second equality because

Hence,
t) = ——1".
h{t) 13!

Example 5.6.6 Use the convolution theorem and a partial fraction expansion to evaluate
the convolution integral

h(t) = E sina(t—T)cosbtdt (|lal # |b]).

Solution Since

. a S
sin at < 5 9 and cos bt < ICENEYL
s“+a s“+b

the convolution theorem implies that

a s
s2 4+ a?s? 4 b2’

H(s)

Expanding this in a partial fraction expansion yields

a s s
H(s) = —
(s) b2 —a? [s2+a? s2+4+Db?
Therefore
h(t) = (cos at — cos bt).

b2 — a2
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Volterra Integral Equations

An equation of the form

y(t) =f(t) + J k(t—T)y(t)dt (5.6.11)

is a Volterra integral equation. Here f and k are given functions and y is unknown. Since
the integral on the right is a convolution integral, the convolution theorem provides a
convenient formula for solving (5.6.11). Taking Laplace transforms in (5.6.11) yields

Y(s) =F(s) + K(s)Y(s),
and solving this for Y(s) yields

F(s)

Y(s) = 1—7K(S)

We then obtain the solution of (5.6.11) asy = £~ 1(Y).

Example 5.6.7 Solve the integral equation
t

yt) =1+2 L e 2Ty (1) dr. (5.6.12)

Solution Taking Laplace transforms in (5.6.12) yields

1 2
Yls) = S + =5 YIs),
and solving this for Y(s) yields
Y(s) =~ + =
s s?
Hence,
y(t) =1+2t.

Transfer Functions
The next theorem presents a formula for the solution of the general initial value problem
ay” +by’ +cy =1(t), y(0) =ko, y'(0) =k,

where we assume for simplicity that f is continuous on [0, co) and that £(f) exists. In
Exercises 11-14 it’s shown that the formula is valid under much weaker conditions on f.


http://www-history.mcs.st-and.ac.uk/Mathematicians/Volterra.html

272 Chapter 5 Laplace Transforms

Theorem 5.6.3 Suppose f is continuous on [0,00) and has a Laplace transform. Then the
solution of the initial value problem

ay” +by’ +cy=~f(t), y0)=%ko, y'(0)=ky, (5.6.13)
is .
y(t) = koyr () + kyya(t) + J Wl f(t — 1) dr, (5.6.14)
0
where yy and ys satisfy
ay; +by;+cy1 =0, yi(0)=1, yi(0)=0, (5.6.15)
and
and .
w(t) = ayg(t). (5.6.17)

Proof Taking Laplace transforms in (5.6.13) yields

p(s)Y(s) = F(s) + a(k; + kos) + bko,

where
p(s) = as® +bs +c.
Hence,
Y(s) = W(s)F(s) + V(s) (5.6.18)
with )
W(s)= — 5.6.19
B ( )
and k1 + k bk
V(s) = AL+ kos) & Do, (5.6.20)
p(s)
Taking Laplace transforms in (5.6.15) and (5.6.16) shows that
p(s)Yi(s) =as+b and p(s)Ya(s)=a.
Therefore b
as
Yi(s) =
p(s)
and a
Yo(s) = —. 5.6.21
2(s) (5] ( )

Hence, (5.6.20) can be rewritten as

V(s) =koY1(s) + ki Ya(s).
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Substituting this into (5.6.18) yields
1
Y(s) =koY1(s) + k1 Ya(s) + EY2(S)F(S)~

Taking inverse transforms and invoking the convolution theorem yields (5.6.14). Finally,
(5.6.19) and (5.6.21) imply (5.6.17). [ |
It is useful to note from (5.6.14) that y is of the form

y=v+h,
where
v(t) = koy1(t) + kiya(t)
depends on the initial conditions and is independent of the forcing function, while
t
h(t) = J w(Tt)f(t—71)dt
0
depends on the forcing function and is independent of the initial conditions. If the zeros
of the characteristic polynomial

p(s) = as’? +bs+c

of the complementary equation have negative real parts, then y; and y, both approach
zero as t — 00, s0 limt_,, v(t) = 0 for any choice of initial conditions. Moreover,
the value of h(t) is essentially independent of the values of f(t — T) for large T, since
lim_, 0 W(T) = 0. In this case we say that v and h are transient and steady state components,
respectively, of the solution y of (5.6.13). These definitions apply to the initial value
problem of Example 5.6.4, where the zeros of

pls)=s2+2s+2=(s+1)?+1

are —1 £ i. From (5.6.10), we see that the solution of the general initial value problem of
Example 5.6.4 is y = v + h, where

v(t) = e " ((k1 + ko) sint + kg cos t)

is the transient component of the solution and

t
h(t) = J f(t—T)e “sintdT
0
is the steady state component. The definitions don’t apply to the initial value problems
considered in Examples 5.6.2 and 5.6.3, since the zeros of the characteristic polynomials
in these two examples don’t have negative real parts.
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In physical applications where the input f and the output y of a device are related by
(5.6.13), the zeros of the characteristic polynomial usually do have negative real parts.
Then W = L(w) is called the transfer function of the device. Since

we see that

is the ratio of the transform of the steady state output to the transform of the input.

Because of the form of .

h(t) = J w(T)f(t — 1) dr,
0

w is sometimes called the weighting function of the device, since it assigns weights to
past values of the input f. It is also called the impulse response of the device, for reasons
discussed in the next section.

Formula (5.6.14) is given in more detail in Exercises 8-10 for the three possible cases
where the zeros of p(s) are real and distinct, real and repeated, or complex conjugates,
respectively.

5.6 Exercises

1. Express the inverse transform as an integral.

1 S
(@) s2(s2 +4) ®) (s +2)(s2+9)
s s
© T @ e
1 1
(e) s(s—a) ® (s +1)(s2+2s+2)
1 1
® G2 a5+ 5) e P TP
) s—1 G) s(s+3)
! s2(s2 —2s +2) J (s2 +4)(s2 + 6s + 10)
1 1
(o (s —3)5s D (s —1)3(s2 +4)
1 1
() s2(s —2)3 @) s7(s—2)6

2. Find the Laplace transform.

t
(a) J sinatcosb(t—1)dt
0

t
(b) J e'sina(t—1)dt
0



t
(o) J sinh atcosh a(t — T) dt
0

t
(e) et J sin wtcos w(t — 1) dt
0
t
(g et J e "teosw(t—T)dt
0

t
i) J te®Tsin 2(t — 1) dt
0
t
(k) J e (T gin3(t— 1) dr
0

t
(m) J (t—7)7e Tsin2tdr
0
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t
(d) J T(t— 1) sinwTtcosw(t — ) dt
0

t
f) et J ?(t—1)e"dr
0
t

(h) et J e?Tsinh(t — ) dt
0

t

(j)J (t— 1) dr
0
t

) J 2 (t—1)3dr
0

t
(n) J (t—1)*sin2tdr
0

3. Find a formula for the solution of the initial value problem.

@y”+3y’'+y="F(t), y0)=0, y'(0)=0
b)y” +4y =f(t), y(0)=0, y'(0)=0
@y”"+2y' +y=~f(t), y0)=0, y’(0)=0
dy” +ky=1f1t), y0)=1, y’(0)=-1

(e y” +6y’ +9y="~f(t), y(0)=0, y'(0)=-2
®y” —4y="F(t), y(0)=0, y'(0)=3
(®y"” -5y +6y="~f(t), y0)=1, y'(0)=3
() y” +w?y =f(t), y(0)=ko, y'(0)=k

4. Solve the integral equation.

t
@y(t) = t—J (t—1y(t)dt
0

t

(b) y(t) =sint — QJ cos(t —T)y(T) dt

0
t
(dyﬁ)=1+2J
0
t

t

y(1) cos(t — 1) dud) y(t) =t + J y(t)e " ar

0

e y'(t) :t+J y(t) cos(t — 1) dt, y(0) =4

0
t

(f) y(t) =cost —sint +J y(T)sin(t—7) dt

0

5. Use the convolution theorem to evaluate the integral.
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ot t
@ | t—7"dr (b) J (t—71)37" dr
Jo 0
rt . t
| (t—1)5"dr (d) J e Usin(t—T)dT
Jo 0
rt
(e) | sinTcos2(t—1)drt
Jo
Show that

t

t
J f(t—T)g(T)dT :J f(t)g(t—7)dt
0 0

by introducing the new variable of integration x = t — T in the first integral.
Use the convolution theorem to show that if f(t) <> F(s) then

r f(t)dTt < F(SS)

0

Show that if p(s) = as? + bs + ¢ has distinct real zeros r; and t5 then the solution

of
ay” +by’ +cy =£(t), y0)=ko, y'(0)=k

is
rQeT‘lt _ .rl eT‘Qt eT‘Qt _ eT‘lt
ylt) = ko + k1
To—T1 To—T1
1 t
+— J (e — e N)f(t — 1) dT.
a(ra —711) Jo

Show that if p(s) = as? + bs +chasa repeated real zero r; then the solution of
ay” +by’ +cy =f(t), y0)=ko, y'(0)=ky

is
t

1
y(t) = ko(1 —7rt)e™t + kyte™t + aJ Te" " f(t —7) dT.
0

Show that if p(s) = as® + bs + ¢ has complex conjugate zeros A & iw then the

solution of
ay” +by’ +cy=~(t), y(0)=ko, y'(0)=k;

is

A
yt) = eM [kg(cos wt — — sin wt) + ki sin wt]
w w

1 t
+— J eMf(t — 1) sinwt dT.
aw Jo
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11. Let

1
=L
W <as2+bs+c>’

where a, b, and ¢ are constants and a # 0.

(a) Show that w is the solution of
aw” +bw’ +ecw =0, w(0)=0, W' (0) =
(b) Let f be continuous on [0, c0) and define

t
h(t) = Jo w(t —1)f(7) dT.

Use Leibniz’s rule for differentiating an integral with respect to a parameter to
show that h is the solution of

ah” +bh/+ch=f, h(0)=0, h'(0)=0.

(c) Show that the function y in Eqn. (5.6.14) is the solution of Eqn. (5.6.13) pro-
vided that f is continuous on [0, co); thus, it’s not necessary to assume that f
has a Laplace transform.

12. Consider the initial value problem
ay” +by’ +ecy =f(t), y(0)=0, y'(0)=0, (A)

where a, b, and c are constants, a # 0, and

Assume that f( is continuous and of exponential order on [0, c0) and f; is continu-
ous and of exponential order on [t;, c0). Let

p(s) = as®> + bs +c.
(a) Show that the Laplace transform of the solution of (A) is

Fo(s) +e St G(s)

Vis) = p(s)

where g(t) = fi(t +t1) — fo(t + t1).
(b) Letw be as in Exercise 11. Use Theorem 5.4.2 and the convolution theorem to
show that the solution of (A) is

t—t

y(t) = J w(t —1)fo(t) dt+ u(t — t1) L w(t—1t; —T)g(T)dT

fort > 0.
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(c) Henceforth, assume only that fj is continuous on [0, co) and f; is continuous
on [tq, 00). Use Exercise 11 (a) and (b) to show that

t—t;

y'(t) = L w'(t —1)fo(7) dT—I—u(t—tl)JO w/(t—t; —1)g(T) dT

fort > 0, and
1 f(t) t 1 th 1
y (t):T+ w’(t—1)fp(t)dt+u(t—t1) w'(t—t; —T1)g(T)dT
0 0

for 0 <t < t; and t > t;. Also, show y satisfies the differential equation in
(A) on(0,t1) and (ty, c0).

(d) Show thaty and y’ are continuous on [0, co).

13. Suppose
fo(t), 0<t<ty,
fi(t), t1<t<ty,
f(t) = :
fro1(t), teor <t <ty
fi(t), t=>ty,
where f,,, is continuous on [t,,00) for m =0, ...,k (let tg = 0), and define

gm(t) =fm{t+tm) —fm_1(t+tm), m=1,... k.
Extend the results of Exercise 12 to show that the solution of
ay” +by’ +cy=£(t), y0)=0, y'(0)=0
is
t—tm

t k
y(t) = L wt—Dfo(t)dt+ ) u(t—tm) L Wt — tym — T)gm (1) dT.
m=1

14. Let{tm]J%_,beasequence of points such thatty =0, tm1 > tm, and limm 00 tm =
oo. For each nonegative integer m let f,, be continuous on [t,, c0), and let f be
defined on [0, oo) by

Let

Extend the results of Exercise 13 to show that the solution of

ay” +by’ +ecy =f(t), y(0)=0, y'(0)=0
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is
t—tm

t o0
y(t) = L wit—Dfo(t)dt+ ) ult—tm) L W(t — tm — T)gm (1) dT.
m=1

HINT: See Exercise30.

5.7 CONSTANT COEFFICIENT EQUATIONS WITH IMPULSES

So far in this chapter, we’ve considered initial value problems for the constant coefficient
equation
ay” + by’ +cy = f(t),

where f is continuous or piecewise continuous on [0, c0). In this section we consider
initial value problems where f represents a force that’s very large for a short time and
zero otherwise. We say that such forces are impulsive. Impulsive forces occur, for example,
when two objects collide. Since it isn’t feasible to represent such forces as continuous or
piecewise continuous functions, we must construct a different mathematical model to
deal with them.
If f is an integrable function and f(t) = 0 for t outside of the interval [to, tg + h], then
I;”Lh f(t) dt is called the total impulse of f. We're interested in the idealized situation
where h is so small that the total impulse can be assumed to be applied instantaneously
att = tg. We say in this case that f is an impulse function. In particular, we denote by
d(t — tp) the impulse function with total impulse equal to one, applied at t = t¢. (The
impulse function 5(t) obtained by setting to = 0 is the Dirac § function.) It must be
understood, however, that 6(t — tg) isn’t a function in the standard sense, since our
“definition” implies that 6(t — tg) = 0 if t # to, while

to
J 5(t —to) dt = 1.
to

From calculus we know that no function can have these properties; nevertheless, there’s
a branch of mathematics known as the theory of distributions where the definition can be
made rigorous. Since the theory of distributions is beyond the scope of this book, we’ll
take an intuitive approach to impulse functions.

Our first task is to define what we mean by the solution of the initial value problem

ay” + by’ +cy =58(t—tg), y(0)=0, y'(0)=0,
where t is a fixed nonnegative number. The next theorem will motivate our definition.

Theorem 5.7.1 Suppose to > 0. For each positive number h, let Yy, be the solution of the initial
value problem

ayy, + byy, + cyn = fr(t), yn(0) =0, y;(0) =0, (5.7.1)


http://www-history.mcs.st-and.ac.uk/Mathematicians/Dirac.html
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Figure 5.1 y = fy(t)

where
0, 0

<
fu(t) = ¢ 1/h, to<t<ty+h,
07 t>t0+h7

t < 1o,

so Ty, has unit total impulse equal to the area of the shaded rectangle in Figure 5.1. Then

lim yn(t) =u(t —to)w(t —to),
h—0+

where .

=t (e
Proof Taking Laplace transforms in (5.7.1) yields

(as® + bs +¢)Yr(s) = Fr(s),
SO

Fr(s)

Yi(s) = — S
n(s) as2+bs+c

The convolution theorem implies that

Therefore, (5.7.2) implies that

0, 0<t<ty,
1 t
_ —| wt—1)dr, typ<t<ty+h,
Yyn(t) = hLo 0 0
1 to+h
hJ w(t—T1)dt, t>tg+h.
to

Since yn(t) =0 forall hif 0 < t < tg, it follows that

lim yp(t)=0 if 0<t< to.
h—0+

We’ll now show that

li = — if )
hg(r)lerh(t) w(t—tg) if t>tg

Suppose t is fixed and t > t. From (5.7.4),

1 to+h
yh(t):J w(t—T1)dt if h<t—tg.
h )y,

(5.7.2)

(5.7.3)

(5.7.4)

(5.7.5)

(5.7.6)

(5.7.7)
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Since
! Jt0+h d (5.7.8)
— T=1, 7.
h Jy,
we can write
1 to+h 1 to+h
w(t—1tg) = W(t—to)J dT:J w(t —tg)dt
h to h Jy,
From this and (5.7.7),
1 to+h
Yn(t) —w(t —to) = J (w(t =) —w(t —t)) dr
h Jy,
Therefore
to+h
[Yn(t) — w(t — to)] < hj Wit — 1) — it — to) dr. (5.7.9)
to

Now let My, be the maximum value of [w(t — 1) — w(t — tp)| as T varies over the interval
[to, to + hl. (Remember that t and t( are fixed.) Then (5.7.8) and (5.7.9) imply that

1 to+h
|yh(t) —W(t — t0)| < thJ dt = Mh' (5710)

to

But limp 04 My = 0, since w is continuous. Therefore (5.7.10) implies (5.7.6). This and
(5.7.5) imply (5.7.3). [ |
Theorem 5.7.1 motivates the next definition.

Definition 5.7.2 If t; > 0, then the solution of the initial value problem
ay” +by’ +cy =5(t—to), y(0)=0, y'(0)=0, (5.7.11)

is defined to be
y =ut —to)w(t —to),

where
_ 1 1

=0 —_— .
W <a32+bs+c>

In physical applications where the input f and the output y of a device are related by
the differential equation
ay” +by’ +cy = f(t),

w is called the impulse response of the device. Note that w is the solution of the initial
value problem

aw” +bw’ +ecw =0, w(0)=0, w'(0)=1/a, (5.7.12)
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Figure 5.2 An illustration of Theorem 5.7.1

as can be seen by using the Laplace transform to solve this problem. (Verify.) On the
other hand, we can solve (5.7.12) by the methods of Section 5.2 and show that w is
defined on (—o0, o) by

Tot _ orit

w= ez;el, w= lte”t, or w= Le)‘t sin wt, (5.7.13)

a(ro — 1) a aw
depending upon whether the polynomial p(r) = ar?+br+c has distinct real zeros 1 and
T2, a repeated zero 1, or complex conjugate zeros A £ iw. (In most physical applications,
the zeros of the characteristic polynomial have negative real parts, so lim¢_, . w(t) = 0.)
This means that y = u(t — to)w(t — t¢) is defined on (—o0, c0) and has the following
properties:

y(t) =0, t<to,

ay”4+by’ +cy=0 on (—oo,tg) and (to,00),

and
Yy’ (to) =0, yilto)=1/a (5.7.14)

(remember that y’ (to) and y/_ (to) are derivatives from the right and left, respectively)
and y’(to) does not exist. Thus, even though we defined y = u(t — to)w(t — to) to be
the solution of (5.7.11), this function doesn’t satisfy the differential equation in (5.7.11) at
tp, since it isn’t differentiable there; in fact (5.7.14) indicates that an impulse causes a
jump discontinuity in velocity. (To see that this is reasonable, think of what happens
when you hit a ball with a bat.) This means that the initial value problem (5.7.11) doesn’t
make sense if ty = 0, since y’(0) doesn’t exist in this case. However y = u(t)w(t) can be
defined to be the solution of the modified initial value problem

ay” +by’ +cy=205(t), y(0)=0, y’(0)=0,

where the condition on the derivative at t = 0 has been replaced by a condition on the
derivative from the left.

Figure 5.2 illustrates Theorem 5.7.1 for the case where the impulse response w is the
first expression in (5.7.13) and r; and r; are distinct and both negative. The solid curve
in the figure is the graph of w. The dashed curves are solutions of (5.7.1) for various
values of h. As h decreases the graph of y, moves to the left toward the graph of w.

Example 5.7.1 Find the solution of the initial value problem
y"—2y' +y=5(t—to), y(0)=0, y'(0)=0, (5.7.15)

where ty > 0. Then interpret the solution for the case where ty = 0.

Solution Here

1 1
:L—l - :L—l —t —t
W <52—2s+1> <(s—1)2) €
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Figure 5.3y = u(t — to)(t — tg)e~ (t—to)
so Definition 5.7.2 yields
y =u(t—to)(t—to)e (0

as the solution of (5.7.15) if tg > 0. If tg = 0, then (5.7.15) doesn’t have a solution;
however, y = u(t)te”* (which we would usually write simply as y = te™ ') is the
solution of the modified initial value problem

y”"—2y' +y=5(t), y(0)=0, y’ (0)=0.

The graph of y = u(t — to)(t — to)e~ (! 7o) is shown in Figure 5.3 [ ]
Definition 5.7.2 and the principle of superposition motivate the next definition.

Definition 5.7.3 Suppose « is a nonzero constant and f is piecewise continuous on
[0, 00). If tg > 0, then the solution of the initial value problem

ay” +by’ +cy =f(t) + ad(t—to), y(0) =ko, y'(0) =k

is defined to be
y(t) = 9(t) + ot — to)w(t — to),

where | is the solution of

ay”+by’ +cy =1(t), y(0)=ko, y'(0)=k:.
This definition also applies if ty = 0, provided that the initial condition y’(0) = k; is
replaced by y’ (0) = k.

Example 5.7.2 Solve the initial value problem

y” +6y’ +5y=3e2+25(t—1), y(0)=-3, y'(0)=2. (5.7.16)

Solution We leave it to you to show that the solution of
y” +6y’ +5y =3e*, y(0)=-3, y'(0) =2

is

Since
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Figure 5.4 Graph of (5.7.17) Figure 5.5 Graph of (5.7.19)

the solution of (5.7.16) is

—(t—1) —5(t—1)

— €

—2t
=—e

5
e ot — §e_t +u(t—1) (5.7.17)

N | —

(Figure 5.4) m
Definition 5.7.3 can be extended in the obvious way to cover the case where the forcing
function contains more than one impulse.

Example 5.7.3 Solve the initial value problem

Yy’ +y=1428(t—m) —35(t—2m), y(0)=—1, y'(0) =2 (5.7.18)

Solution We leave it to you to show that
J=1—2cost+2sint

is the solution of
y"+y=1, y(0)=-1, y'(0)=2

1
w = £_1 <S2—|—1) = Sin't7

y = 1—2cost+ 2sint+ 2u(t — m)sin(t — ) — 3u(t — 27) sin(t — 27)
= 1—2cost+2sint—2u(t—m)sint — 3u(t — 27)sin t,

Since

the solution of (5.7.18) is

or
1—2cost+2sint, 0<t<m,

y= 1 —2cost, <t <2m, (5.7.19)
1—2cost—3sint, t>2m
(Figure 5.5).
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5.7 Exercises

In Exercises 1-20 solve the initial value problem. Where indicated by , graph the

solution.
1. y”+3y" +2y=6e>*4+25(t—1), y(0)=2, y’(0)=-6
2. [C/Gly"+y’ —2y=—10et+55(t—1), y(0)=7, y'(0)=-9
3. y'—4y=2et+55(t—1), y(0)=-1, y'(0)=2
4. [C/G|y” +y=sin3t+25(t—m/2), y(0)=1, y'(0)=-1
5. y'+4y=4+05(t—3n), y(0)=0, y’'(0)=1
6. y'—y=8+425(t—2), y(0)=-1, y'(0)=1
7. y"+y' =et+35(t—6), y0)=-1, y’(0)=4
8. y”+4y=28e*t+o5(t—m/2), y(0)=8, y'(0)=0
9. |C/Gly"+3y +2y=1+5(t—1), y(0)=1, y'(0)=-1
10. y”"+2y'+y=e"+25(t—2), y(0)=-1, y'(0) =
11. |C/G|y” +4y=sint+8(t—m/2), y(0)=0, y'(0)=
12. y”"+2y' +2y=058(t—m)—38(t—2m), y(0)=-1, y'(0)=
13. y” +4y'+13y =05(t—m/6) +28(t—7/3), y(0)=1, y’(0)=2
14. 24" —3y' —2y=1+6(t—2), y(0)=—1, y'(0)=2
15. 4y’ — 4y’ +5y =4sint—4cost+d(t—m/2) —d(t—m), y0)=1, y'(0)=1
16. y” +y=cos2t+28(t—m/2) —35(t—m), y(0)=0, y'(0)=-1
17. [C/Gly” —y=4et —55(t—1)+35(t—2), y(0)=0, y'(0)=0
18. y”"+2y'+y=e'—08(t—1)+28(t—2), y(0)=0, y'(0)=-1
19. y”"+y="~f(t)+8(t—2n), y(0)=0, y’(0)=1,and
sin2t, 0<t<m,
fle _{ 0, t>m
20. y” +4y="Ff(t)+8(t—m) —36(t—3m/2), y(0)=1, y’(0)=-1,and
1, 0<t<m/2,
f(t) =
{2, t>m/2
21. y”"+y=5(t), y0)=1, y’(0)=-2
22, y”" —4y=35(t), y0)=-1, y' (0)=7
23. y”+3y’+2y=-55(t), y(0)=0, y’ (0)=0
24. y"+4y' +4y=-5(t), y0)=1, y’ (0)=5
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25. 4y” +4y'+y=35(t), y0)=1, y’ (0)=-6
In Exercises 26-28, solve the initial value problem
0, O

<
aypn +byp +eyn =< 1/h, to<t<to+h, yn(0)=0, yp(0)=0,
07 t>t0+h7

t < to,

where tg > 0 and h > 0. Then find

1
=,
W <a32+bs+c>

and verify Theorem 5.7.1 by graphing w and yy, on the same axes, for small positive values of h.

26. [L]y”+2y’ +2y="fn(t), y(0)=0, y'(0)=0
27. [L]y”+2y" +y=*u(t), y(0)=0, y’(0)=0

28. y” 43y’ +2y =fr(t), y0)=0, y’(0)=0
29. Recall from Section 6.2 that the displacement of an object of mass m in a spring-
mass system in free damped oscillation is

my” +cy’ +ky =0, y(0)=yo, y'(0)=nvp,
and that y can be written as
y= Re 2™ cos(wit — ¢)

if the motion is underdamped. Suppose y(t) = 0. Find the impulse that would
have to be applied to the object at t = T to put it in equilibrium.

30. Solve the initial value problem. Find a formula that does not involve step functions
and represents y on each subinterval of [0, c0) on which the forcing function is
Zero.

@y"—y=) 8(t—k), y0)=0, y(0)=1
k=1

B y”+y = 8(t—2kn), y(0)=0, y'(0)=1
k=1

@y” =3y’ +2y=> 5(t—k), y(0)=0, y'(0)=1
k=1

Dy +y=) s(t—km), y(0)=0, y'(0)=0
k=1
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5.8 A BRIEF TABLE OF LAPLACE TRANSFORMS

f(t)

tn

(n = integer > 0)

P, p>—1
t

ea

tneat

(n = integer > 0)

cos wt

sin wt

eM cos wt
eMgin wt

cosh bt

sinh bt

t cos wt

F(s)
% (s> 0)
S:11+!1 (s >0)
w (s >0)
S i 4 (s > a)
e T;!)HH (s >0)
s2 —i w? (s> 0)
s2 —Icf)wQ (s> 0)
(s —87\)_2)—\i—w2 (s >A)
(5—7\(;;4-(»2 (s >A)
o (s>
o (s> b
(55224: 322)2 (s>0)
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tsin wt
sin wt — wt cos wt
wt — sin wt
1 .
—sin wt
t
edtf(t)

tRf(t)
f(wt)

u(t—1)

u(t—1)f(t—1) (t>0)

2
e >0
2 3
(s2 +ww2)2 (s >0)
3
32(32(1 w?)? (s >0)
arctan (%) (s >0)
F(s —a)
(~D*F ()
1 S
EF <w) , w>0
e (s > 0)
s
e TSF(s)
F(s) - G(s)

e 98 (s >0)



CHAPTER O

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

IN THIS CHAPTER we consider systems of differential equations involving more than
one unknown function. Such systems arise in many physical applications.

SECTION 10.1 presents examples of physical situations that lead to systems of differen-
tial equations.

SECTION 10.2 discusses linear systems of differential equations.
SECTION 10.3 deals with the basic theory of homogeneous linear systems.

SECTIONS 10.4, 10.5, AND 10.6 present the theory of constant coefficient homogeneous
systems.

SECTION 10.7 presents the method of variation of parameters for nonhomogeneous
linear systems.

6.1 INTRODUCTION TO SYSTEMS OF DIFFERENTIAL EQUATIONS

Many physical situations are modelled by systems of n differential equations in n
unknown functions, where n > 2. The next three examples illustrate physical problems
that lead to systems of differential equations. In these examples and throughout this
chapter we’ll denote the independent variable by t.

Example 6.1.1 Tanks T; and T, contain 100 gallons and 300 gallons of salt solutions,
respectively. Salt solutions are simultaneously added to both tanks from external sources,
pumped from each tank to the other, and drained from both tanks (Figure 6.1). A solution
with 1 pound of salt per gallon is pumped into T; from an external source at 5 gal/min,
and a solution with 2 pounds of salt per gallon is pumped into T, from an external
source at 4 gal/min. The solution from T; is pumped into T, at 2 gal/min, and the
solution from T, is pumped into T; at 3 gal/min. Ty is drained at 6 gal/min and T is

289
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drained at 3 gal/min. Let Q;(t) and Q2(t) be the number of pounds of salt in T; and
Ty, respectively, at time t > 0. Derive a system of differential equations for Q; and Q.
Assume that both mixtures are well stirred.

Figure 6.1

Solution As in Section 4.2, let rate in and rate out denote the rates (Ib/min) at which salt
enters and leaves a tank; thus,

Qi = (ratein); — (rate out)y,

Q) = (ratein)s — (rate out)s.

Note that the volumes of the solutions in T; and T, remain constant at 100 gallons and
300 gallons, respectively.
T; receives salt from the external source at the rate of

(11b/gal) x (5gal/min) = 51b/min,

and from T, at the rate of

) . 1 1 )
(Ib/galin T) x (3 gal/min) = %Qg X 3 = ﬁQQ Ib/min.

Therefore

1
tein), = —Qs. 1.1
(ratein); =5+ 100Q2 (6.1.1)

Solution leaves T; at the rate of 8 gal/min, since 6 gal/min are drained and 2 gal/min
are pumped to T; hence,

(rate out); = (Ib/galin T,) x (8 gal/min) = ﬁQl X 8 = %Ql. (6.1.2)

Eqgns. (6.1.1) and (6.1.2) imply that

1 2
Qf =5+ 7:5Q2 -

00 5 Q. (6.1.3)

Ty receives salt from the external source at the rate of
(21b/gal) x (4 gal/min) = 81b/min,

and from T; at the rate of

. ) 1 1 .
(Ib/galin T;) x (2 gal/min) = ﬁQl X 2 = 5—0Q1 Ib/min.
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Figure 6.2

Therefore )
(rate in), = 8 + %Ql. (6.1.4)

Solution leaves T, at the rate of 6 gal/min, since 3 gal/min are drained and 3 gal/min
are pumped to Ty; hence,

(rate out); = (Ib/galin T,) x (6 gal/min) = ﬁloQQ X 6= 5—10Q2. (6.1.5)
Eqgns. (6.1.4) and (6.1.5) imply that
=8+ oL (6.1.6)
Q= 50Ql 50Q2. 1.

We say that (6.1.3) and (6.1.6) form a system of two first order equations in two unknowns,
and write them together as

2 1
/ e —_—— —
Q= 275+

1 1
/ f— — —_——
Q= 8455

Example 6.1.2 A mass m; is suspended from a rigid support on a spring S; and a
second mass my is suspended from the first on a spring Sy (Figure 6.2). The springs obey
Hooke’s law, with spring constants k; and ky. Internal friction causes the springs to
exert damping forces proportional to the rates of change of their lengths, with damping
constants c; and ca. Let y; = yi(t) and y2 = ya(t) be the displacements of the two
masses from their equilibrium positions at time t, measured positive upward. Derive a
system of differential equations for y; and y», assuming that the masses of the springs
are negligible and that vertical external forces F; and F; also act on the objects.

Solution In equilibrium, S; supports both m; and ms and S, supports only ms. There-
fore, if Al; and Al are the elongations of the springs in equilibrium then

(m1 + mg)g = klA(Zl and mog = kQAEQ. (617)

Let H; be the Hooke’s law force acting on my, and let D; be the damping force on m;.
Similarly, let Hy and D5 be the Hooke’s law and damping forces acting on my. According
to Newton’s second law of motion,

myy = —mug+ Hi + Dy + Fy,

1" (6.1.8)
maoysy = —Mog + Hs + Dy + Fs.

When the displacements are y; and ys, the change in length of S; is —y; + Al; and the
change in length of S, is —ys + y1 + Als. Both springs exert Hooke’s law forces on m;,
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while only Sg exerts a Hooke’s law force on ms. These forces are in directions that tend
to restore the springs to their natural lengths. Therefore

H, = kl(—yl + Afl) — kQ(—UQ +y1 + AEQ) and Hs= kg(—yg +y1+ Aeg). (619)

When the velocities are y; and y4, S1 and Ss are changing length at the rates —yj and
—Yy5 + Y1, respectively. Both springs exert damping forces on m;, while only S exerts a
damping force on my. Since the force due to damping exerted by a spring is proportional
to the rate of change of length of the spring and in a direction that opposes the change, it
follows that

D; = —c1y] +ca(ys —yj) and Dy = —ca(ys—yi). (6.1.10)

From (6.1.8), (6.1.9), and (6.1.10),

myy;y = —mug+ki(—y1 + Al) —ka(—y2 +y1 + Als)
—c1y! +calys—yl)+F
1Y 2(y2 —yyp) 1 6.1.11)
= —(mig—KkiAl + koAly) — kY1 + ka(y2 —y1)
—c1y; +e2(ys —yi) +F
and
moyy = —mag+ka(—y2 +y1 +Aly) —ca(yy —yy) +F
2Yo 29 2(—Yy2 +y1 2) 2(ys — Y1) 2 (6.1.12)

= —(mag —koAly) —ka(y2 —y1) —ca(yy —yi) + Fa.

From (6.1.7),
mig— k1Al + koAly = —mag + koAl = 0.

Therefore we can rewrite (6.1.11) and (6.1.12) as

miy;y = —(c1+c2)yq + coys — (ki + ka)yr + koya + F4
moy; = coy; —Cays +Koyp —koyz +Fo. W

Example 6.1.3 Let X = X(t) = x(t) i+ y(t)j + z(t) k be the position vector at time t of
an object with mass m, relative to a rectangular coordinate system with origin at Earth’s
center (Figure 6.3). According to Newton’s law of gravitation, Earth’s gravitational force
F = F(x,y, z) on the object is inversely proportional to the square of the distance of the
object from Earth’s center, and directed toward the center; thus,

_ Kk <_ X > _ X xi+yj+zk
IX] X (x4 y? +22)%%

(6.1.13)

where K is a constant. To determine K, we observe that the magnitude of F is

x| _ K K

F|| =K = = .
IFl =K% = X~ v i 2




Section 6.1 Introduction to Systems of Differential Equations 293

Figure 6.3

Let R be Earth’s radius. Since ||F|| = mg when the object is at Earth’s surface,
mg = %, so K =mgR%
Therefore we can rewrite (6.1.13) as
xi+yj+zk
(x2 +y2 +22)%%
Now suppose F is the only force acting on the object. According to Newton’s second
law of motion, F = mX"’; that is,

F = —mgR?

xi+yj+zk

m(x"i+y”j+z"k) = —mgR? :
(X2 +y2 + 22)*/?

Cancelling the common factor m and equating components on the two sides of this
equation yields the system

N gR?x
(X2 +y2;_22)3/2
"o gR%y
Yy = — 21 1J2 n Z2)3/2 (6.1.14)
o gR*z

(X2 + -92 + 22)3/2 '
Rewriting Higher Order Systems as First Order Systems

A system of the form

gl(t?ylay% v 7UT1)
= g2(t,y1,92,...,Yyn)
, " (6.1.15)

/

Yn = gn(tvyl7927 s 7yn)
is called a first order system, since the only derivatives occurring in it are first derivatives.
The derivative of each of the unknowns may depend upon the independent variable
and all the unknowns, but not on the derivatives of other unknowns. When we wish to
emphasize the number of unknown functions in (6.1.15) we will say that (6.1.15) is an
n X n system.

Systems involving higher order derivatives can often be reformulated as first order
systems by introducing additional unknowns. The next two examples illustrate this.

Example 6.1.4 Rewrite the system

miyy = —(c1+c2)yf +coys — (ki +ko)yi + koys + F

y : , (6.1.16)
Moy, = C2Yy — CaYy + Koyr — kayz + Fo.

derived in Example 6.1.2 as a system of first order equations.
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Solution If we define vi = y{ and v = yg, then v{ = y{ and vj = y7, so (6.1.16)

becomes
mivi = —(c1+c2)vi +cova — (ki + ko)yr +koyo + Fy

mavy = cavi — Cava + koyi — kaya + Fo.

Therefore {y1,ys2, Vi, vo} satisfies the 4 x 4 first order system

Yy = V1
Yy = Vo
1
v = o [—(c1 + c2)vi + cava — (k1 + k2)y1 + kay2 + Fil (6.1.17)
1
vy = —[covi —cava + koyi — kaya + Fol .
ms

REMARK: The difference in form between (6.1.15) and (6.1.17), due to the way in
which the unknowns are denoted in the two systems, isn’t important; (6.1.17) is a first
order system, in that each equation in (6.1.17) expresses the first derivative of one of
the unknown functions in a way that does not involve derivatives of any of the other
unknowns.

Example 6.1.5 Rewrite the system

"

= f(t7X7X/7U>U/79//)

" / //)

y” = gt,x,x,y,y’y

as a first order system.

Solution We regard x, x’,y, y’, and y” as unknown functions, and rename them

x=x1, X' =x2, y=vyi, y' =y2, y’'=vys

These unknowns satisfy the system

X;] = X2
x5 = f(t,x1,%2,Y1,Y2,Y3)
yi = Y2
Yy = U3

yé = g(t7xlax27ylvy2ay3)'

Rewriting Scalar Differential Equations as Systems

In this chapter we'll refer to differential equations involving only one unknown function
as scalar differential equations. Scalar differential equations can be rewritten as systems
of first order equations by the method illustrated in the next two examples.
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Example 6.1.6 Rewrite the equation
yW 4y 4 6y" + 4y’ +y=0 (6.1.18)

as a 4 x 4 first order system.

Solution We regard y,y’, y”, and y””” as unknowns and rename them
Y=y, Y =y, y'=ys and y" =y,
Then y*) =y}, so (6.1.18) can be written as
yi +4ys + 6ys +4ys +y1 = 0.

Therefore {y1, Y2, ys, Yy} satisfies the system

Y = Y
Yo = Y3
Ys = Ya
Yy = —4ys—6ys—4y2 —y;. m

Example 6.1.7 Rewrite
X" = f(t, x, X/, X")

as a system of first order equations.

Solution We regard x, x’, and x” as unknowns and rename them

/ 124
XxX=1Y1, X =Yy, and x" =wys.

Then

/ / / 12 ! 12
Yy =% =Yz, Yy=x' =y3, and yz=x".

Therefore {y1, Y2, ys} satisfies the first order system

Yi = Yo
Y = VU3
yé = f(t3917927y3)-

Since systems of differential equations involving higher derivatives can be rewritten
as first order systems by the method used in Examples 6.1.5 -6.1.7 , we’ll consider only
first order systems.

Numerical Solution of Systems
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The numerical methods that we studied in Chapter 3 can be extended to systems, and
most differential equation software packages include programs to solve systems of
equations. We won’t go into detail on numerical methods for systems; however, for
illustrative purposes we’ll describe the Runge-Kutta method for the numerical solution
of the initial value problem

Y1 = g1(t,y1,Y2), yi(to) = Yo,
ys = g2(t,y1,y2), ya(to) =y20

at equally spaced points to, ti, ..., tn = b in an interval [to, b]. Thus,

ti =t +1ih, 1=0,1,...,n,

where bt
h=—2
n
We'll denote the approximate values of y; and ys at these points by yio0, Y11, .-, Yin
and Y20, Y21, - - - ; Y2n. The Runge-Kutta method computes these approximate values as

follows: given y;; and ysi, compute

Li = 91(ti,Yii,Yai),

Jii g2(ti, Y11, Yo2i),

Iy = AL .

21 = 01 i 27911 5 115 Y21 2]11

2i = 921 Y 27911 9 11, Y2i 2 11
h h h

Isi = g1 (ti+ 57911 5 —Iai,yoi + ]21
h h

Jsi = g2 | ti+ *yyli 121,1;121 + ]21

iy = g1 (tl +h ,Yii + hI3uy21 + h]31

Jsiv = g2(ti + h,yii + hlszi, yoi + hJsi),

and
h
Yiir1 = Y+ 6(111 + 219 + 2131 + L41),

h
Y2,i41 = Ya2u+ 6(]11 + 221 + 2J3i + J4i)

fori=0,...,n— 1. Under appropriate conditions on g; and g», it can be shown that
the global truncation error for the Runge-Kutta method is O(h?), as in the scalar case
considered in Section 3.3.

6.1 Exercises
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Tanks Ty and Ty contain 50 gallons and 100 gallons of salt solutions, respectively.
A solution with 2 pounds of salt per gallon is pumped into T; from an external
source at 1 gal/min, and a solution with 3 pounds of salt per gallon is pumped
into T from an external source at 2 gal/min. The solution from T; is pumped
into T, at 3 gal/min, and the solution from T; is pumped into T; at 4 gal/min. T;
is drained at 2 gal/min and T is drained at 1 gal/min. Let Q;(t) and Q2(t) be
the number of pounds of salt in T; and Ty, respectively, at time t > 0. Derive a
system of differential equations for Q; and Q>. Assume that both mixtures are
well stirred.

Two 500 gallon tanks T; and T, initially contain 100 gallons each of salt solution.
A solution with 2 pounds of salt per gallon is pumped into T; from an external
source at 6 gal/min, and a solution with 1 pound of salt per gallon is pumped into
T from an external source at 5 gal/min. The solution from T; is pumped into T, at
2 gal/min, and the solution from T is pumped into T; at 1 gal/min. Both tanks are
drained at 3 gal/min. Let Q1 (t) and Q2(t) be the number of pounds of saltin T,
and Ty, respectively, at time t > 0. Derive a system of differential equations for Q;
and Q2 that’s valid until a tank is about to overflow. Assume that both mixtures
are well stirred.

A mass m; is suspended from a rigid support on a spring S; with spring constant
k1 and damping constant c;. A second mass my is suspended from the first on a
spring So with spring constant ky and damping constant c2, and a third mass ms
is suspended from the second on a spring S3 with spring constant k3 and damping
constant c3. Lety; = yi(t), y2 = y2(t), and ys = ys(t) be the displacements of
the three masses from their equilibrium positions at time t, measured positive
upward. Derive a system of differential equations for y;, y2 and ys, assuming that
the masses of the springs are negligible and that vertical external forces Fy, F2, and
F3 also act on the masses.

Let X = xi+yj+ zk be the position vector of an object with mass m, expressed in
terms of a rectangular coordinate system with origin at Earth’s center (Figure 6.3).
Derive a system of differential equations for x, y, and z, assuming that the object
moves under Earth’s gravitational force (given by Newton’s law of gravitation, as
in Example 6.1.3 ) and a resistive force proportional to the speed of the object. Let
o be the constant of proportionality.

Rewrite the given system as a first order system.
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u = f(t,u,v,v,w’)

12/ — f t, , , !

@ ¥ = fbouy]) (b) v = g(t,u,v,v', W)

y” =g(t,y,y")

w’” =h(t,u,v,v, w,n’)

@y"” =f(t,y,y",y") (@ y® =f(t,y)

x"" =1(t,x,y)
e ,

y"=g(t,xy)

6. Rewrite the system (6.1.14) of differential equations derived in Example 6.1.3 as a
first order system.

7. Formulate a version of Euler’s method (Section 3.1) for the numerical solution of
the initial value problem

= gl(t)ylva)a yl(tO) = Y10,
= ¢g2(t,y1,92), Yalto) =Yoo,

Y1
Y5

on an interval [tg, b].

8. Formulate a version of the improved Euler method (Section 3.2) for the numerical
solution of the initial value problem

yr = gi1(t,y1,y2), yilto) =Yo,
/

Ys = 92(t,y1,Y2), yalto) =Yoo,

on an interval [tg, b].

6.2 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

A first order system of differential equations that can be written in the form

Yy = an(tyr+aptlyes +- + an(t)yn + f1(t)

5 = agi(t)yr +ax(t)ys + - + agn(t)yn + f2(t)
Yo ' 21(tY1 22(1)Y2 on\t)Yn 2 (6.2.1)
yﬁ = Qn1 (t)yl + anQ(t)y2 + - ann(t)yn + fn(t)

is called a linear system.
The linear system (6.2.1) can be written in matrix form as

Yy ajr(t) app(t) -+ am(t) Y1 f1(t)
Yy azi(t) ax(t) --- an(t) Y2 fa(t)

" aat) ) - ann(® | | yn fnlt)
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or more briefly as

y = A[t)y +f(t), (6.2.2)
where
Y1 ajr(t) ape(t) -+ am(t) f1(t)
yo | V| A | et e el = | Y
Un anilt) analt) - annlt) fa(t)

We call A the coefficient matrix of (6.2.2) and f the forcing function. We'll say that A and
f are continuous if their entries are continuous. If f = 0, then (6.2.2) is homogeneous;
otherwise, (6.2.2) is nonhomogeneous.
An initial value problem for (6.2.2) consists of finding a solution of (6.2.2) that equals

a given constant vector

k1

ko

k= )
kn
at some initial point to. We write this initial value problem as
y' =At)y +£(t), ylto) =k

The next theorem gives sufficient conditions for the existence of solutions of initial
value problems for (6.2.2). We omit the proof.

Theorem 6.2.1 Suppose the coefficient matrix A and the forcing function f are continuous on
(a,b), let tg be in (a,b), and let k be an arbitrary constant n-vector. Then the initial value
problem

y =Alt)y+£(t), y(to) =k

has a unique solution on (a, b).

Example 6.2.1

(a) Write the system
Yy, =  y1+2ys+2ett

Yy, = 2yi+ yo + et

in matrix form and conclude from Theorem 6.2.1 that every initial value problem
for (6.2.3) has a unique solution on (—o0, 00).

(b) Verify that

(6.2.3)

_1 8 4t 1 3t 1 —t
y_5[7}e —|—c1[1}e +ca 1€ (6.2.4)

is a solution of (6.2.3) for all values of the constants ¢; and cs.
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(c) Find the solution of the initial value problem

y':[; f]er[?}e“, y(O):;[;]- (6.2.5)

SOLUTION(a) The system (6.2.3) can be written in matrix form as

y—[Ql y+ 1 e .

An initial value problem for (6.2.3) can be written as

y’z[; i]ﬁ[ﬂe“, y(to):[ti]-

Since the coefficient matrix and the forcing function are both continuous on (—o0, o0},
Theorem 6.2.1 implies that this problem has a unique solution on (—oo, c0).

SOLUTION(b) Ify is given by (6.2.4), then

B 11 2 8 4t 1 2 1 3t
wver =gy [ ea 3 e
1 2 1 _t 2 At
el TN e[ e
I S Y 3| 3t 1| ¢ 2| 4t
= 5[23]6 +c1[3]e + Co 1 e "+ 1 e

I I V2 I 1 —t
= 5|:28:|€ —1—301[1}6 —Cy . e "=y

SOLUTION(c) We must choose c¢; and cs in (6.2.4) so that
£ 20 RO I O I S R I
L7 T 1T ] T 22
which is equivalent to
I 1)[ea] [-1
1 -1 Co ] o 3 '

Solving this system yields ¢; =1, co = —2, so

_ L8 Ll st o1 —t
y—5[7]e +[1}e 2 . e

is the solution of (6.2.5).
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REMARK: The theory of n x n linear systems of differential equations is analogous to
the theory of the scalar n-th order equation

Po(t)y™ + P ()y™ Y o 4 Pty = F(1), (6.2.6)

as developed in Sections 9.1. For example, by rewriting (6.2.6) as an equivalent linear
system it can be shown that Theorem 6.2.1 implies Theorem ?? (Exercise 12).
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6.2 Exercises

1. Rewrite the system in matrix form and verify that the given vector function satisfies
the system for any choice of the constants c; and cs.

/ _
(a) Y = 2yl+492 y:C1|:1:|e6t+CQ|:1 :|e2t

Yy = 4y1+ 2y —1
I— 9y, —2 1 )
= 4y, —10 _5 2
© 33 = 3Uyll+ 791322' yzcl[i% ]e2t+02[—1]et
Yy = 2y1+ Yo L st 1 ¢
d =c et +c e
@ Y, = yit2ys 1[1 2l

2. Rewrite the system in matrix form and verify that the given vector function satisfies
the system for any choice of the constants cy, c2, and c3.

Y = —Y1+2y2+3y;
@ y; = Y2 + 6y3
y; = —2y3;
1 1 1
y=c | 1 et—i-cQ 0 e_t-i-Cg —2 | e 2t
0 0 1
Yy = 2y2 + 2y3
b y; = 2y + 2ys3
Y3 = 2y1+2y;
] 0 1
y =c1 0 le2t4+co| =1 | e 2t4cg| 1 |ett
1 1 1
Yyi = —Yi+2y2+2ys
(© y; = 2y1— yz2+2ys
Yz = 2y1+2y2 — ys;
-1 0 1
y=c1 0 |e3t+cy| —1 [eBt4c3| 1 |et
1 1 1
Yyir =  3Yyi— Y2— Y3
d yi = —2y;+3y2+2ys
y; = 4dy1— y2—2ys;
1 1 1
y=ci| 0 |e*t+co| =1 |e3t4c3| =3 |et

1 1 7
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Rewrite the initial value problem in matrix form and verify that the given vector
function is a solution.

Yy = Y+ y2 yi(0) = 1 R I U R P B O P
@ ys = —2y1+4y2, y2(0) = 0 y=2 1€ 9 | €

Yy; = 5y1+3y2 yi(0) = 12 o2t 1t
b _
(b) Yy, = —yi+vya, y2A00) = —6; =3 1 +3 1 ¢

Rewrite the initial value problem in matrix form and verify that the given vector
function is a solution.

y; = 6yi+4y2+4y;  yi(0) 3
@ y; = —Ty1—2y2-ys,, (0) = —6
Yy, = 7y1+4yz+3y3 300 = 4
1 0
y=| —1|et+2 —1 | et
1 1
Yy, =  8yi+Tya+ 793 1(0) = 2
(b) y; = —5y1—6y>— 9ys, 92(0) = —4
y, =  5yi+Ty2+10ys, ys(0) = 3
1 0 1
y=| -1 [eBt+ | =1 [e3t+ | —2 |et
1 1 1

Rewrite the system in matrix form and verify that the given vector function satisfies
the system for any choice of the constants c; and c».

@ Yy, = —3yr+2y2+3-2t
Yy, = —byi1+3y2+6—3t

. 2cost Y 2sint "
Y=C| 3cost—sint 2| 3sint+cost t

(b) Y = 3y1 +y2_5et

Y = —Yrt+y2+e
_ =L L+t | o L]t
y_cl{l }e +C2|:_t ]e—i— 3 e
© Y] = —yi —4dys + 4et + Stet
Yy, = —yi— ys+ e+ (4t +2)et
_ 2| st 2| et
ycl[l]e +02[1 }e—i—[%et
@ Y= —6y1 — 3y + 14e** 4 12¢*
Yy, = Y1 —2ys+7e*t —12¢t
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Convert the linear scalar equation
Po(tly™ + Pr(t)y ™ 4 P (t)y(t) = F(t) (A)
into an equivalent n x n system
y' =At)y +£(t),

and show that A and f are continuous on an interval (a, b) if and only if (A) is
normal on (a, b).

A matrix function

qui(t) quo(t) -+ qus(t)
Q) = q21:(t) Qsz(t) Q2s:(t)
qu(t) qr2(t) e qrs (t)

is said to be differentiable if its entries {q;} are differentiable. Then the derivative Q'
is defined by

qi:(t) qia(t) - qie(t)
Q'(t) = qélz(t) qéz:(t) qés:(t)
qi(t) qi(t) - qle(t)

(@) Prove: If P and Q are differentiable matrices such that P + Q is defined and if
¢1 and c9 are constants, then

(c1P 4+ ¢c2Q) = c1P' +¢2Q’.
(b) Prove: If P and Q are differentiable matrices such that PQ is defined, then
(PQ)' =P'Q+PQ".
Verify that Y/ = AY.

[ ,6t —2t
@ Y- ;t_iﬂ],Az[ig]
ro—dt 3t
e 2e -2 =2
(b) Y:_e_“ 563t}’ A_[—B 1]
[ —5e?t  2et —4 —10
© Y= 3e2t _et ] , A= [ 3 7 }
r 3t t
e e 2 1
@v-[5 8] a-[? 1]
[ et et e 2t -1 2 3
e Y=]|et 0 —2e2 |, A= 01 6
| 0 0 e 00 —2
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11.

12.

13.
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r _672t _672t e4t 0 2 2 T
f) Y= 0 e 2t ettt | A=|2 0 2
| e 2t 0 at 2 2 0 |
[ et et 0 -9 6 6
@ Y=|¢e' 0 —e? |, A=| -6 36
e3t ef3t ef3t -6 6 3
[ et edt et 3 —1 —1
h) Y=| 0 —e3t —3e ' |, A=|-2 3 2
| e?t et Tet 4 -1 =2
Suppose
Y11 Y12
= and =
y1 [ym ] y2 [ygg ]
are solutions of the homogeneous system
y'=Alt)y, (A)

and define

Y — {yn Y12 ] .
Y21 Y22

(@) Show thatY’ = AY.

(b) Show that if c is a constant vector then y = Yc is a solution of (A).

(c) State generalizations of (a) and (b) for n x n systems.

Suppose Y is a differentiable square matrix.

(@) Find a formula for the derivative of Y2.

(b) Find a formula for the derivative of Y™, where n is any positive integer.

(c) State how the results obtained in (a) and (b) are analogous to results from
calculus concerning scalar functions.

It can be shown that if Y is a differentiable and invertible square matrix function,
then Y~ is differentiable.

(@) Show that (Y™1)’ = —Y~1Y’Y~L (Hint: Differentiate the identity Y~!1Y = 1.)
(b) Find the derivative of Y™™ = (Y~!)™, where n is a positive integer.

(c) State how the results obtained in (a) and (b) are analogous to results from
calculus concerning scalar functions.

Show that Theorem 6.2.1 implies Theorem ??. HINT: Write the scalar equation
Pol)y™ +Pr(x)y ™Y 4 4 Prx)y = F(x)

as an n x n system of linear equations.

Suppose y is a solution of the n x n system y’ = A(t)y on (a,b), and thatthen xn
matrix P is invertible and differentiable on (a, b). Find a matrix B such that the
function x = Py is a solution of x’ = Bx on (a, b).

BASIC THEORY OF HOMOGENEOUS LINEAR SYSTEMS
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In this section we consider homogeneous linear systems y’ = A(t)y, where A = A(t) isa
continuous n x n matrix function on an interval (a, b). The theory of linear homogeneous
systems has much in common with the theory of linear homogeneous scalar equations,
which we considered in Sections 2.1, 5.1, and 9.1.

Whenever we refer to solutions of y’ = A(t)y we’ll mean solutions on (a, b). Since
y = 0is obviously a solution of y’ = A(t)y, we call it the trivial solution. Any other
solution is nontrivial.

If y1,y9, ..., yn are vector functions defined on an interval (a,b) and ¢y, ¢co, ..., ¢, are
constants, then

y=c1y1 +C2y2+ - +Cnyn (6.3.1)

is a linear combination of y1,y2, ...,yn. It's easy show that if yy, yo, ...,yn are solutions of
y' = A(t)y on (a,b), then so is any linear combination of y1, y», ..., yn (Exercise 1). We
say that{y1,y2,...,yn}is a fundamental set of solutions of y’ = A(t)y on (a,b) on if every
solution of y’ = A(t)y on (a, b) can be written as a linear combination of y1, ys, ..., yn,
as in (6.3.1). In this case we say that (6.3.1) is the general solution of y’ = A(t)y on (a,b).

It can be shown that if A is continuous on (a, b) then y’ = A(t)y has infinitely many
fundamental sets of solutions on (a, b) (Exercises 15 and 16). The next definition will
help to characterize fundamental sets of solutions of y’ = A(t)y.

We say that a set {y1,y2, ..., yn} of n-vector functions is linearly independent on (a, b) if
the only constants cy, cg, ..., cn, such that

c1y1(t) +coya(t) + - +cnyn(t) =0, a<t<b, (6.3.2)
arec; = co = -+ = cn, = 0. If (6.3.2) holds for some set of constants ¢y, co, ..., cn, that
are not all zero, then {y1,y2, ..., yn} is linearly dependent on (a, b)

The next theorem is analogous to Theorems ?? and ??.

Theorem 6.3.1 Suppose the n x n matrix A = A(t) is continuous on (a,b). Then a set
{y1,y2,...,yn} of nsolutions of y’ = A(t)y on (a,b) is a fundamental set if and only if it’s
linearly independent on (a,b).

Example 6.3.1 Show that the vector functions

et 0 et
yi=| 0 |, y2=|¢€* |, and yz=| ¢
et 1 0
are linearly independent on every interval (a, b).
Solution Suppose
et 0 et 0
ci1| 0 | +co|l et | +e3| et | =0, a<t<b
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We must show that ¢; = ¢ = c3 = 0. Rewriting this equation in matrix form yields

et 0 e?t 1 0
0 et g3t ca | =101, a<t<h.
et 1 0 C3 0

Expanding the determinant of this system in cofactors of the entries of the first row
yields

t 2t
e 0 e
0 e3t e3t _ et eSt e?)t 0 Ot 