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PREFACE

A differential equation is an equation in mathematics that relates a function to its
derivatives. The study of differential equations will always be important because it plays
a central role in describing phenomena that change over time. When we wish to predict
the future based on some knowledge of a current observable event, differential equations
can help us to understand how that particular phenomenon evolves as a function of time.
Differential equations play a prominent role in many disciplines including engineering,
physics, economics, and biology.

Our goal in writing this text was to provide students at State College of Florida with both
an introduction to and a survey of methods, applications, and theories of this beautiful
and powerful mathematical tool. As a first course in differential equations, the book is
intended for science and engineering majors who have completed two semesters of the
calculus sequence, but not necessarily multivariable calculus. (Topics from multivariable
calculus are introduced as needed.)

The many exciting and unanswered questions found in the theory of differential equa-
tions make it a popular field of study for graduate students. At the introductory level,
however, it may seem like a collection of tricks that must be mastered. The beauty lies in
the opportunity to challenge one’s ability to analyze a problem and evaluate the known
facts while forming a solution. Often the question in differential equations is not how to
solve a problem but how best to solve a problem.

We encourage students to work their way through the examples with pencil and paper
before attempting the exercises on their own. The examples outline the necessary
procedures for each section but only with practice can one expect to learn the nuances of
each approach in order to weigh the advantages of one technique over another when
presented with a particular situation. Some time for reflection will be needed at the
end of the course to contrast and compare the variety of methods available for solving
differential equations.
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CHAPTER 1

INTRODUCTION

Complete disorder is impossible.

Theodore Motzkin

IN THIS CHAPTER we begin our study of differential equations.

SECTION 1.1 introduces basic concepts and definitions related to differential equations.

SECTION 1.2 presents some applications that require differential equations in the con-
struction of their mathematical models.

SECTION 1.3 analyzes solution curves without solving the corresponding differential
equation.

1.1 BASIC CONCEPTS AND DEFINITIONS

The derivative dy/dx of a function y = f(x) is itself another function. For example,
the exponential function y = e3x

2
is differentiable for all real numbers x and has first

derivative dy/dx = 6xe3x2
. We can replace e3x

2
on the right-hand side of the previous

equation by the symbol y so that the equation for the derivative becomes

dy

dx
= 6xy. (1.1.1)

Now imagine you handed (1.1.1) to your differential equations instructor and asked
them what function was represented by the symbol y. Without any knowledge of
how the equation was constructed, your instructor could easily recover the original
exponential function.

Equations such as (1.1.1) that contain one or more derivatives of an unknown function
are referred to as differential equations. Of course, there are many uses for these types
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2 Chapter 1 Introduction

of equations outside of the classroom, too. Assumptions made about real-life systems
frequently involve the rate of change of one or more of the variables being studied.
This means that in order to construct a mathematical model to provide a mathematical
description of the system, a differential equation or a system of differential equations
may be required.

Much of calculus is devoted to learning mathematical techniques that are applied
in later courses in mathematics and the sciences. However, you wouldn’t have time
to learn much calculus if you insisted on seeing a specific application of every topic
covered in the course. Similarly, much of this book is devoted to methods that can
be applied in later courses. Only a relatively small part of the book is devoted to the
derivation of specific differential equations from mathematical models, or to relating the
differential equations that we study to specific applications. In this section, we examine
an application that you have probably encountered in a previous math course and then
discuss some basic definitions and terminology; in the next section, we will discuss a
few more applications.

It is rare for a mathematical model of an applied problem to capture every nuance
of the situation being studied. This is because simplifying assumptions are usually
required to obtain a mathematical problem that can be solved. If the results predicted by
the model do not agree with physical observations, the underlying assumptions of the
model must be revised until a satisfactory agreement is obtained.

To summarize, a good mathematical model is a balance between two important
properties.

• It is simple enough for the mathematical problem to be solved.

• It is complex enough to represent the actual situation well enough for the solu-
tion to the mathematical problem to predict outcomes within a useful degree of
accuracy.

Population Growth and Decay

Let us consider a mathematical model that represents population growth and decay. The
number of members of a population (people in a given country, bacteria in a laboratory
culture, wildflowers in a forest, etc.) at any given time tmust be an integer. However, for
this mathematical model using differential equations to describe the growth and decay
of populations, we will use the simplifying assumption that the number of members
of the population can be regarded as a differentiable function P = P(t). (In particular,
recall that a differentiable function must be continuous.) We can achieve a good model
for population growth by assuming that the differential equation takes the form

P ′ = aP, (1.1.2)

where a is a constant. This is referred to as the Malthusian model due to the work of
Thomas Robert Malthus, which he published in 1798 as An Essay on the Principle of
Population. The model assumes that the numbers of births and deaths per unit time are
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proportional to the size of the population. (If the constant of proportionality for the birth
rate is b and the constant of proportionality for the death rate is d, then P ′ = bP − dP.
Simplified, a is the birth rate minus the death rate.)

You learned in calculus that for any nonzero real number c,

P = ceat (1.1.3)

satisfies (1.1.2). This means that a single differential equation can possess an infinite
number of solutions corresponding to an unlimited number of choices for the parameter
c. A particular solution is one that is free of parameters. To find the particular solution,
we would need to know the population P0 at an initial time, say t = 0. Setting t = 0 in
(1.1.3) yields P(0) = c, so if we relabel c as P0 the particular solution would be

P(t) = P0e
at.

Notice that

lim
t→∞P(t) =

{ ∞ if a > 0,
0 if a < 0;

that is, this model predicts that the population will approach infinity if the birth rate
exceeds the death rate and that it will approach zero if the death rate exceeds the birth
rate.

To better understand the limitations of the Malthusian model, suppose we model
the population of a country starting from a time t = 0 when the birth rate exceeds
the death rate (so a > 0). If we know that the country’s resources in terms of space,
food supply, and other necessities of life can support the existing population, then the
prediction P = P0e

at will be reasonably accurate as long as it remains within the limits
that the country’s future resources can support. However, the model must inevitably
lose validity when the prediction exceeds these limits. (If nothing else, eventually there
won’t be enough space for the predicted population!)

This flaw in the Malthusian model suggests the need for a revised model that accounts
for limitations of space and resources. Indeed, more complex models for population
growth have been designed that better agree with physical observations of human
populations. However, at the time of its publication, the Malthusian model turned out
to be a reasonably accurate prediction of the United States population during the first
half of the nineteenth century. The Malthusian model is still used today to predict the
growth of small populations over short intervals of time.

The equation created in the opening discussion (1.1.1) and the Malthusian model
of population growth (1.1.2) are both differential equations with solutions involving
exponential functions. Naturally, there are differential equations that are much more
complicated! Just as a student in an algebra course learns to solve equations such as
x2+3x+1 = 0 to determine the unknown number x, a student in a differential equations
course learns to solve equations such as y ′′ + 3y ′ + 1 = 0 to determine the unknown
function y. Let us begin the journey with some useful definitions and terminology.

The order of a differential equation is the order of the highest derivative that it contains.
A differential equation is an ordinary differential equation if it involves an unknown func-
tion of only one variable, or a partial differential equation if it involves partial derivatives
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of a function of more than one variable. For now we’ll consider only ordinary differential
equations, and we’ll just call them differential equations. In this text, all variables and
constants are real unless stated otherwise.

The simplest differential equations are first order equations of the form

dy

dx
= f(x) which can also be written as, y ′ = f(x),

where f can be solved explicitly as a function of x. (The notation on the left is referred
to as Leibniz notation, and the one on the right is referred to as prime notation, Lagrange
notation.) We already know from calculus how to find many functions that satisfy this
kind of equation. For example, if

y ′ = x3,

then

y =

∫
x3 dx =

x4

4
+ c,

where c is an arbitrary constant. For higher order differential equations where n > 1 we
can find functions y that satisfy equations of the form

y(n) = f(x) (1.1.4)

by repeated integration. Again, this is a calculus problem. (Recall that y(n) denotes the
nth derivative of y.)

Except for illustrative purposes in this section, there’s no need to revisit differential
equations like (1.1.4). Instead, we’ll usually consider differential equations that can be
written in the normal form

y(n) = F(x,y,y ′, . . . ,y(n−1)). (1.1.5)

Here are some examples:

dy

dx
− x2 = 0 (first order),

dy

dx
+ 2xy2 = −2 (first order),

d2y

dx2 + 2
dy

dx
+ y = 2x (second order),

xy ′′′ + y2 = sin x (third order),

y(n) + xy ′ + 3y = x (nth order).

Although none of these equations is written as in (1.1.5), all of them can be written in
this form:

y ′ = x2,
y ′ = −2− 2xy2,
y ′′ = 2x− 2y ′ − y,

y ′′′ =
sin x− y2

x
,

y(n) = x− xy ′ − 3y.
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Solutions of Differential Equations

A solution of a differential equation is a function that satisfies the differential equation on
some interval. When we think of the solution to a differential equation, we must always
simultaneously consider the interval on which it exists! The interval is called the domain
of the solution and can be an open interval with bounds such as (a,b), a closed interval
with bounds such as [a,b], an open interval that is unbounded such as (a,∞), and so
on. For simplicity, we will refer to the domain of the solution as an open interval. More
precisely, y is a solution of (1.1.5) on (a,b) if y is n times differentiable on (a,b) and

y(n)(x) = F(x,y(x),y ′(x), . . . ,y(n−1)(x))

for all x in the interval (a,b). (We will abuse the notation a bit and allow (a,b) to
represent intervals such as (∞,b), (a,∞), and (−∞,∞).)

Functions that satisfy a differential equation at isolated points are not interesting. For
example, y = x2 satisfies

xy ′ + x2 = 3x

if and only if x = 0 or x = 1, but it’s not a solution of this differential equation because
it does not satisfy the equation on an open interval. Also uninteresting is any solution
that is identically zero on an interval; such a solution is said to be a trivial solution. For
example, the equation y ′′ − 2y ′ + y = 0 has the trivial solution y = 0 on the interval
(∞,∞).

The graph of a solution y of a differential equation is a solution curve. Notice that y
must be continuous on the domain of the solution since it is known to be differentiable
there. This means there may be a difference between the graph of the function y and the
graph of the solution y. Again, the solution to a differential equation must always be
accompanied by the domain of the solution.

Example 1.1.1 Verify that

y =
x2

3
+

1
x

(1.1.6)

is a solution of
xy ′ + y = x2 (1.1.7)

on (0,∞).

Solution Notice that y is not defined when x = 0. So although the domain of the
function y is the set of all real numbers other than 0, the domain of the solution y is
restricted to a single open interval that does not contain x = 0.

Now, substituting (1.1.6) and its derivative

y ′ =
2x
3

−
1
x2
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into (1.1.7) yields

xy ′(x) + y(x) = x
(
2x
3

−
1
x2

)
+

(
x2

3
+

1
x

)
for all x 6= 0. This simplifies to x2, which is the right-hand side of (1.1.7). Therefore y
is a solution of (1.1.7) on (0,∞). Alternatively, we could have taken the domain of the
solution to be (−∞, 0). In either case, we use the largest open interval possible for the
domain of the solution.

Figure 1.1 shows the graph of (1.1.6). The portion of the graph on (0,∞) is a solution
curve of (1.1.7), as is the part of the graph on (−∞, 0).

−4 −2 2 4

−5

5

10
y = x2

3 + 1
x

Figure 1.1 y =
x2

3
+

1
x

Example 1.1.2 Show that if c1 and c2 are constants then

y = (c1 + c2x)e
−x + 2x− 4 (1.1.8)

is a solution of
y ′′ + 2y ′ + y = 2x (1.1.9)

on (−∞,∞).

Solution Differentiating (1.1.8) twice yields

y ′ = −(c1 + c2x)e
−x + c2e

−x + 2

and
y ′′ = (c1 + c2x)e

−x − 2c2e−x.
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Substituting these into (1.1.9) gives us

y ′′ + 2y ′ + y = (c1 + c2x)e
−x − 2c2e−x

+2
[
−(c1 + c2x)e

−x + c2e
−x + 2

]
+(c1 + c2x)e

−x + 2x− 4
= (1− 2+ 1)(c1 + c2x)e−x + (−2+ 2)c2e−x

+4+ 2x− 4
= 2x

for all values of x. Therefore y is a solution of (1.1.9) on (−∞,∞).

Example 1.1.3 Find all solutions of

y(n) = e2x. (1.1.10)

Solution Integrating (1.1.10) yields

y(n−1) =
e2x

2
+ k1,

where k1 is a constant. If n > 2, integrating again yields

y(n−2) =
e2x

4
+ k1x+ k2.

If n > 3, repeatedly integrating yields

y =
e2x

2n
+ k1

xn−1

(n− 1)!
+ k2

xn−2

(n− 2)!
+ · · ·+ kn, (1.1.11)

where k1, k2, . . . , kn are constants. This shows that every solution of (1.1.10) has the form
(1.1.11) for some choice of the constants k1, k2, . . . , kn. On the other hand, differentiating
the function y in (1.1.11) n times shows that if k1, k2, . . . , kn are arbitrary constants, then
y satisfies (1.1.10).

Since the constants k1, k2, . . . , kn in (1.1.11) are arbitrary, so are the constants

k1

(n− 1)!
,

k2

(n− 2)!
, · · · ,kn.

Therefore Example 1.1.3 shows that all solutions of (1.1.10) can be written as

y =
e2x

2n
+ c1 + c2x+ · · ·+ cnxn−1,

where we renamed the arbitrary constants in (1.1.11) to obtain a simpler form. Keep
in mind that two individuals correctly solving a differential equation may arrive at
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dissimilar expressions for their answers. This can be due to constants that have been
relabeled, algebraic simplification, or application of trigonometric identities.

Initial Value Problems

In Example 1.1.3 we saw that the differential equation y(n) = e2x has an infinite family
of solutions that depend upon the n arbitrary parameters c1, c2, . . . , cn. In the absence of
additional conditions, there’s no reason to prefer one solution of a differential equation
over another. However, we’ll often be interested in finding a solution of a differential
equation that satisfies one or more specific conditions. The next example illustrates this
using a process learned in calculus.

Example 1.1.4 Find a solution of
y ′ = x3

such that y(1) = 2.

Solution From calculus, we know that the solutions of y ′ = x3 are

y =
x4

4
+ c. (1.1.12)

To determine a value of c such that y(1) = 2, we substitute x = 1 and y = 2 to obtain

2 =
1
4
+ c, so c =

7
4
.

Therefore the required solution is

y =
x4

4
+

7
4
.

Figure 1.2 shows the graph of this solution. Recall from algebra that a nonzero value of
c in (1.1.12) results in a vertical translation of c units. Imposing the condition y(1) = 2 is
equivalent to requiring the graph of y to pass through the point (1, 2), which determines
the specific vertical translation required.

We can rewrite the problem considered in Example 1.1.4 more succinctly as

y ′ = x3, y(1) = 2.

This type of problem is referred to as an initial value problem, and the requirement y(1) = 2
is an example of an initial condition. Initial value problems can also be posed for higher
order differential equations. For example,

y ′′ − 2y ′ + 3y = ex, y(0) = 1, y ′(0) = 2 (1.1.13)

is an initial value problem for a second order differential equation where y and y ′ are
required to have specified values at the same point, in this case at x = 0. In general, an
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−2 −1 1 2

2

4

6

8
y = x4+7

4

(1, 2)

Figure 1.2 y =
x4 + 7

4

initial value problem for an nth order differential equation requires y and its first n− 1
derivatives to have specified values at some point x0.

We’ll denote an initial value problem for a differential equation by writing the initial
conditions after the equation, as in (1.1.13). For example, we would write an initial value
problem for an nth order differential equation as

y(n) = f(x,y,y ′, . . . ,y(n−1)), y(x0) = k0, y ′(x0) = k1, . . . , y(n−1)(x0) = kn−1.
(1.1.14)

Consistent with our earlier definition of a solution of a differential equation, we say that
y is a solution of the initial value problem (1.1.14) on (a,b) if y is n times differentiable
on the interval (a,b) that contains x0,

y(n)(x) = f(x,y(x),y ′(x), . . . ,y(n−1)(x))

for all x in the interval (a,b), and y satisfies the initial conditions in (1.1.14). The domain
of the solution is taken to be the largest open interval that contains x0 on which y is
defined and satisfies the differential equation.

Example 1.1.5 In Example 1.1.4 we saw that

y =
x4 + 7

4

is a solution of the initial value problem

y ′ = x3, y(1) = 2.

Since the function y is defined for all x, the domain of the solution is (−∞,∞).
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Example 1.1.6 In Example 1.1.1 we verified that

y =
x2

3
+

1
x

is a solution of
xy ′ + y = x2

on (0,∞) and on (−∞, 0). Now consider the initial value problem

xy ′ + y = x2, y(−1) = −
2
3
. (1.1.15)

The domain of the solution of (1.1.15) is (−∞, 0), since this is the largest interval that
contains x0 = −1 on which (1.1.15) is defined.
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1.1 Exercises

1. State the order of the differential equation.

(a)
d2y

dx2 + 2
dy

dx

d3y

dx3 + x = 0 (b) y ′′ − 3y ′ + 2y = x7

(c) y ′ − y7 = 0 (d) y ′′y− (y ′)2 = 2
2. Verify that the function is a solution of the differential equation. Be sure to provide

an appropriate domain for the solution.

(a) y = ce2x; y ′ = 2y

(b) y =
x2

3
+
c

x
; xy ′ + y = x2

(c) y =
1
2
+ ce−x

2
; y ′ + 2xy = x

(d) y = (1+ ce−x2/2); (1− ce−x2/2)−1 2y ′ + x(y2 − 1) = 0

(e) y = tan
(
x3

3
+ c

)
; y ′ = x2(1+ y2)

(f) y = (c1 + c2x)e
x + sin x+ x2; y ′′ − 2y ′ + y = −2 cos x+ x2 − 4x+ 2

(g) y = c1e
x + c2x+

2
x
; (1− x)y ′′ + xy ′ − y = 4(1− x− x2)x−3

(h) y = x−1/2(c1 sin x+ c2 cos x) + 4x+ 8;

x2y ′′ + xy ′ +
(
x2 −

1
4

)
y = 4x3 + 8x2 + 3x− 2

3. Find all solutions of the differential equation.

(a) y ′ = −x (b) y ′ = −x sin x
(c) y ′ = x ln x (d) y ′′ = x cos x
(e) y ′′ = 2xex (f) y ′′ = 2x+ sin x+ ex

(g) y ′′′ = − cos x (h) y ′′′ = −x2 + ex

(i) y ′′′ = 7e4x

4. Solve the initial value problem.

(a) y ′ = −xex, y(0) = 1

(b) y ′ = x sin x2, y

(√
π

2

)
= 1

(c) y ′ = tan x, y(π/4) = 3
(d) y ′′ = x4, y(2) = −1, y ′(2) = −1
(e) y ′′ = xe2x, y(0) = 7, y ′(0) = 1
(f) y ′′ = −x sin x, y(0) = 1, y ′(0) = −3
(g) y ′′′ = x2ex, y(0) = 1, y ′(0) = −2, y ′′(0) = 3
(h) y ′′′ = 2+ sin 2x, y(0) = 1, y ′(0) = −6, y ′′(0) = 3
(i) y ′′′ = 2x+ 1, y(2) = 1, y ′(2) = −4, y ′′(2) = 7
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5. Verify that the function is a solution of the first order initial value problem.

(a) y = x cos x; y ′ = cos x− y tan x, y(π/4) =
π

4
√
2

(b) y =
1+ 2 ln x
x2 +

1
2
; y ′ =

x2 − 2x2y+ 2
x3 , y(1) =

3
2

(c) y = tan
(
x2

2

)
; y ′ = x(1+ y2), y(0) = 0

(d) y =
2

x− 2
; y ′ =

−y(y+ 1)
x

, y(1) = −2

6. Verify that the function is a solution of the second order initial value problem.

(a) y = x2(1+ ln x); y ′′ =
3xy ′ − 4y

x2 , y(e) = 2e2, y ′(e) = 5e

(b) y =
x2

3
+ x− 1; y ′′ =

x2 − xy ′ + y+ 1
x2 , y(1) =

1
3
, y ′(1) =

5
3

(c) y = (1+ x2)−1/2; y ′′ =
(x2 − 1)y− x(x2 + 1)y ′

(x2 + 1)2
, y(0) = 1,

y ′(0) = 0

(d) y =
x2

1− x
; y ′′ =

2(x+ y)(xy ′ − y)
x3 , y(1/2) = 1/2, y ′(1/2) = 3

7. Let a be a nonzero real number.

(a) Verify that if c is an arbitrary constant then

y = (x− c)a (A)

is a solution of
y ′ = ay(a−1)/a (B)

on (c,∞).
(b) Suppose a < 0 or a > 1. Can you think of a solution of (B) that isn’t of the

form (A)?

8. (a) Verify that if c is any real number then

y = c2 + cx+ 2c+ 1 (A)

satisfies

y ′ =
−(x+ 2) +

√
x2 + 4x+ 4y
2

(B)

on some open interval. Identify the open interval.
(b) Verify that

y1 =
−x(x+ 4)

4
also satisfies (B) on some open interval, and identify the open interval. (Note
that y1 can’t be obtained by selecting a value of c in (A); such an extra solution
is called a singular solution.)
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1.2 APPLICATIONS INVOLVING DIFFERENTIAL EQUATIONS

Differential equations can be used to model the behavior of a variety of real-life systems
found in fields such as economics, physics, medicine, and sociology. (The Malthusian
model discussed in the previous section is from a field referred to as political economy.)
In this section, we use differential equations to model dynamical systems that change or
evolve with the flow of time. In such applications, t is often used to represent time as
the independent variable. So if y is a function of t, y ′ denotes the derivative of ywith
respect to t; that is,

y ′ =
dy

dt
.

For a dynamical system, a solution of its model gives the state of the system: different
values of the independent variable t give values for the dependent variable (or variables)
that describe the system in past, present, and future states. We will assume all variables
are defined over a continuous range of time.

Mathematical models of bodies in motion provide a good example of how the inde-
pendent variable t represents elapsed time. Construction of a mathematical model for
the motion of a falling object requires the use of a second order differential equation.
In this case, the initial conditions of the initial value problem are the position and the
velocity of the object at the start of the experiment.

Free Fall Under Constant Gravity

When an object falls under the influence of gravity near Earth’s surface, it can be assumed
that the magnitude of the acceleration due to gravity is a constant, g. To simplify the
model, we will assume that gravity is the only force acting on the object. If the altitude
and velocity of the object at time t = 0 are known, then the model takes the form of an
initial value problem.

Let’s denote the altitude of the object at time t as y(t). Since the acceleration of the
object has constant magnitude g and is in the downward (negative) direction, y satisfies
the second order equation

y ′′ = −g,

where the prime notation indicates differentiation with respect to t. If y0 and v0 denote
the altitude and velocity when t = 0, then y is a solution of the initial value problem

y ′′ = −g, y(0) = y0, y ′(0) = v0. (1.2.1)

Although the emphasis in this section is on creating mathematical models rather than
solving them, the solution to this initial value problem should be familiar from physics
and/or calculus. Integrating (1.2.1) twice yields

y ′ = −gt+ c1,

y = −
gt2

2
+ c1t+ c2.
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By substituting the initial conditions y(0) = y0 and y ′(0) = v0 into these two equations,
we find that c1 = v0 and c2 = y0. (Try it!) Therefore the solution of the initial value
problem (1.2.1) is

y = −
gt2

2
+ v0t+ y0.

This equation describes the altitude of the object as a function of time.

Spread of an Epidemic

An epidemic is a widespread occurrence of an infectious disease in a given community
at a particular time. Consider a contagious illness such as the flu that is spread by
interactions among different types of people: let x(t) denote the number of infected
people and let y(t) denote the number of people who are susceptible but not yet infected.
A reasonable model for the spread of a disease assumes that the number of people
infected changes at a rate proportional to the number of encounters between these two
groups of people; that is, assume the number of encounters is jointly proportional to
x(t) and y(t). In this case

dx

dt
= kxy, (1.2.2)

where k is the constant of proportionality. Now suppose the community has a fixed
population of n people and that one infected person enters the community. This means
that x+ y = n+ 1 provides a relationship between the two groups of people. Solving
this relationship for y and then substituting this into equation (1.2.2) gives us the model

dx

dt
= kx(n+ 1− x). (1.2.3)

This becomes an initial-value problem by noting the condition that x(0) = 1.

Radioactive Decay Combined with Growth

Experimental evidence shows that radioactive material decays at a rate proportional
to the mass of the material present. This means that the mass Q(t) of a radioactive
material present at time t can be represented mathematically by the same model as
the one we used for population growth. In this model, however, a negative constant
of proportionality must be used. (This value for a given radioactive material must be
determined by experimental observation.) For simplicity, we will replace the negative
constant with a positive number k that we will call the decay constant of the material. In
summary, if the mass of the material present at t = t0 is Q0, the mass present at time t is
the solution of the initial value problem

Q ′ = −kQ, Q(t0) = Q0.

Now suppose that the radioactive material is a drug administered intravenously at
a constant rate of a units of mass per unit time. Assuming that Q(0) = Q0, we can
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construct an initial value problem to model the mass Q(t) of the substance present at
time t. The basic concept is that

Q ′ = rate of increase of Q− rate of decrease of Q.

The rate of increase is the constant a. Since Q is radioactive with decay constant k, the
rate of decrease is kQ. Therefore

Q ′ = a− kQ,

which is a first order differential equation. Rewriting it and imposing the initial condition
shows that Q is the solution of the initial value problem

Q ′ + kQ = a, Q(0) = Q0. (1.2.4)

Mixing Problems

In mixing problems, a saltwater solution with a given concentration (weight of salt per
unit volume of solution) is added at a specified rate to a tank that initially contains
saltwater with a different concentration. The problem is to determine the quantity of
salt in the tank as a function of time. To construct a tractable mathematical model for
these systems, we can assume that the mixture is stirred in such a way that the salt is
always uniformly distributed throughout the mixture. We look at two scenarios where
the newly mixed solution is then drained from the second tank at a constant rate: in
the first scenario, the rate of water entering the tank is the same as the rate of water
leaving the tank; in the second scenario, the two rates differ. Keep in mind that we are
interested in the amount of salt present in the tank – not the rates at which solutions
enter and drain (although these rates are an important part of the model). Similar to the
previous discussion on radioactive decay combined with growth, we must account for
simultaneous rates of increase and decrease in the amount of salt present.

For the first scenario, suppose a tank initially contains 40 pounds of salt dissolved in
600 gallons of water. Starting at t0 = 0, water that contains 1/2 pound of salt per gallon
is poured into the tank at the rate of 4 gal/min while the mixture is drained from the
tank at the same rate. (See Figure 1.1.)

4 gal/min
0.5 lb/gal

4 gal/min

600 gal

Figure 1.1 A mixing problem

To find a differential equation for the quantityQ(t) of salt in the tank at time t > 0, we
must use the given information to derive an expression for Q ′. Here Q ′ is the rate of
change of the quantity of salt in the tank that changes with respect to time; thus, if rate in
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denotes the rate at which salt enters the tank and rate out denotes the rate by which it
leaves, then

Q ′ = rate in − rate out. (1.2.5)

The rate in is (
1
2

lb/gal
)
× (4 gal/min) = 2 lb/min.

Determining the rate out requires a little more thought. Dimensional analysis is useful
to see that

rate out = (concentration)× (rate of flow out)

= (lb/gal)× (gal/min)

=
Q(t)

600
× 4.

In words, we’re removing 4 gallons of the mixture per minute, and there are always
600 gallons in the tank (since the amount of water coming in and the amount of water
going out are the same). Reduce the fraction to lowest terms to see that we’re removing
1/150 of the mixture per minute, and - since the salt is evenly distributed in the mixture -
we are also removing 1/150 of the salt per minute. Therefore, if there are Q(t) pounds
of salt in the tank at time t, the rate out at any time t is Q(t)/150. We can now rewrite
(1.2.5) as a first order differential equation with the initial condition Q(0) = 40.

Q ′ = 2−
Q

150
, Q(0) = 40 (1.2.6)

In the second scenario, we look at a mixing problem where the rate of water coming in
and the rate of water going out are different. The basic model, however, is still the same.

Suppose a 500-liter tank initially contains 10 grams of salt dissolved in 200 liters of
water. Starting at t0 = 0, water that contains 1/4 grams of salt per liter is poured into
the tank at the rate of 4 liters/min and the mixture is drained from the tank at the rate
of 2 liters/min. (See Figure 1.2.) The task is to find an initial value problem whose
solution describes the quantity Q(t) of salt in the tank at any time t prior to the time
when the tank overflows. (Notice that there is more water coming into the tank than
there is going out, so that the model is valid for only a certain period of time.)

4L/min
0.25 g/L

2L/min

2t+200L

Figure 1.2 Another mixing problem

We first determine the amount W(t) of solution in the tank at any time t prior to
overflow. Since W(0) = 200 and we’re adding 4 liters/min while removing only 2
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liters/min, there’s a net gain of 2 liters/min in the tank; therefore,

W(t) = 2t+ 200.

Since W(150) = 500 (the capacity of the tank is 500 liters), this formula is valid only
when 0 6 t 6 150.

Now let Q(t) be the number of grams of salt in the tank at time t, where 0 6 t 6 150.
As in the previous example,

Q ′ = rate in − rate out.

The rate in is (
1
4

g/liter
)
× (4 liters/min ) = 1 g/min. (1.2.7)

To determine the rate out, we observe that since the mixture is being removed from the
tank at the constant rate of 2 liters/min and there are 2t+ 200 liters in the tank at time
t, the fraction of the mixture being removed per minute at time t is

2
2t+ 200

=
1

t+ 100
.

Since the salt is evenly distributed in the mixture, we’re removing this same fraction of
the salt per minute. Therefore, since there are Q(t) grams of salt in the tank at time t,

rate out =
Q(t)

t+ 100
. (1.2.8)

Substituting (1.2.7) and (1.2.8) into the basic model (1.2.5) and imposing the initial
condition Q(0) = 10 gives us the desired initial value problem.

Q ′ = 1−
Q

t+ 100
, Q(0) = 10 (1.2.9)

The RLC Circuit

In an RLC series circuit, the letters R, L, and C represent resistance, inductance, and
capacitance, respectively. The values of R, L, and C are generally constants; the changing
quantities in the system are the current I(t) and the charge Q(t) on the capacitor. For
reference, refer to the schematic shown in Figure 1.3.

A switch is used to control the flow of current in an RLC circuit: nothing happens
while the switch is open, but current flows when the switch is closed to create a closed
circuit. The current flows in a closed circuit due to a difference in electrical potential, or
voltage. The battery or generator in Figure 1.3 creates a difference in electrical potential
between its two terminals, one of which is negative and one of which is positive. This
impressed voltage is represented by the function E = E(t). Differences in potential also
occur at the resistor, induction coil, and capacitor in Figure 1.3 and are referred to as
voltage drops. (Note that the two sides of each of these components are also identified
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−
+Battery E(t)

Resistor R
− +

Capacitor C

−

+

Induction Coil L
−+

ia

Figure 1.3 An RLC circuit

as positive and negative. The voltage drop across each component is defined to be the
potential on the positive side of the component minus the potential on the negative side.
This terminology is somewhat misleading, since “drop” suggests a decrease even though
changes in potential are signed quantities and therefore may be increases. Nevertheless,
we’ll go along with tradition and call them voltage drops.)

The voltage drop across the resistor in Figure 1.3 is given by

VR = IR, (1.2.10)

where I is current and R is a positive constant that represents the resistance of the resistor.
The voltage drop across the induction coil is represented by VI and is given by

L
dI

dt
= LI ′, (1.2.11)

where L is a positive constant that represents the inductance of the coil.
A capacitor stores electrical charge Q = Q(t), which is related to the current in the

circuit by the equation

Q(t) = Q0 +

∫t
0
I(τ)dτ, (1.2.12)

where Q0 is the charge on the capacitor at the initial time t = 0. The voltage drop across
a capacitor is given by

VC =
Q

C
, (1.2.13)

where C is a positive constant that represents the capacitance of the capacitor.
The table on Electrical Units lists the unit for each quantity needed to discuss an RLC

circuit. The units are defined so that

1volt = 1 ampere · 1 ohm
1volt = 1ampere · 1ohm

= 1henry · 1 ampere/second
= 1 coulomb/ farad

and

1 ampere = 1 coulomb/second.
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Electrical Units

Symbol Name Unit
E Impressed Voltage volt

I Current ampere

Q Charge coulomb

R Resistance ohm

L Inductance henry

C Capacitance farad

According to Kirchoff’s law, the sum of the voltage drops in a closed RLC circuit equals
the impressed voltage. Therefore, from (1.2.10), (1.2.11), and (1.2.13),

LI ′ + RI+
1
C
Q = E(t). (1.2.14)

This equation contains two unknowns, the current I in the circuit and the charge Q on
the capacitor. However, (1.2.12) implies that Q ′ = I, so (1.2.14) can be converted into the
second order differential equation

LQ ′′ + RQ ′ +
1
C
Q = E(t). (1.2.15)

In summary, an initial value problem to represent an RLC circuit has the form

LQ ′′ + RQ ′ +
1
C
Q = E(t), Q(0) = Q0, Q ′(0) = I0, (1.2.16)

whereQ0 is the initial charge on the capacitor and I0 is the initial current in the circuit. To
find the current flowing in an RLC circuit, we solve (1.2.16) for Q and then differentiate
the solution to obtain I.

For example, suppose an RLC circuit has resistance R = 40 ohms, inductance L = .2
henrys, and capacitance C = 10−5 farads. If we know that a current of 2 amperes flows
at time t = 0 and that the initial charge on the capacitor is 1 coulomb, we can create a
mathematical model to find the current flowing in the circuit at any time t > 0.

The equation for the charge Q is

1
5
Q ′′ + 40Q ′ + 10000Q = E(t).

Therefore, we must solve the initial value problem

1
5
Q ′′ + 40Q ′ + 10000Q = E(t), Q(0) = 1, Q ′(0) = 2.

The desired current is the derivative of the solution of this initial value problem.

1.2 Exercises
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1. Use the Malthusian model from Section 1.1 to set up a differential equation for
the population P(t) of a colony of rabbits where the birth rate, represented by the
constant b > 0, is ten times that of the death rate, represented by the constant
d > 0.

2. Use the Malthusian model from Section 1.1 to set up a differential equation for
the population P(t) of a country where the birth rate b > 0 is proportional to the
population present at time t but the death rate d > 0 is proportional to the square
of the population present at time t.

3. Determine a differential equation for the population P(t) of a small country where
people immigrate into the country at a constant rate a > 0. (Use the Malthusian
model from Section 1.1.)

4. Determine a differential equation for the population P(t) of a large country where
people emigrate out of the country at a constant rate b > 0. (Use the Malthusian
model from Section 1.1.)

5. Suppose an object is launched from a point 320 feet above the earth with an initial
velocity of 128 ft/sec upward, and the only force acting on it thereafter is gravity.
(Use g = 32 ft/sec2.) Construct an initial value problem that models the motion of
the object.

6. Suppose a roofer accidentally drops a hammer from the roof of a two-story building
that is 8 meters above the earth, and the only force acting on it thereafter is gravity.
(Use g = 9.8 m/sec2.) Construct an initial value problem that models the motion
of the object.

7. After spring break, a student returns to campus infected with the flu. Suppose
there are 4000 students on campus, none of which have been exposed to this flu.
Construct an initial value problem for the number of people x(t) who become
infected if the rate at which the illness spreads is proportional to the number of
encounters between those students who have the flu and those who have not yet
been exposed to it.

8. A couple attends a large family reunion infected with Severe Acute Respiratory
Syndrome (SARS). Suppose there are 84 family members at the reunion, none
of which have been exposed to this airborne illness. Construct an initial value
problem for the number of people x(t) who become infected if the rate at which
the illness spreads is proportional to the number of encounters between those
family members who have SARS and those who have not yet been exposed to it.

9. An employee at a large company shares a private video by email with a co-worker,
and the video goes “viral”. Assume the company has a fixed population of n
employees, none of whom have previously seen the video. Construct an initial
value problem to represent the number of people x(t) who have seen the video if
we assume the rate at which the video is spread throughout the company is jointly
proportional to the number of people who have seen it and the number of people
y(t) who have not seen it.



Section 1.2 Applications Involving Differential Equations 21

10. A pair of disgruntled employees begin a rumor about Company XYZ in the break
room one day. Assume the company has a fixed population of n employees, none
of whom have previously heard the rumor. Construct an initial value problem to
represent the number of people x(t) who have heard the rumor if we assume the
rate at which the rumor is spread throughout the company is jointly proportional
to the number of people who have heard it and the number of people y(t) who
have not heard it.

11. A candymaker makes 500 pounds of candy per week, while his large family eats
the candy at a rate equal to Q(t)/10 pounds per week, where Q(t) is the amount
of candy present at time t. Find an initial value problem whose solution is Q(t)
for t > 0 if the candymaker has 250 pounds of candy at time t = 0.

12. A wizard creates gold continuously at the rate of 1 ounce per hour, but an assistant
steals it continuously at the rate of 5% of however much is there per hour. Construct
an initial value problem whose solution is W(t), the number of ounces that the
wizard has at time t. Assume the wizard begins with 1 ounce of gold.

13. A process creates a radioactive substance at the rate of 1 gram per hour, and the
substance decays at an hourly rate equal to 1/10 of the mass present (expressed
in grams). Assuming that there are initially 20 grams, construct an initial value
problem to find the mass P(t) of the substance present at time t.

14. A tank initially contains 40 gallons of pure water. A water solution with 1 gram of
salt per gallon is added to the tank at 3 gal/min, and the resulting solution drains
out at the same rate. Find an initial value problem whose solution is the quantity
Q(t) of salt in the tank at time t > 0.

15. A tank initially contains a solution of 10 pounds of salt in 60 gallons of water.
Water with 1/2 pound of salt per gallon is added to the tank at 6 gal/min, and the
resulting solution drains at the same rate. Find an initial value problem whose
solution is the quantity Q(t) of salt in the tank at time t > 0.

16. A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A
salt solution with 1/4 pound of salt per gallon is added to the tank at 4 gal/min,
and the resulting mixture is drained out at 2 gal/min. Find an initial value problem
whose solution is the quantity Q(t) of salt in the tank any time before it overflows.
Be sure to include the domain of the solution.

17. A 1200 gallon tank initially contains 40 pounds of salt dissolved in 600 gallons of
water. Starting at t0 = 0, water that contains 1/2 pound of salt per gallon is added
to the tank at the rate of 6 gal/min and the resulting mixture is drained from the
tank at 4 gal/min. Find an initial value problem whose solution is the quantity
Q(t) of salt in the tank any time before it overflows. Be sure to include the domain
of the solution.

18. Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 3 ohms, L = .1 henrys,C = .01 farads,Q0 = 0 coulombs,
and I0 = 2 amperes.
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19. Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 2 ohms, L = .05 henrys, C = .01 farads, Q0 = 2
coulombs, and I0 = −2 amperes.

20. Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 6 ohms, L = .1 henrys, C = .004 farads, Q0 = 3
coulombs, and I0 = −10 amperes.

21. Find an initial value problem that serves as a mathematical model for the RLC
circuit with the values R = 4 ohms, L = .05 henrys, C = .008 farads, Q0 = −1
coulombs, and I0 = 2 amperes.

1.3 ANALYZING SOLUTION CURVES WITHOUT SOLVING EQUATIONS

Some differential equations have no solutions; for others, it’s impossible to find explicit
formulas for solutions. Even if there are such formulas, they may be so complicated that
they’re useless. In such cases we may resort to graphical or numerical methods to get
some idea of how the solutions to the given equation behave.

The next chapter will address the question of the existence of solutions of a first order
equation

y ′ = f(x,y). (1.3.1)

In this section we’ll simply assume that (1.3.1) has solutions and discuss graphical
methods for approximating them.

Direction Fields

Recall that a solution of (1.3.1) is a function y = y(x) such that

y ′(x) = f(x,y(x))

for all values of x in some interval, and that the graph of y(x) is referred to as a solution
curve. In the more general case, we may be interested in a graph of the solution(s)
that need not be a function. Such a curve C is called an integral curve of a differential
equation: that is, every function y = y(x) whose graph is a segment of C is a solution of
the differential equation. Thus, any solution curve of a differential equation is an integral
curve, but an integral curve need not be a solution curve. This means an integral curve
is either the graph of a solution or is made up of segments that are graphs of solutions.

Example 1.3.1 If a is any positive constant, the circle

x2 + y2 = a2 (1.3.2)

is an integral curve of
y ′ = −

x

y
. (1.3.3)
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To see this, consider the two functions whose graphs are segments of (1.3.2) are

y1 =
√
a2 − x2 and y2 = −

√
a2 − x2.

We leave it to you to verify that these functions both satisfy (1.3.3) on the open interval
(−a,a). However, (1.3.2) is not a solution curve of (1.3.3), since it’s not the graph of a
function.

Not being able to solve an equation of the form (1.3.1) is equivalent to not knowing
the equations of its integral curves. However, it is easy to calculate the slopes of these
curves because they are first order differential equations. To be specific, the slope of an
integral curve of (1.3.1) through a given point (x0,y0) is given by the number f(x0,y0).
This is the basic idea behind direction fields.

If f is defined on a region R, we can construct a direction field for (1.3.1) in R by
drawing a short line segment through each point (x,y) in R with slope f(x,y). As a
practical matter, we can’t draw line segments through every point in R; rather, we select
a finite set of points to be representative of R. For example, suppose f is defined on the
closed rectangular region

R : {a 6 x 6 b, c 6 y 6 d}.

Choose equally spaced points in [a,b] so that

a = x0 < x1 < · · · < xm = b;

Similarly, choose equally spaced points in [c,d] so that

c = y0 < y1 < · · · < yn = d.

This creates a finite set of ordered pairs

(xi,yj), 0 6 i 6 m, 0 6 j 6 n,

that form a rectangular grid. (See Figure 1.1.) Through each point in the grid we draw
a short line segment with slope f(xi,yj). The result is an approximation to a direction
field for (1.3.1) in R. If the grid points are sufficiently numerous and close together, we
can draw approximate integral curves of (1.3.1) by drawing curves through points in the
grid. At each point, the solution curve should be tangent to the line segment associated
with that point in the grid.

Unfortunately, approximating a direction field and graphing integral curves in this
way is too tedious to be done effectively by hand. However, there is software for doing
this.

The combination of direction fields and integral curves provides insight into the
behavior of the solutions even if we can’t solve the differential equation. Figures 1.2a
and 1.2b show direction fields and solution curves for the differential equations

y ′ =
x2 − y2

1+ x2 + y2 and y ′ = 1+ xy2,
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y

x
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d

Figure 1.1 A rectangular grid
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(a) A direction field and integral curves for
y = x2−y2

1+x2+y2
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(b) A direction field and integral curves for
y ′ = 1 + xy2

Figure 1.2 Direction Fields

which are both of the form (1.3.1). Notice that for both differential equations, f(x,y) is
continuous for all (x,y).

When a first order differential equation is such that f(x,y) is not continuous for all
(x,y), numerical methods can be limited. (A discussion of numerical methods is found
in the Appendix.) For example, they do not work for the equation

y ′ = −x/y (1.3.4)

if the region R contains any part of the x-axis, since f(x,y) = −x/y is undefined when
y = 0. Similarly, numerical methods will not work for the equation

y ′ =
x2

1− x2 − y2 (1.3.5)



Section 1.3 Analyzing Solution Curves without Solving Equations 25

if R contains any part of the unit circle x2 + y2 = 1, because the right side of (1.3.5) is
undefined if x2 + y2 = 1. However, we can still generate direction fields for these first
order differential equations.

Figure 1.3 shows a direction field and some integral curves for (1.3.4). As we saw in
Example 1.3.1, the integral curves of (1.3.4) are circles centered at the origin.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 1.3 A direction field and integral curves for y ′ = −
x

y

Figure 1.4a shows a direction field and some integral curves for (1.3.5). The integral
curves near the top and bottom are solution curves. However, the integral curves near
the middle are more complicated. For example, Figure 1.4b shows the integral curve
through the origin. Two points from the circle x2 + y2 = 1 (a ≈ .846, b ≈ .533) are
marked on this integral curve at (a,b) and (−a,−b); at these points, the integral curve of
(1.3.5) has infinite slope. The integral curve in Figure 1.4b is comprised of three solution
curves of (1.3.5): the segment above the level y = b is the graph of a solution on (−∞,a),
the segment below the level y = −b is the graph of a solution on (−a,∞), and the
segment between these two levels is the graph of a solution on (−a,a).

Phase Portraits

Now we consider a special type of differential equation where the independent variable
does not appear in the equation. Such equations are said to be autonomous. For an
autonomous first order differential equation, (1.3.1) takes the form y ′ = f(y). For such
equations, we can create a phase portrait that provides a geometric representation of the
solution curves. First, we show how to create a phase portrait for an autonomous first
order differential equation of the form

dy

dx
= f(y), (1.3.6)

and then we discuss what it tells us about the solution curves. (Although it may be
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(a) A direction field for y ′ = x2
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Figure 1.4 A direction field and integral curves for y ′ = x2

1−x2−y2

inconvenient to write, the Leibniz notation is helpful when representing these types of
equations since it clarifies which variable is the independent variable.)

To begin, find the real values c such that f(c) = 0 in (1.3.6). Now consider the constant
function y(x) = c: if we substitute this function into (1.3.6), we see that both sides of the
equation will be zero. Therefore, y(x) = c is a constant solution of the autonomous first
order differential equation. In fact, the zeros of f(y) are the only constant solutions of
(1.3.6). A real value c that is a zero of f(y) is referred to as an equilibrium point, and the
corresponding function y(x) = c is referred to as an equilibrium solution,

Now we graph a vertical line to represent the y-axis and mark the equilibrium points
on it with a horizontal line. This divides the y-axis into intervals. To complete the phase
portrait, we use a value from each interval on the y-axis to determine the algebraic sign
of the derivative function f(y) on that interval and mark an appropriate arrow on the
corresponding interval of the y-axis.

Example 1.3.2 Find the equilibrium points of

dy

dx
= y(2− y)(4− y) (1.3.7)

and use these to create a phase portrait of the autonomous first order differential equa-
tion.

Solution Using the Zero Product Property with f(y) = 0 gives

y(2− y)(4− y) = 0,
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so there are equilibrium points at y = 0, y = 2, and y = 4. This creates four intervals on
the y-axis. For the interval where y > 4, we can test y = 5 in f(y) to get

dy

dx
= 5(2− 5)(4− 5).

Since the derivative has the value 15 > 0, any solution curve passing through y = 5
must have the same positive slope, regardless of the value of x. In fact, any solution
curve in the region where y > 4 must have positive slope, although not necessarily with
a value of 15. (Test a few values of y to convince yourself, if needed.) We indicate this by
drawing an arrow that points up on the y-axis above y = 4. In a similar fashion, we can
test values in the other three intervals. (For example, f(3) < 0, f(1) > 0, and f(−1) < 0.)
Adding arrows to the remaining intervals completes the phase portrait. (See PHASE
PORTRAIT.)

INSERT FIGURE: PHASE PORTRAIT
The equilibrium points in a phase portrait divide the y-axis into intervals, and these

intervals on the y-axis divide the xy-plane into corresponding subregions. Within a
subregion, any nonconstant solution y = y(x) of (1.3.6) must be continuous and therefore
cannot change signs algebraically. (Recall that the equilibrium points mark the location
of the zeros). This means that a nonconstant solution must be strictly monotonic – that is,
either continually increasing or continually decreasing – within the subregion. Functions
that are strictly monotonic cannot have relative extrema (maximum or minimum values),
nor can they be oscillatory. Knowing these facts about the nonconstant solutions of
an autonomous first order differential equation tells us a great deal about the solution
curves – without actually solving the equation!

Knowing that the graph of a nonconstant solution cannot cross the graph of an
equilibrium solution and that a nonconstant solution must be strictly monotonic suggests
asymptotic behavior near the equilibrium points. For example, in PHASE PORTRAIT
consider a nonconstant solution y(x) that is bounded above by the equilibrium point
c = 2 and bounded below by the equilibrium point c = 0. In this region, the graph of
y(x) must approach the graph of the equilibrium solution y(x) = 2 as x→∞ and must
approach the graph of the equilibrium solution y(x) = 0 as x→ −∞ since we know that
y(x) is continually increasing.

SAMPLE SOLUTION CURVES shows the phase portrait for (1.3.7) with the subregions
it creates in the xy-plane. (The subregions have been labeled for ease of reference.)
Sample solution curves are shown for each region.

INSERT FIGURE: SAMPLE SOLUTION CURVES
In the phase portrait for (1.3.7), the equilibrium point at y = 4 has arrows on either side

pointing away from y = 4. This means all nonconstant solutions of y(x) that start from
any initial point in R4 or R3 will move away from y = 4 as x values increase. Equilibrium
points such as this are said to be unstable. (For obvious reasons, this type of point is also
called a repeller.) On the other hand, the equilibrium point at y = 2 has arrows on either
side pointing toward y = 2. This means all nonconstant solutions of y(x) that start from
any initial point in R3 or R2 will move toward y = 2 as x values increase. Equilibrium
points such as this are said to be asymptotically stable. (This type of point is also called an
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attractor.) Other equilibrium points that attract from one side and repel from the other
are referred to as semi stable.

Many differential equations that model physical laws are autonomous because the
laws themselves do not change with the passing of time. The Malthusian model of
population growth discussed in the first section is an autonomous first order differential
equation where

dP

dt
= aP.

Another model of population growth that accounts for limitations of space and resources
is the Verhulst model. This model uses the autonomous first order differential equation

dP

dt
= aP(1− αP), (1.3.8)

where both a and α are positive constants.
Recall that a flaw in the Malthusian model was that there was no limiting value to

the size of the population with the passing of time. We can use a phase portrait of the
Verhulst model to determine the limiting value of a population that grows according to
the model, without solving the differential equation itself. (You will learn how to solve
it later.)

Example 1.3.3 Find the equilibrium points of the Verhulst model

dP

dt
= aP(1− αP),

and use these to create a phase portrait of the autonomous first order differential equation.
Then identify any asymptotically stable equilibrium points.

Solution First set
aP(1− αP) = 0

to find equilibrium points at P = 0 and P = 1/α. For this application based on population,
we need only concern ourselves with positive values of the dependent variable. This
means we need only two test values: P1 between 0 and 1/α, and P2 > 1/α. For P1, we
choose half of 1/α since we do not know the numerical value of α. Substituting 1/2α
gives

aP1(1− αP1) = 1/2aP1

which we know is positive since a and P1 are both positive. For P2, we choose to double
1/α, which is 2/α. Testing this value gives

aP2(1− αP2) = −aP2

which we know is negative since a and P1 are both positive. The phase portrait shows
that 1/α is an asymptotically stable equilibrium point. This means that all solution
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curves will approach the horizontal asymptote P = 1/α as t increases, regardless of the
value of the initial population, P0. Sample solution curves are shown with the phase
portrait for the Verhulst model in VERHULST.

INSERT FIGURE: VERHULST

x

y

−1

1
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1.3 Exercises

In Exercises 1–11 a direction field is drawn for the given equation. Sketch some integral curves.

1. y ′ =
x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ =
x

y

2. y ′ =
2xy2

1+ x2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ =
2xy2

1+ x2
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3. y ′ = x2(1+ y2)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ = x2(1+ y2)

4. y ′ =
1

1+ x2 + y2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ =
1

1+ x2 + y2
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5. y ′ = −(2xy2 + y3)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ = −(2xy2 + y3)

6. y ′ = (x2 + y2)1/2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ = (x2 + y2)1/2
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7. y ′ = sin xy

0 1 2 3 4 5 6 7

−2

0

2

A direction field for y ′ = sin xy

8. y ′ = exy

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ = exy
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9. y ′ = (x− y2)(x2 − y)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ = (x− y2)(x2 − y)

10. y ′ = x3y2 + xy3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A direction field for y ′ = x3y2 + xy3
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11. y ′ = sin(x− 2y)

−2 0 2

−2

0

2

A direction field for y ′ = sin(x− 2y)

In Exercises 12-13 construct a direction field in the indicated rectangular region.

12. y ′ = y(y− 1); {−1 6 x 6 2, −2 6 y 6 2}

13. y ′ = 2− 3xy; {−1 6 x 6 4, −4 6 y 6 4}

In Exercises 14-21 find the equilibrium points and phase portrait of the given autonomous
first order differential equation. Classify each equilibrium point as asymptotically stable,
unstable, or semi-stable. By hand, sketch typical solution curves in each region of the plane
created by the graph of the equilibrium solution.

14. dy
dx = 4y− y2

15. dy
dx = y3 − 2y2

16. dy
dx = y2 − 5x+ 6

17. dy
dx = 10+ 3y− y2

18. dP
dt = P(a− bP)

19. dR
dt = k(a− R)(b− R)

20. dF
dt = kF(n+ 1− F)

21. dM
dt = 4− M

100



CHAPTER 2

FIRST ORDER EQUATIONS

“Begin at the beginning,¨ the King said gravely, “and go on till you come to the end:
then stop."

— Lewis Carroll, Alice in Wonderland

IN THIS CHAPTER we study first order equations for which there are general methods
of solution.

SECTION 2.1 deals with linear equations, the simplest kind of first order equations. In
this section we introduce the method of variation of parameters. The idea underlying
this method will be a unifying theme for our approach to solving many different kinds
of differential equations throughout the book.

SECTION 2.2 deals with separable equations, the simplest nonlinear equations. In this
section we introduce the idea of implicit and constant solutions of differential equations,
and we point out some differences between the properties of linear and nonlinear
equations.

SECTION 2.3 discusses existence and uniqueness of solutions of nonlinear equations.
Although it may seem logical to place this section before Section 2.2, Section 2.2 is
presented first so that we could have illustrative examples in Section 2.3.

SECTION 2.4 deals with nonlinear equations that are not separable, although they can be
transformed into separable equations by a procedure similar to variation of parameters.

SECTION 2.5 covers exact differential equations, which are given this name because the
method for solving them uses the idea of an exact differential from calculus.

SECTION 2.6 deals with equations that are not exact, although they can be made exact
by multiplying them by a function known as an integrating factor.

36
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2.1 LINEAR FIRST ORDER EQUATIONS

A first order differential equation is said to be linear if it can be written in standard form as

y ′ + p(x)y = f(x). (2.1.1)

A first order differential equation that cannot be written like this is nonlinear. We say that
(2.1.1) is homogeneous if f ≡ 0; otherwise it is nonhomogeneous. Since y ≡ 0 is obviously a
solution of the homogeneous equation

y ′ + p(x)y = 0,

we call it the trivial solution. Any other solution is nontrivial.

Example 2.1.1 These first order equations are not in standard form (2.1.1), but they are
linear.

x2y ′ + 3y = x2

xy ′ − 8x2y = sin x
xy ′ + (ln x)y = 0

y ′ = x2y− 2

Rewritten in standard form, they have these forms.

y ′ +
3
x2y = 1,

y ′ − 8xy =
sin x
x

,

y ′ +
ln x
x
y = 0,

y ′ − x2y = −2.

Example 2.1.2 Here are some nonlinear first order equations.

xy ′ + 3y2 = 2x (because y2 is not of first degree),

yy ′ = 3 (because y in the y ′ term is not a function of x),

y ′ + xey = 12 (because ey is not linear).

General Solution of a Linear First Order Equation
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To motivate an important definition, consider the simple linear first order equation

y ′ =
1
x2 . (2.1.2)

From calculus we know that y satisfies this equation if and only if

y = −
1
x
+ c, (2.1.3)

where c is an arbitrary constant. We call c a parameter and say that (2.1.3) defines a
one–parameter family of functions. For each real number c, the function defined by (2.1.3)
is a solution of (2.1.2) on (−∞, 0) and (0,∞); moreover, every solution of (2.1.2) on either
of these intervals is of the form (2.1.3) for some choice of c.

A similar situation occurs in connection with any first order linear equation

y ′ + p(x)y = f(x); (2.1.4)

that is, if p and f are continuous on some open interval (a,b) then there’s a unique
formula y = y(x, c) analogous to (2.1.3) that involves a function of x and a parameter c
which has these properties:

• For each fixed value of c, the resulting function of x is a solution of (2.1.4) on (a,b).

• If y is a solution of (2.1.4) on (a,b), then y can be obtained from the formula by
choosing c appropriately.

We will call y = y(x, c) the general solution of (2.1.4).
When this has been established, it will follow that an equation of the form

P0(x)y
′ + P1(x)y = F(x) (2.1.5)

has a general solution on any open interval (a,b) on which P0, P1, and F are all continu-
ous and P0 has no zeros, since in this case we can rewrite (2.1.5) in the form (2.1.4) with
p = P1/P0 and f = F/P0, which are both continuous on (a,b).

To avoid awkward wording in examples and exercises, we will not specify the interval
(a,b) when we ask for the general solution of a specific linear first order equation. Let us
agree that this always means that we want the general solution on every open interval
on which p and f are continuous if the equation is of the form (2.1.4), or on which P0, P1,
and F are continuous and P0 has no zeros, if the equation is of the form (2.1.5). We leave
it to you to identify these intervals in specific examples and exercises.

For completeness, we point out that if P0, P1, and F are all continuous on an open
interval (a,b), but P0 does have a zero in (a,b), then (2.1.5) may fail to have a general
solution on (a,b) in the sense just defined. Since this is not a major point that needs to
be developed in depth, we will not discuss it further; however, see Exercise 44 for an
example.

Homogeneous Linear First Order Equations

We begin with the problem of finding the general solution of a homogeneous linear first
order equation. The next example recalls a familiar result from calculus.
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Example 2.1.3 Let a be a constant, and let y ′ represent dydx . Find the general solution of

y ′ − ay = 0. (2.1.6)

Solution You may remember from calculus that if c is any constant, then y = ceax

satisfies (2.1.6). Even without this knowledge, we can use this problem to illustrate a
general method for solving a homogeneous linear first order equation.

We know that (2.1.6) has the trivial solution y ≡ 0. Now suppose y is a nontrivial
solution of (2.1.6). Then, since a differentiable function must be continuous, there must
be some open interval I on which y has no zeros. On this interval, we can rewrite (2.1.6)
as

y ′

y
= a;

using the Leibniz notation for clarity (and some algebra) gives us

1
y

dy

dx
= a.

Finally, multiply both sides by the differential dx to obtain

1
y
dy = adx.

Integrating both sides of this equation gives us

ln |y| = ax+ k.

(There is no need to use two constants in this type of integration. If we did use constants
c1 and c2 on the left and right sides, respectively, then we could simply rewrite the
equation using k = c2 − c1.)

Now we exponentiate both sides to get

|y| = ekeax.

(Use rules of exponents to rewrite eax+k as eaxek.) Since eax can never equal zero, y
has no zeros, which means that y is either always positive or always negative. Therefore
we can rewrite y as

y = ceax (2.1.7)

where

c =

{
ek if y > 0,

−ek if y < 0.

This shows that every nontrivial solution of (2.1.6) is of the form y = ceax for some
nonzero constant c. Since setting c = 0 yields the trivial solution, all solutions of (2.1.6)
are of the form (2.1.7). Conversely, (2.1.7) is a solution of (2.1.6) for every choice of c,
since differentiating (2.1.7) yields y ′ = aceax = ay.

Rewriting a first order differential equation so that one side depends only on y and
y ′ and the other depends only on x is called separation of variables. We will apply this
method to nonlinear equations in Section 2.2.
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Example 2.1.4 (a) Find the general solution of

xy ′ + y = 0. (2.1.8)

(b) Solve the initial value problem

xy ′ + y = 0, y(1) = 3. (2.1.9)

(a) We rewrite (2.1.8) as

y ′ +
1
x
y = 0, (2.1.10)

where x is restricted to either (−∞, 0) or (0,∞). If y is a nontrivial solution of (2.1.10),
there must be some open interval I on which y has no zeros. We can rewrite (2.1.10) as

y ′

y
= −

1
x

for all x in the specified interval I. Integration using separation of variables shows that

ln |y| = − ln |x|+ k, so |y| =
ek

|x|
.

Since a function that satisfies the last equation cannot change sign on either (−∞, 0) or
(0,∞), we can rewrite this result more simply as

y =
c

x
(2.1.11)

where

c =

{
ek if y > 0,

−ek if y < 0.

We have now shown that every solution of (2.1.10) is given by (2.1.11) for some choice
of c. (Even though we assumed that ywas nontrivial to derive (2.1.11), we can get the
trivial solution by setting c = 0 in (2.1.11).) Conversely, any function of the form (2.1.11)
is a solution of (2.1.10), since differentiating (2.1.11) yields

y ′ = −
c

x2 ,

and substituting this and (2.1.11) into (2.1.10) yields

y ′ +
1
x
y = −

c

x2 +
1
x

c

x

= −
c

x2 +
c

x2 = 0.

(b) Imposing the initial condition y(1) = 3 in (2.1.11) yields c = 3. Therefore the
solution of (2.1.9) is

y =
3
x
.

The domain of this solution is (0,∞).
The results in Examples 2.1.3 and 2.1.4(b) are special cases of the next theorem.
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Theorem 2.1.1 If p is continuous on (a,b), then the general solution of the homogeneous
equation

y ′ + p(x)y = 0 (2.1.12)

on (a,b) is
y = ce−P(x),

where
P(x) =

∫
p(x)dx (2.1.13)

is any antiderivative of p on (a,b); that is,

P ′(x) = p(x), a < x < b. (2.1.14)

Proof If y = ce−P(x), differentiating y and using (2.1.14) shows that

y ′ = −P ′(x)ce−P(x) = −p(x)ce−P(x) = −p(x)y,

so y ′ + p(x)y = 0; that is, y is a solution of (2.1.12), for any choice of c.
Now we’ll show that any solution of (2.1.12) can be written as y = ce−P(x) for some

constant c. The trivial solution can be written this way, with c = 0. Now suppose y is a
nontrivial solution. Then there’s an open subinterval I of (a,b) on which y has no zeros.
We can rewrite (2.1.12) as

y ′

y
= −p(x) (2.1.15)

for x in I. Integrating (2.1.15) and recalling (2.1.13) yields

ln |y| = −P(x) + k,

where k is a constant. This implies that

|y| = eke−P(x).

Since P is defined for all x in (a,b) and an exponential can never equal zero, we can take
I = (a,b), and can rewrite the last equation as y = ce−P(x), where

c =

{
ek if y > 0 on (a,b),

−ek if y < 0 on (a,b).

Linear Nonhomogeneous First Order Equations

We now solve the nonhomogeneous equation

y ′ + p(x)y = f(x). (2.1.16)
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When considering this equation we call

y ′ + p(x)y = 0

the complementary equation.
We will find solutions of (2.1.16) in the form y = uy1, where y1 is a nontrivial solution

of the complementary equation and u is to be determined. This method of using a
solution of the complementary equation to obtain solutions of a nonhomogeneous
equation is a special case of a method called variation of parameters, which you will
encounter several times in this book.

If
y = uy1, then y ′ = u ′y1 + uy

′
1.

Substituting these expressions for y and y ′ into (2.1.16) yields

u ′y1 + u(y
′
1 + p(x)y1) = f(x),

which reduces to
u ′y1 = f(x), (2.1.17)

since y1 is a solution of the complementary equation; that is,

y ′1 + p(x)y1 = 0.

(Obviously, u cannot be constant, since if it were, the left side of (2.1.17) would be zero.
Recognizing this, the early users of this method viewed u as a “parameter” that varies;
hence, the name “variation of parameters.”)

In the proof of Theorem 2.2.1 we saw that y1 has no zeros on an interval where p is
continuous. Therefore we can divide through by y1 in (2.1.17) to obtain

u ′ = f(x)/y1(x).

We can integrate this (introducing a constant of integration), and multiply the result by
y1 to get the general solution of (2.1.16). Before turning to the formal proof of this claim,
let us look at some examples.

Example 2.1.5 Find the general solution of

y ′ + 2y = x3e−2x. (2.1.18)

By applying Example 2.1.3 with a = −2, we see that y1 = e−2x is a solution of the
complementary equation y ′+ 2y = 0. Therefore we seek solutions of (2.1.18) in the form
y = ue−2x. Taking the derivative and then substituting gives

y ′ + 2y = u ′e−2x − 2ue−2x + 2ue−2x. (2.1.19)

Since (2.1.19) reduces to u ′e−2x, y is a solution of (2.1.18) if and only if

u ′e−2x = x3e−2x.
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Therefore, u ′ = x3 and integrating gives

u =
x4

4
+ c.

So the general solution of (2.1.18) is

y = ue−2x = e−2x
(
x4

4
+ c

)
.

Example 2.1.6
(a) Find the general solution

y ′ + (cot x)y = x csc x. (2.1.20)

(b) Solve the initial value problem

y ′ + (cot x)y = x csc x, y(π/2) = 1. (2.1.21)

a Here p(x) = cot x and f(x) = x csc x are both continuous except at the points
x = rπ, where r is an integer. Therefore we seek solutions of (2.1.20) on the intervals
(rπ, (r+ 1)π). We need a nontrival solution y1 of the complementary equation; thus, y1
must satisfy y ′1 + (cot x)y1 = 0, which we rewrite as

y ′1
y1

= − cot x = −
cos x
sin x

. (2.1.22)

Integrating this yields
ln |y1| = − ln | sin x|+ c.

Keep in mind that we need only one function that satisfies (2.1.22). This means that we
can take the constant of integration to be zero. After exponentiating both sides, we see
that

|y1| = | sin x|−1

and therefore y1 = 1/ sin x is a suitable choice. So we seek solutions of (2.1.20) in the
form

y =
u

sin x
,

which has derivative

y ′ =
u ′

sin x
−
u cos x
sin2 x

(2.1.23)

so that

y ′ + (cot x)y =
u ′

sin x
−
u cos x
sin2 x

+
u cot x
sin x

=
u ′

sin x
−
u cos x
sin2 x

+
u cos x
sin2 x

=
u ′

sin x
.

(2.1.24)
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Therefore y is a solution of (2.1.20) if and only if

u ′/ sin x = x csc x = x/ sin x.

Therefore, u ′ = x and integrating gives

u =
x2

2
+ c, so that y =

u

sin x
=

x2

2 sin x
+

c

sin x
. (2.1.25)

is the general solution of (2.1.20) on every interval (rπ, (r+ 1)π) (r =integer).
b Imposing the initial condition y(π/2) = 1 in (2.1.25) yields

1 =
π2

8
+ c or c = 1−

π2

8
.

Thus,

y =
x2

2 sin x
+

(1− π2/8)
sin x

is a solution of (2.1.21). The domain of this solution is (0,π).
Figure 2.1 shows its graph.

1 3

−15

−10

−5

5

10

15

x

y

Figure 2.1 Solution of y ′ + (cot x)y = x csc x,y(π/2) = 1

It was not necessary to do the computations (2.1.23) and (2.1.24) in Example 2.1.6,
since we showed in the discussion preceding Example 2.1.5 that if y = uy1 where
y ′1 + p(x)y1 = 0, then y ′ + p(x)y = u ′y1. We did these computations to show how the
method works. We recommend that you include these “unnecesary” computations in
doing exercises until you are confident that you understand the method. After that, omit
them.

We summarize the method of variation of parameters for solving

y ′ + p(x)y = f(x) (2.1.26)

as follows:
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(a) Find a function y1 such that
y ′1
y1

= −p(x).

For convenience, take the constant of integration to be zero.

(b) Write u ′y1 = f and solve for u ′. (So u ′ = f/y1.)

(c) Integrate u ′ to obtain u with an arbitrary constant of integration.

(d) Substitute u into y = uy1 to determine y.

To solve an equation written as

P0(x)y
′ + P1(x)y = F(x),

we recommend that you divide through by P0(x) to obtain an equation of the form
(2.1.26) and then follow this procedure.

Solutions in Integral Form

Sometimes the integrals that arise in solving a linear first order equation cannot be
evaluated in terms of elementary functions. In this case the solution must be left in terms
of an integral.

Example 2.1.7

(a) Find the general solution of
y ′ − 2xy = 1.

(b) Solve the initial value problem

y ′ − 2xy = 1, y(0) = y0. (2.1.27)

a To apply variation of parameters, we need a nontrivial solution y1 of the comple-
mentary equation; thus, y ′1 − 2xy1 = 0, which we rewrite as

y ′1
y1

= 2x.

Integrating this and taking the constant of integration to be zero yields

ln |y1| = x
2, so |y1| = e

x2
.

We choose y1 = ex
2

(with constant of integration equal to 0) and seek solutions of (2.1.27)
in the form y = uex

2
, where

u ′ex
2
= 1, so u ′ = e−x

2
.

Therefore
u = c+

∫
e−x

2
dx.
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However, we cannot simplify the integral on the right because there is no elementary
function with derivative equal to e−x

2
. Therefore the best available form for the general

solution of (2.1.27) is

y = uex
2
= ex

2
(
c+

∫
e−x

2
dx

)
. (2.1.28)

b Since the initial condition in (2.1.27) is imposed at x0 = 0, it is convenient to rewrite
(2.1.28) as

y = ex
2
(
c+

∫x
0
e−t

2
dt

)
, since

∫0
0
e−t

2
dt = 0.

Setting x = 0 and y = y0 here shows that c = y0. Therefore the solution of the initial
value problem is

y = ex
2
(
y0 +

∫x
0
e−t

2
dt

)
. (2.1.29)

For a given value of y0 and each fixed x, the integral on the right can be evaluated
by numerical methods. An alternate procedure is to apply the numerical integration
procedures discussed in Chapter 3 directly to the initial value problem (2.1.27).

An Existence and Uniqueness Theorem

The method of variation of parameters leads to this theorem.

Theorem 2.1.2 Suppose p and f are continuous on an open interval (a,b), and let y1 be any
nontrivial solution of the complementary equation

y ′ + p(x)y = 0

on (a,b). Then:
(a) The general solution of the nonhomogeneous equation

y ′ + p(x)y = f(x) (2.1.30)

on (a,b) is

y = y1(x)

(
c+

∫
f(x)/y1(x)dx

)
. (2.1.31)

(b) If x0 is an arbitrary point in (a,b) and y0 is an arbitrary real number, then the initial value
problem

y ′ + p(x)y = f(x), y(x0) = y0

has the unique solution

y = y1(x)

(
y0

y1(x0)
+

∫x
x0

f(t)

y1(t)
dt

)
on (a,b).
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Proof (a) To show that (2.1.31) is the general solution of (2.1.30) on (a,b), we must
prove that:

(i) If c is any constant, the function y in (2.1.31) is a solution of (2.1.30) on (a,b).

(ii) If y is a solution of (2.1.30) on (a,b) then y is of the form (2.1.31) for some
constant c.

To prove (i), we first observe that any function of the form (2.1.31) is defined on (a,b)
since p and f are continuous on (a,b). Differentiating (2.1.31) yields

y ′ = y ′1(x)
(
c+

∫
f(x)/y1(x)dx

)
+ f(x).

Since y ′1 = −p(x)y1, this and (2.1.31) imply that

y ′ = −p(x)y1(x)

(
c+

∫
f(x)/y1(x)dx

)
+ f(x)

= −p(x)y(x) + f(x),

which implies that y is a solution of (2.1.30).
To prove (ii), suppose y is a solution of (2.1.30) on (a,b). From the proof of Theo-

rem 2.1.1, we know that y1 has no zeros on (a,b), so the function u = y/y1 is defined
on (a,b). Moreover, since y ′ = −py+ f and y ′1 = −py1,

u ′ =
y1y

′ − y ′1y
y2

1

=
y1(−py+ f) − (−py1)y

y2
1

=
f

y1
.

Integrating u ′ = f/y1 yields

u =

(
c+

∫
f(x)/y1(x)dx

)
,

which implies (2.1.31), since y = uy1.
(b) We’ve proved (a), where

∫
f(x)/y1(x)dx in (2.1.31) is an arbitrary antiderivative

of f/y1. Now it’s convenient to choose the antiderivative that equals zero when x = x0,
and write the general solution of (2.1.30) as

y = y1(x)

(
c+

∫x
x0

f(t)

y1(t)
dt

)
.

Since

y(x0) = y1(x0)

(
c+

∫x0

x0

f(t)

y1(t)
dt

)
= cy1(x0),

we see that y(x0) = y0 if and only if c = y0/y1(x0).
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2.1 Exercises

In Exercises 1–5 find the general solution.

1. y ′ + ay = 0 (a=constant) 2. y ′ + 3x2y = 0

3. xy ′ + (ln x)y = 0 4. xy ′ + 3y = 0

5. x2y ′ + y = 0

In Exercises 6–11 solve the initial value problem.

6. y ′ +
(
1+ x
x

)
y = 0, y(1) = 1

7. xy ′ +
(
1+

1
ln x

)
y = 0, y(e) = 1

8. xy ′ + (1+ x cot x)y = 0, y
(π
2

)
= 2

9. y ′ −
(

2x
1+ x2

)
y = 0, y(0) = 2

10. y ′ +
k

x
y = 0, y(1) = 3 (k= constant)

11. y ′ + (tankx)y = 0, y(0) = 2 (k = constant)

In Exercises 12 –15 find the general solution.

12. y ′ + 3y = 1 13. y ′ +
(
1
x
− 1
)
y = −

2
x

14. y ′ + 2xy = xe−x
2

15. y ′ +
2x

1+ x2y =
e−x

1+ x2

In Exercises 16 –24 find the general solution.

16. y ′ +
1
x
y =

7
x2 + 3 17. y ′ +

4
x− 1

y =
1

(x− 1)5
+

sin x
(x− 1)4

18. xy ′ + (1+ 2x2)y = x3e−x
2 19. xy ′ + 2y =

2
x2 + 1

20. y ′ + (tan x)y = cos x 21. (1+ x)y ′ + 2y =
sin x
1+ x
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22. (x− 2)(x− 1)y ′ − (4x− 3)y = (x− 2)3

23. y ′ + (2 sin x cos x)y = e− sin2 x 24. x2y ′ + 3xy = ex

In Exercises 25–29 solve the initial value problem and sketch the graph of the solution.

25. C/G

y ′ + 7y = e3x, y(0) = 0

26. C/G (1+ x2)y ′ + 4xy =
2

1+ x2 , y(0) = 1

27. C/G xy ′ + 3y =
2

x(1+ x2)
, y(−1) = 0

28. C/G y ′ + (cot x)y = cos x, y
(π
2

)
= 1

29. C/G y ′ +
1
x
y =

2
x2 + 1, y(−1) = 0

In Exercises 30–37 solve the initial value problem.

30. (x− 1)y ′ + 3y =
1

(x− 1)3
+

sin x
(x− 1)2

, y(0) = 1

31. xy ′ + 2y = 8x2, y(1) = 3

32. xy ′ − 2y = −x2, y(1) = 1

33. y ′ + 2xy = x, y(0) = 3

34. (x− 1)y ′ + 3y =
1+ (x− 1) sec2 x

(x− 1)3
, y(0) = −1

35. (x+ 2)y ′ + 4y =
1+ 2x2

x(x+ 2)3
, y(−1) = 2

36. (x2 − 1)y ′ − 2xy = x(x2 − 1), y(0) = 4

37. (x2 − 5)y ′ − 2xy = −2x(x2 − 5), y(2) = 7

In Exercises 38–42 solve the initial value problem and leave the answer in a form involving a
definite integral.

38. y ′ + 2xy = x2, y(0) = 3

39. y ′ +
1
x
y =

sin x
x2 , y(1) = 2

40. y ′ + y =
e−x tan x

x
, y(1) = 0

41. y ′ +
2x

1+ x2y =
ex

(1+ x2)2
, y(0) = 1
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42. xy ′ + (x+ 1)y = ex
2 , y(1) = 2

43. Experiments indicate that glucose is absorbed by the body at a rate proportional
to the amount of glucose present in the bloodstream. Let λ denote the (positive)
constant of proportionality. Now suppose glucose is injected into a patient’s
bloodstream at a constant rate of r units per unit of time. Let G = G(t) be the
number of units in the patient’s bloodstream at time t > 0. Then

G ′ = −λG+ r,

where the first term on the right is due to the absorption of the glucose by the
patient’s body and the second term is due to the injection. Determine G for t > 0,
given that G(0) = G0. Also, find limt→∞G(t).

44. Some nonlinear equations can be transformed into linear equations by changing
the dependent variable. Show that if

g ′(y)y ′ + p(x)g(y) = f(x)

where y is a function of x and g is a function of y, then the new dependent variable
z = g(y) satisfies the linear equation

z ′ + p(x)z = f(x).

45. Solve by the method discussed in Exercise 44.

(a) (sec2 y)y ′ − 3 tany = −1 (b) ey
2
(
2yy ′ +

2
x

)
=

1
x2

(c)
xy ′

y
+ 2 lny = 4x2 (d)

y ′

(1+ y)2
−

1
x(1+ y)

= −
3
x2

2.2 SEPARABLE EQUATIONS

A first order differential equation is separable if it can be written as

h(y)y ′ = g(x), (2.2.1)

where the left side is a product of y ′ and a function of y and the right side is a function of
x. Rewriting a separable differential equation in this form is called separation of variables.
In Section 2.1 we used separation of variables to solve homogeneous linear equations.
In this section we’ll apply this method to nonlinear equations.

To see how to solve (2.2.1), let’s first assume that y is a solution. Let G(x) and H(y) be
antiderivatives of g(x) and h(y); that is,

H ′(y) = h(y) and G ′(x) = g(x). (2.2.2)
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Then, from the chain rule,

d

dx
H(y(x)) = H ′(y(x))y ′(x) = h(y)y ′(x).

Therefore (2.2.1) is equivalent to

d

dx
H(y(x)) =

d

dx
G(x).

Integrating both sides of this equation and combining the constants of integration yields

H(y(x)) = G(x) + c. (2.2.3)

Although we derived this equation on the assumption that y is a solution of (2.2.1), we
can now view it differently: Any differentiable function y that satisfies (2.2.3) for some
constant c is a solution of (2.2.1). To see this, we differentiate both sides of (2.2.3), using
the chain rule on the left, to obtain

H ′(y(x))y ′(x) = G ′(x),

which is equivalent to
h(y(x))y ′(x) = g(x)

because of (2.2.2).
In conclusion, to solve (2.2.1) it suffices to find functions G = G(x) and H = H(y) that

satisfy (2.2.2). Then any differentiable function y = y(x) that satisfies (2.2.3) is a solution
of (2.2.1).

Example 2.2.1 Solve the equation

y ′ = x(1+ y2).

Solution Separating variables yields

y ′

1+ y2 = x.

Integrating yields

tan−1 y =
x2

2
+ c

Therefore

y = tan
(
x2

2
+ c

)
.

Example 2.2.2
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(a) Solve the equation
y ′ = −

x

y
. (2.2.4)

(b) Solve the initial value problem

y ′ = −
x

y
, y(1) = 1. (2.2.5)

(c) Solve the initial value problem

y ′ = −
x

y
, y(1) = −2. (2.2.6)

a Separating variables in (2.2.4) yields yy ′ = −x. Integrating yields

y2

2
= −

x2

2
+ c, or, equivalently, x2 + y2 = 2c.

The last equation shows that c must be positive if y is to be a solution of (2.2.4) on an
open interval. Therefore we let 2c = a2 (with a > 0) and rewrite the last equation as

x2 + y2 = a2. (2.2.7)

This equation has two differentiable solutions for y in terms of x:

y =
√
a2 − x2, −a < x < a, (2.2.8)

and
y = −

√
a2 − x2, −a < x < a. (2.2.9)

The solution curves defined by (2.2.8) are semicircles above the x-axis and those defined
by (2.2.9) are semicircles below the x-axis.

b The solution of (2.2.5) is positive when x = 1; hence, it is of the form (2.2.8). Substi-
tuting x = 1 and y = 1 into (2.2.7) to satisfy the initial condition yields a2 = 2; hence,
the solution of (2.2.5) is

y =
√

2− x2, −
√
2 < x <

√
2.

c The solution of (2.2.6) is negative when x = 1 and is therefore of the form (2.2.9).
Substituting x = 1 and y = −2 into (2.2.7) to satisfy the initial condition yields a2 = 5.
Hence, the solution of (2.2.6) is

y = −
√

5− x2, −
√
5 < x <

√
5.

Figure 2.1 shows the solution curves for the initial value problems.

Implicit Solutions of Separable Equations
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−3 −2 2 3

−3

−2

2

x

y

Figure 2.1 (a) y =
√
2− x2, −

√
2 < x <

√
2; (b) y = −

√
5− x2, −

√
5 < x <

√
5

In Examples 2.2.1 and 2.2.2 we were able to solve the equation H(y) = G(x)+ c to obtain
explicit formulas for solutions of the given separable differential equations. The next
example shows that this is not always possible. In this situation we must broaden our
definition of a solution of a separable equation. The next theorem provides the basis for
this modification. We omit the proof, which requires a result from advanced calculus
called as the implicit function theorem.

Theorem 2.2.1 Suppose g = g(x) is continous on (a,b) and h = h(y) is continuous on
(c,d). Let G be an antiderivative of g on (a,b) and let H be an antiderivative of h on (c,d). Let
x0 be an arbitrary point in (a,b), let y0 be a point in (c,d) such that h(y0) 6= 0, and define

c = H(y0) −G(x0). (2.2.10)

Then there is a function y = y(x) defined on some open interval (a1,b1), where a 6 a1 < x0 <

b1 6 b, such that y(x0) = y0 and

H(y) = G(x) + c (2.2.11)

for a1 < x < b1. Therefore y is a solution of the initial value problem

h(y)y ′ = g(x), y(x0) = x0. (2.2.12)

We sometimes say that a solution with the form (2.2.11) with a specific but arbitrary
value of c is an implicit solution of h(y)y ′ = g(x).

In the case where c satisfies (2.2.10), we say that (2.2.11) is an implicit solution of the
initial value problem (2.2.12). However, keep these points in mind:

• For some choices of c there may not be any differentiable functions y that satisfy
(2.2.11).

• The function y in (2.2.11) – not (2.2.11) itself – is a solution of h(y)y ′ = g(x).
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Example 2.2.3

(a) Find implicit solutions of

y ′ =
2x+ 1
5y4 + 1

. (2.2.13)

(b) Find an implicit solution of

y ′ =
2x+ 1
5y4 + 1

, y(2) = 1. (2.2.14)

a Separating variables yields

(5y4 + 1)y ′ = 2x+ 1.

Integrating yields the implicit solutions

y5 + y = x2 + x+ c. (2.2.15)

of (2.2.13). (There are multiple solutions corresponding to multiple choices of the
constant c.)

b Imposing the initial condition y(2) = 1 in (2.2.15) yields 1+ 1 = 4+ 2+ c, so c = −4.
Therefore

y5 + y = x2 + x− 4

is an implicit solution of the initial value problem (2.2.14). Although more than one
differentiable function y = y(x) satisfies (2.2.13) near x = 1, it can be shown that there is
only one such function that satisfies the initial condition y(1) = 2.

Curves defined by (2.2.11) are integral curves of h(y)y ′ = g(x). However, since the
function y is an implicit solution, the appearance of the graph for the solution is not
apparent. The problem of seeing what an implicit solution looks like can be overcome
by using technology to generate a direction field. Figure 2.3 shows a direction field and
some integral curves for (2.2.13).

Constant Solutions of Separable Equations

An equation of the form
y ′ = g(x)p(y)

is separable, since it can be rewritten as

1
p(y)

y ′ = g(x).

However, the division by p(y) is not legitimate if p(y) = 0 for some values of y. The
next two examples show how to deal with this problem.

Example 2.2.4 Find all solutions of

y ′ = 2xy2. (2.2.16)
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−1

0

1

2

Figure 2.2 A direction field and integral curves for y ′ =
2x+ 1
5y4 + 1

Solution Here we must divide by p(y) = y2 to separate variables. This is not legitimate
if y is a solution of (2.2.16) that equals zero for some value of x. One such solution can be
found by inspection: y ≡ 0. Now suppose y is a solution of (2.2.16) that isn’t identically
zero. Since y is continuous there must be an interval on which y is never zero. Since
division by y2 is legitimate for x in this interval, we can separate variables in (2.2.16) to
obtain

y ′

y2 = 2x.

Integrating this yields

−
1
y
= x2 + c,

which is equivalent to

y = −
1

x2 + c
. (2.2.17)

We have now shown that if y is a solution of (2.2.16) that is not identically zero, then
ymust be of the form (2.2.17). By substituting (2.2.17) into (2.2.16), you can verify that
(2.2.17) is a solution of (2.2.16). Thus solutions of (2.2.16) are y ≡ 0 and the functions of
the form (2.2.17). Note that the solution y ≡ 0 is not of the form (2.2.17) for any value of
c.

Figure 2.3 shows a direction field and some integral curves for (2.2.16).

Example 2.2.5 Find all solutions of

y ′ =
1
2
x(1− y2). (2.2.18)
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−1 0 1
−1

0

1

Figure 2.3 A direction field and integral curves for y ′ = 2xy2

Solution Here we must divide by p(y) = 1 − y2 to separate variables. This is not
legitimate if y is a solution of (2.2.18) that equals ±1 for some value of x. Two such
solutions can be found by inspection: y ≡ 1 and y ≡ −1. Now suppose y is a solution of
(2.2.18) such that 1− y2 isn’t identically zero. Since 1− y2 is continuous there must be
an interval on which 1− y2 is never zero. Since division by 1− y2 is legitimate for x in
this interval, we can separate variables in (2.2.18) to obtain

2y ′

y2 − 1
= −x.

A partial fraction expansion on the left yields[
1

y− 1
−

1
y+ 1

]
y ′ = −x,

and integrating yields

ln
∣∣∣∣y− 1
y+ 1

∣∣∣∣ = −
x2

2
+ k;

hence, ∣∣∣∣y− 1
y+ 1

∣∣∣∣ = eke−x2/2.

Since y(x) 6= ±1 for x on the interval under discussion, the quantity (y − 1)/(y + 1)
cannot change sign in this interval. Therefore we can rewrite the last equation as

y− 1
y+ 1

= ce−x
2/2,
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where c = ±ek, depending upon the sign of (y− 1)/(y+ 1) on the interval. Solving for
y yields

y =
1+ ce−x2/2

1− ce−x2/2 . (2.2.19)

We have now shown that if y is a solution of (2.2.18) that is not identically equal to
±1, then ymust be as in (2.2.19). By substituting (2.2.19) into (2.2.18) you can verify that
(2.2.19) is a solution of (2.2.18). Thus, the solutions of (2.2.18) are y ≡ 1, y ≡ −1 and the
functions of the form (2.2.19). Note that the constant solution y ≡ 1 can be obtained
from this formula by taking c = 0; however, the other constant solution, y ≡ −1, cannot
be obtained in this way.

−2 −1 0
−2

−1

0

Figure 2.4 A direction field and integral curves for y ′ =
1
2
x(1− y2)

Differences Between Linear and Nonlinear Equations

Theorem 2.1.2 states that if p and f are continuous on (a,b) then every solution of the
linear equation

y ′ + p(x)y = f(x)

on (a,b) can be obtained by choosing a value for the constant c in the general solution,
and if x0 is any point in (a,b) and y0 is arbitrary, then the initial value problem

y ′ + p(x)y = f(x), y(x0) = y0

has a solution on (a,b).
This theorem does not hold true for nonlinear equations. First, we saw in Exam-

ples 2.2.4 and 2.2.5 that a nonlinear equation may have solutions that cannot be obtained
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by choosing a specific value of a constant appearing in a one-parameter family of solu-
tions. (Such a solution is called a singular solution.) Second, it is generally impossible to
determine the domain of a solution for an initial value problem for a nonlinear equation
by simply examining the equation, since the domain may depend on the initial condition.
For instance, in Example 2.2.2 we saw that the solution of

dy

dx
= −

x

y
, y(x0) = y0

has domain (−a,a), where a =
√
x2

0 + y
2
0. In other words, the domain of the solution

depends on the point (x0,y0). Let us revisit Example 2.2.4 to see another example where
the domain of the solution depends on the initial condition.

Example 2.2.6 Solve the initial value problem

y ′ = 2xy2, y(0) = y0

and determine the domain of the solution.

Solution From Example 2.2.4, we know that ymust be of the form

y = −
1

x2 + c
. (2.2.20)

Imposing the initial condition shows that c = −1/y0. Substituting this into (2.2.20) and
rearranging terms yields the solution

y =
y0

1− y0x2 .

This is the solution if y0 = 0. If y0 < 0, the denominator cannot be zero for any value of
x, so the solution has domain (−∞,∞). If y0 > 0, however, the domain of the solution
must be restricted to (−1/

√
y0, 1/

√
y0).

2.2 Exercises

In Exercises 1–6 find all solutions.

1. y ′ =
3x2 + 2x+ 1

y− 2
2. (sin x)(siny) + (cosy)y ′ = 0

3. xy ′ + y2 + y = 0 4. y ′ ln |y|+ x2y = 0

5. (3y3 + 3y cosy+ 1)y ′ +
(2x+ 1)y
1+ x2 = 0
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6. x2yy ′ = (y2 − 1)3/2

In Exercises 7–10 find all solutions.

7. y ′ = x2(1+ y2); {−1 6 x 6 1, −1 6 y 6 1}

8. y ′(1+ x2) + xy = 0; {−2 6 x 6 2, −1 6 y 6 1}

9. y ′ = (x− 1)(y− 1)(y− 2); {−2 6 x 6 2, −3 6 y 6 3}

10. (y− 1)2y ′ = 2x+ 3; {−2 6 x 6 2, −2 6 y 6 5}

In Exercises 11 and 12 solve the initial value problem.

11. y ′ =
x2 + 3x+ 2
y− 2

, y(1) = 4

12. y ′ + x(y2 + y) = 0, y(2) = 1

In Exercises 13-16 solve the initial value problem and graph the solution.

13. (3y2 + 4y)y ′ + 2x+ cos x = 0, y(0) = 1

14. y ′ +
(y+ 1)(y− 1)(y− 2)

x+ 1
= 0, y(1) = 0

15. y ′ + 2x(y+ 1) = 0, y(0) = 2

16. y ′ = 2xy(1+ y2), y(0) = 1

In Exercises 17–23 solve the initial value problem and find the domain of the solution.

17. y ′(x2 + 2) + 4x(y2 + 2y+ 1) = 0, y(1) = −1

18. y ′ = −2x(y2 − 3y+ 2), y(0) = 3

19. y ′ =
2x

1+ 2y
, y(2) = 0 20. y ′ = 2y− y2, y(0) = 1

21. x+ yy ′ = 0, y(3) = −4

22. y ′ + x2(y+ 1)(y− 2)2 = 0, y(4) = 2

23. (x+ 1)(x− 2)y ′ + y = 0, y(1) = −3

24. Solve y ′ =
(1+ y2)

(1+ x2)
explicitly. HINT: Use the identity tan(A+ B) =

tanA+ tanB
1− tanA tanB

.

25. Solve y ′
√

1− x2 +
√

1− y2 = 0 explicitly. HINT: Use the identity sin(A − B) =
sinA cosB− cosA sinB.

26. Solve y ′ =
cos x
siny

, y(π) =
π

2
explicitly. HINT: Use the identity cos(x+π/2) = − sin x

and the periodicity of the cosine function.
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27. The population P = P(t) of a species satisfies the logistic equation

P ′ = aP(1− αP)

and P(0) = P0 > 0. Find P for t > 0, and find limt→∞ P(t).
28. An epidemic spreads through a population at a rate proportional to the product of

the number of people already infected and the number of people susceptible, but
not yet infected. Therefore, if S denotes the total population of susceptible people
and I = I(t) denotes the number of infected people at time t, then

I ′ = rI(S− I),

where r is a positive constant. Assuming that I(0) = I0, find I(t) for t > 0, and
show that limt→∞ I(t) = S.

29. The result of Exercise 28 is discouraging: if any susceptible member of the group
is initially infected, then in the long run all susceptible members are infected!
On a more hopeful note, suppose the disease spreads according to the model of
Exercise 28, but there is a medication that cures the infected population at a rate
proportional to the number of infected individuals. Now the equation for the
number of infected individuals becomes

I ′ = rI(S− I) − qI (A)

where q is a positive constant.

(a) Assume r and S are positive. By drawing a phase portrait, verify that if I is
any solution of (A) such that I(0) > 0, then limt→∞ I(t) = S − q/r if q < rS
and limt→∞ I(t) = 0 if q > rS.

(b) To verify the experimental results of (a), use separation of variables to solve
(A) with initial condition I(0) = I0 > 0, and find limt→∞ I(t). HINT: There are
three cases to consider: (i) q < rS; (ii) q > rS; (iii) q = rS.

Solve the equations in Exercises 30–33 using variation of parameters followed by separation of
variables.

30. y ′ + y =
2xe−x

1+ yex
31. xy ′ − 2y =

x6

y+ x2

32. y ′ − y =
(x+ 1)e4x

(y+ ex)2
33. y ′ − 2y =

xe2x

1− ye−2x

34. Use variation of parameters to show that the solutions of the following equations
are of the form y = uy1, where u satisfies a separable equation u ′ = g(x)p(u).
Find y1 and g for each equation.



Section 2.3 Existence and Uniqueness of Solutions of Nonlinear Equations 61

(a) xy ′ + y = h(x)p(xy) (b) xy ′ − y = h(x)p
(y
x

)
(c) y ′ + y = h(x)p(exy) (d) xy ′ + ry = h(x)p(xry)

(e) y ′ +
v ′(x)
v(x)

y = h(x)p (v(x)y)

2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR EQUATIONS

Although there are methods for solving some nonlinear equations, it is impossible to find
useful formulas for the solutions of most. Whether we are looking for exact solutions or
numerical approximations, it is useful to know conditions that imply the existence and
uniqueness of solutions of initial value problems for nonlinear equations. In this section
we state such a condition and illustrate it with examples.

Some terminology: an open rectangle R is a set of points (x,y) such that

a < x < b and c < y < d

(Figure 2.1). We will denote this set by R = {a < x < b, c < y < d}. “Open” means that
the boundary rectangle (indicated by the dashed lines in Figure 2.1) is not included in R .

The next theorem gives sufficient conditions for existence and uniqueness of solutions
of initial value problems for first order nonlinear differential equations. We omit the
proof, which is beyond the scope of this text.

y

x
a b

c

d

Figure 2.1 An open rectangular grid

Theorem 2.3.1

(a) If f is continuous on an open rectangle

R = {a < x < b, c < y < d}

that contains (x0,y0) then the initial value problem

y ′ = f(x,y), y(x0) = y0 (2.3.1)
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has at least one solution on some open subinterval of (a,b) that contains x0.

(b) If both f and fy are continuous on R then (2.3.1) has a unique solution on some open
subinterval of (a,b) that contains x0. (Recall that fy denotes the partial derivative of
f(x,y) with respect to y.)

It is important to understand exactly what Theorem 2.3.1 says.
(a) is an existence theorem. It guarantees that a solution exists on some open interval

that contains x0, but provides no information on how to find the solution nor on how to
determine the open interval on which it exists. Moreover, (a) provides no information on
the number of solutions that (2.3.1) may have. It leaves open the possibility that (2.3.1)
may have two or more solutions that differ for values of x arbitrarily close to x0. We will
see in Example 2.3.6 that this can happen.

(b) is a uniqueness theorem. It guarantees that (2.3.1) has a unique solution on some
open interval (a,b) that contains x0. However, if (a,b) 6= (−∞,∞), (2.3.1) may have
more than one solution on a larger interval that contains (a,b). For example, it may
happen that b <∞ and all solutions have the same values on (a,b), but two solutions
y1 and y2 are defined on some interval (a,b1) with b1 > b, and have different values for
b < x < b1; thus, the graphs of y1 and y2 “branch off” in different directions at x = b.
(See Example ?? and Figure ??). In this case, continuity implies that y1(b) = y2(b) (call
their common value y), and y1 and y2 are both solutions of the initial value problem

y ′ = f(x,y), y(b) = y (2.3.2)

that differ on every open interval that contains b. Therefore f or fy must have a discon-
tinuity at some point in each open rectangle that contains the point (b,y), since if this
were not so, (2.3.2) would have a unique solution on some open interval that contains b.
We leave it to you to give a similar analysis of the case where a > −∞.

Example 2.3.1 Consider the initial value problem

y ′ =
x2 − y2

1+ x2 + y2 , y(x0) = y0. (2.3.3)

Since

f(x,y) =
x2 − y2

1+ x2 + y2 and fy(x,y) = −
2y(1+ 2x2)

(1+ x2 + y2)2

are continuous for all (x,y), Theorem 2.3.1 implies that if (x0,y0) is arbitrary, then (2.3.3)
has a unique solution on some open interval that contains x0.

Example 2.3.2 Consider the initial value problem

y ′ =
x2 − y2

x2 + y2 , y(x0) = y0. (2.3.4)
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Here

f(x,y) =
x2 − y2

x2 + y2 and fy(x,y) = −
4x2y

(x2 + y2)2

are continuous everywhere except at (0, 0). If (x0,y0) 6= (0, 0), there’s an open rectangle
R that contains (x0,y0) that does not contain (0, 0). Since f and fy are continuous on R,
Theorem 2.3.1 implies that if (x0,y0) 6= (0, 0) then (2.3.4) has a unique solution on some
open interval that contains x0.

Example 2.3.3 Consider the initial value problem

y ′ =
x+ y

x− y
, y(x0) = y0. (2.3.5)

Here
f(x,y) =

x+ y

x− y
and fy(x,y) =

2x
(x− y)2

are continuous everywhere except on the line y = x. If y0 6= x0, there’s an open
rectangle R that contains (x0,y0) that does not intersect the line y = x. Since f and fy are
continuous on R, Theorem 2.3.1 implies that if y0 6= x0, (2.3.5) has a unique solution on
some open interval that contains x0.

Example 2.3.4 In Example 2.2.4 we saw that the solutions of

y ′ = 2xy2 (2.3.6)

are
y ≡ 0 and y = −

1
x2 + c

,

where c is an arbitrary constant. In particular, this implies that no solution of (2.3.6)
other than y ≡ 0 can equal zero for any value of x. Show that Theorem 2.3.1(b) implies
this.

Solution We will obtain a contradiction by assuming that (2.3.6) has a solution y1 that
equals zero for some value of x, but isn’t identically zero. If y1 has this property, there’s
a point x0 such that y1(x0) = 0, but y1(x) 6= 0 for some value of x in every open interval
that contains x0. This means that the initial value problem

y ′ = 2xy2, y(x0) = 0 (2.3.7)

has two solutions y ≡ 0 and y = y1 that differ for some value of x on every open interval
that contains x0. This contradicts Theorem 2.3.1(b), since in (2.3.6) the functions

f(x,y) = 2xy2 and fy(x,y) = 4xy.

are both continuous for all (x,y), which implies that (2.3.7) has a unique solution on
some open interval that contains x0.
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Example 2.3.5 Consider the initial value problem

y ′ =
10
3
xy2/5, y(x0) = y0. (2.3.8)

(a) For what points (x0,y0) does Theorem 2.3.1(a) imply that (2.3.8) has a solution?

(b) For what points (x0,y0) does Theorem 2.3.1(b) imply that (2.3.8) has a unique
solution on some open interval that contains x0?

(a) Since
f(x,y) =

10
3
xy2/5

is continuous for all (x,y), Theorem 2.3.1 implies that (2.3.8) has a solution for every
(x0,y0).

(b) Here
fy(x,y) =

4
3
xy−3/5

is continuous for all (x,y) with y 6= 0. Therefore, if y0 6= 0 there’s an open rectangle
on which both f and fy are continuous, and Theorem 2.3.1 implies that (2.3.8) has a
unique solution on some open interval that contains x0.

If y = 0 then fy(x,y) is undefined, and therefore discontinuous; hence, Theo-
rem 2.3.1 does not apply to (2.3.8) if y0 = 0.

Example 2.3.6 Example 2.3.5 leaves open the possibility that the initial value problem

y ′ =
10
3
xy2/5, y(0) = 0 (2.3.9)

has more than one solution on every open interval that contains x0 = 0. Show that this
is true.

Solution By inspection, y ≡ 0 is a solution of the differential equation

y ′ =
10
3
xy2/5. (2.3.10)

Since y ≡ 0 satisfies the initial condition y(0) = 0, it is a solution of (2.3.9).
Now suppose y is a solution of (2.3.10) that isn’t identically zero. Separating variables

in (2.3.10) yields

y−2/5y ′ =
10
3
x

on any open interval where y has no zeros. Integrating this and rewriting the arbitrary
constant as 5c/3 yields

5
3
y3/5 =

5
3
(x2 + c).
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Therefore
y = (x2 + c)5/3. (2.3.11)

Since we divided by y to separate variables in (2.3.10), our derivation of (2.3.11) is
legitimate only on open intervals where y has no zeros. However, (2.3.11) actually
defines y for all x, and differentiating (2.3.11) shows that

y ′ =
10
3
x(x2 + c)2/3 =

10
3
xy2/5, −∞ < x <∞.

Therefore (2.3.11) satisfies (2.3.10) on (−∞,∞) even if c 6 0, so that y(
√

|c|) = y(−
√
|c|) =

0. In particular, taking c = 0 in (2.3.11) yields

y = x10/3

as a second solution of (2.3.9). Both solutions are defined on (−∞,∞), but they differ
on every open interval that contains x0 = 0 (see Figure 2.2.) In fact, there are four
distinct solutions of (2.3.9) defined on (−∞,∞) that differ from each other on every
open interval that contains x0 = 0. Can you identify the other two?

−2 −1 1 2

−1

1

2

x

y

Figure 2.2 Two solutions of (2.3.9) that differ on every interval containing x0 = 0

2.3 Exercises

In Exercises 1-13 find all (x0,y0) for which Theorem 2.3.1 implies that the initial value
problem y ′ = f(x,y), y(x0) = y0 has (a) a solution (b) a unique solution on some open
interval that contains x0.

1. y ′ =
x2 + y2

sin x
2. y ′ =

ex + y

x2 + y2
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3. y ′ = tan xy
4. y ′ =

x2 + y2

ln xy

5. y ′ = (x2 + y2)y1/3
6. y ′ = 2xy

7. y ′ = ln(1+ x2 + y2) 8. y ′ =
2x+ 3y
x− 4y

9. y ′ = (x2 + y2)1/2 10. y ′ = x(y2 − 1)2/3

11. y ′ = (x2 + y2)2 12. y ′ = (x+ y)1/2

13. y ′ =
tany
x− 1

2.4 TRANSFORMATION OF NONLINEAR EQUATIONS INTO SEPARABLE EQUATIONS

In Section 2.1 we found that the solutions of a linear nonhomogeneous equation

y ′ + p(x)y = f(x)

are of the form y = uy1, where y1 is a nontrivial solution of the complementary equation

y ′ + p(x)y = 0 (2.4.1)

and u is a solution of
u ′y1(x) = f(x).

Note that this last equation is separable, since it can be rewritten as

u ′ =
f(x)

y1(x)
.

In this section we will consider nonlinear differential equations that are not separable
to begin with, but that can be solved in a similar fashion. This is done by writing their
solutions in the form y = uy1, where y1 is a suitably chosen known function and u
satisfies a separable equation. In this case, we will say that we transformed the given
equation into a separable equation.

Bernoulli Equations

A Bernoulli equation is an equation of the form

y ′ + p(x)y = f(x)yr, (2.4.2)
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where r can be any real number other than 0 or 1. (Note that (2.4.2) is linear if and only
if r = 0 or r = 1.) We can transform (2.4.2) into a separable equation by variation of
parameters: if y1 is a nontrivial solution of (2.4.1), substituting y = uy1 into (2.4.2) and
applying the product rule for derivatives yields

u ′y1 + u(y
′
1 + p(x)y1) = f(x)(uy1)

r,

which is equivalent to the separable equation

u ′y1(x) = f(x) (y1(x))
r ur, (2.4.3)

since y ′1 + p(x)y1 = 0.

Example 2.4.1 Solve the Bernoulli equation

y ′ − y = xy2.

Solution By inspection, y1 = ex is a solution of y ′ − y = 0. We can use this fact to look
for solutions in the form y = uex, where we can substitute into (2.4.3) to obtain

u ′ex = xu2e2x or, equivalently, u ′ = xu2ex.

Separating variables yields
u ′

u2 = xex.

Now we integrate on both sides (use integration by parts on the right side) to obtain

−
1
u

= (x− 1)ex + c.

Hence,

u = −
1

(x− 1)ex + c

and
y = −

1
x− 1+ ce−x

.

Other Nonlinear Equations That Can be Transformed Into Separable Equations

We have seen that the nonlinear Bernoulli equation can be transformed into a separable
equation by the substitution y = uy1 if y1 is suitably chosen. Now we discuss a sufficient
condition for a nonlinear first order differential equation

y ′ = f(x,y) (2.4.4)
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to be transformable into a separable equation in the same way. Substituting y = uy1
into (2.4.4) yields

u ′y1(x) + uy
′
1(x) = f(x,uy1(x)),

which is equivalent to
u ′y1(x) = f(x,uy1(x)) − uy

′
1(x). (2.4.5)

If
f(x,uy1(x)) = q(u)y

′
1(x)

for some function q, then (2.4.5) becomes

u ′y1(x) = (q(u) − u)y ′1(x), (2.4.6)

which is separable. After checking for constant solutions u ≡ u0 such that q(u0) = u0,
we can separate variables to obtain

u ′

q(u) − u
=
y ′1(x)
y1(x)

.

In the next two examples, we consider only the most widely studied class of equations
for which this method of transformation works. In these examples, x and y occur in f in
such a way that f(x,y) depends only on the ratio y/x; that is, (2.4.4) can be written as

y ′ = q(y/x), (2.4.7)

where q = q(u) is a function of a single variable. For the first example,

y ′ =
y+ xe−y/x

x
=
y

x
+ e−y/x

has
q(u) = u+ e−u;

and for the second example,

y ′ =
y2 + xy− x2

x2 =
(y
x

)2
+
y

x
− 1

has
q(u) = u+ e−u and q(u) = u2 + u− 1.

(Historically, these types of equations were referred to as homogeneous equations, but this
is not the same as the definition given in Section 2.1, where we said that a linear equation
of the form

y ′ + p(x)y = 0

is homogeneous. Unfortunately, homogeneous has been used in these two inconsistent
ways. The one having to do with linear equations is the most important, and this is the
only section where the meaning defined here will apply.)



Section 2.4 Transformation of Nonlinear Equations into Separable Equations 69

The general method of transformation can be applied to (2.4.7) with y1 = x (and
therefore y ′1 = 1). Thus, substituting y = ux in (2.4.7) yields

u ′x+ u = q(u),

and separation of variables (after checking for constant solutions such that q(u) = u)
yields

u ′

q(u) − u
=

1
x
.

Since y/x is in general undefined if x = 0, we will consider solutions of equations only
on open intervals that do not contain the point x = 0.

Example 2.4.2 Solve

y ′ =
y+ xe−y/x

x
. (2.4.8)

Solution Substituting y = ux into (2.4.8) yields

u ′x+ u =
ux+ xe−ux/x

x
.

We can simplify the fraction on the right to get

u ′x+ u = u+ e−u,

then separate variables to arrive at

euu ′ =
1
x
.

Integrating yields eu = ln |x|+ c. Therefore u = ln(ln |x|+ c) and the solution y = ux is
given by y = x ln(ln |x|+ c).

Example 2.4.3

(a) Solve
x2y ′ = y2 + xy− x2. (2.4.9)

(b) Solve the initial value problem

x2y ′ = y2 + xy− x2, y(1) = 2. (2.4.10)

(a) We find solutions of (2.4.9) on open intervals that do not contain x = 0. We can
rewrite (2.4.9) as

y ′ =
y2 + xy− x2

x2
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for x in any such interval. Substituting y = ux yields

u ′x+ u =
(ux)2 + x(ux) − x2

x2 ,

which reduces to
u ′x+ u = u2 + u− 1

after reducing the fraction on the right side. This equation simplifies to

u ′x = u2 − 1, (2.4.11)

which has the constant solutions u ≡ 1 and u ≡ −1. (The constant solutions can be
found by applying the Zero Product Property to the right side of the equation.) Therefore
y = x and y = −x are solutions of (2.4.9). If u is a solution of (2.4.11) that does not
assume the values ±1 on some interval, separating variables yields

u ′

u2 − 1
=

1
x
,

or, after a partial fraction expansion,

1
2

[
1

u− 1
−

1
u+ 1

]
u ′ =

1
x
.

Multiplying by 2 and integrating yields

ln
∣∣∣∣u− 1
u+ 1

∣∣∣∣ = 2 ln |x|+ k,

or ∣∣∣∣u− 1
u+ 1

∣∣∣∣ = ekx2,

which holds if
u− 1
u+ 1

= cx2 (2.4.12)

where c is an arbitrary constant. Solving for u yields

u =
1+ cx2

1− cx2 .

Therefore, we can substitute into y = ux to find

y =
x(1+ cx2)

1− cx2 (2.4.13)

is a solution of (2.4.10) for any choice of the constant c. Setting c = 0 in (2.4.13) yields
the solution y = x. However, the solution y = −x can’t be obtained from (2.4.13). Thus,
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−2 −1 0
−2

−1

0

Figure 2.1 A direction field and integral curves for x2y ′ = y2 + xy− x2

the solutions of (2.4.9) on intervals that do not contain x = 0 are y = −x and functions
of the form (2.4.13).

Figure 2.1 shows a direction field and some integral curves for (2.4.9).
(b) We could obtain c by imposing the initial condition y(1) = 2 in (2.4.13), and then

solving for c. However, it is easier to use (2.4.12). Since u = y/x, the initial condition
y(1) = 2 implies that u(1) = 2. Substituting this into (2.4.12) yields c = 1/3. Hence, the
solution of (2.4.10) is

y =
x(1+ x2/3)
1− x2/3

.

The domain of this solution is (−
√
3,
√
3). However, the largest interval on which (2.4.10)

has a unique solution is (0,
√
3).

Figure 2.1 shows several solutions of the initial value problem (2.4.10). Note that these
solutions coincide on (0,

√
3).

In the last two examples we were able to solve the given equations explicitly. However,
this is not always possible, as you will see in the exercises.
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2.4 Exercises

In Exercises 1–4 solve the given Bernoulli equation.

1. y ′ + y = y2 2. 7xy ′ − 2y = −
x2

y6

3. x2y ′ + 2y = 2e1/xy1/2 4. (1+ x2)y ′ + 2xy =
1

(1+ x2)y

In Exercises 5 and 6 find all solutions.

5. y ′ − xy = x3y3

6. y ′ −
1+ x
3x

y = y4

In Exercises 7–11 solve the initial value problem.

7. y ′ − 2y = xy3, y(0) = 2
√
2

8. y ′ − xy = xy3/2, y(1) = 4

9. xy ′ + y = x4y4, y(1) = 1/2

10. y ′ − 2y = 2y1/2, y(0) = 1

11. y ′ − 4y =
48x
y2 , y(0) = 1

In Exercises 12 and 13 solve the initial value problem and graph the solution.

12. x2y ′ + 2xy = y3, y(1) = 1/
√
2

13. y ′ − y = xy1/2, y(0) = 4

14. You may have noticed that the logistic equation

P ′ = aP(1− αP)

from Verhulst’s model for population growth can be written in Bernoulli form as

P ′ − aP = −aαP2.

The logistic equation is separable, and therefore solvable by the method studied in
Section 2.2. Solve the logistic equation by the method of your choice.

In Exercises 15–18 solve the equation explicitly.

15. y ′ =
y+ x

x
16. y ′ =

y2 + 2xy
x2

17. xy3y ′ = y4 + x4
18. y ′ =

y

x
+ sec

y

x
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In Exercises 19-21 solve the equation explicitly.

19. x2y ′ = xy+ x2 + y2

20. xyy ′ = x2 + 2y2

21. y ′ =
2y2 + x2e−(y/x)2

2xy

In Exercises 22–27 solve the initial value problem.

22. y ′ =
xy+ y2

x2 , y(−1) = 2

23. y ′ =
x3 + y3

xy2 , y(1) = 3

24. xyy ′ + x2 + y2 = 0, y(1) = 2

25. y ′ =
y2 − 3xy− 5x2

x2 , y(1) = −1

26. x2y ′ = 2x2 + y2 + 4xy, y(1) = 1

27. xyy ′ = 3x2 + 4y2, y(1) =
√
3

In Exercises 28–34 solve the given “homogeneous” equation implicitly.

28. y ′ =
x+ y

x− y
29. (y ′x− y)(ln |y|− ln |x|) = x

30. y ′ =
y3 + 2xy2 + x2y+ x3

x(y+ x)2
31. y ′ =

x+ 2y
2x+ y

32. y ′ =
y

y− 2x 33. y ′ =
xy2 + 2y3

x3 + x2y+ xy2

34. y ′ =
x3 + x2y+ 3y3

x3 + 3xy2

2.5 EXACT EQUATIONS

In this section it will be convenient to write first order differential equations in the form

M(x,y)dx+N(x,y)dy = 0. (2.5.1)

This type of equation can be interpreted as

M(x,y) +N(x,y)
dy

dx
= 0, (2.5.2)
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where x is the independent variable and y is the dependent variable, or as

M(x,y)
dx

dy
+N(x,y) = 0, (2.5.3)

where y is the independent variable and x is the dependent variable. Since the solutions
of (2.5.2) and (2.5.3) will often need to be left in implicit form, we will say that F(x,y) = c
is an implicit solution of (2.5.1) if every differentiable function y = y(x) that satisfies
F(x,y) = c is a solution of (2.5.2) and every differentiable function x = x(y) that satisfies
F(x,y) = c is a solution of (2.5.3).

Some examples are shown in the table. Each differential equation is shown in three
forms.

Form (2.5.1) Form (2.5.2) Form (2.5.3)

3x2y2 dx+ 2x3ydy = 0 3x2y2 + 2x3y
dy

dx
= 0 3x2y2 dx

dy
+ 2x3y = 0

(x2 + y2)dx+ 2xydy = 0 (x2 + y2) + 2xy
dy

dx
= 0 (x2 + y2)

dx

dy
+ 2xy = 0

3y sin xdx− 2xy cos xdy = 0 3y sin x− 2xy cos x
dy

dx
= 0 3y sin x

dx

dy
− 2xy cos x = 0

Note that a separable equation can be written as (2.5.1) as

M(x)dx+N(y)dy = 0.

We will develop a method for solving equations of this form under appropriate assump-
tions onM and N. This method is an extension of the method of separation of variables
(Exercise ??). Before discussing the method, we consider an example.

Example 2.5.1 Show that
x4y3 + x2y5 + 2xy = c (2.5.4)

is an implicit solution of

(4x3y3 + 2xy5 + 2y)dx+ (3x4y2 + 5x2y4 + 2x)dy = 0. (2.5.5)

Solution Regarding y as a function of x and differentiating (2.5.4) implicitly with respect
to x yields

(4x3y3 + 2xy5 + 2y) + (3x4y2 + 5x2y4 + 2x)
dy

dx
= 0.
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Similarly, regarding x as a function of y and differentiating (2.5.4) implicitly with respect
to y yields

(4x3y3 + 2xy5 + 2y)
dx

dy
+ (3x4y2 + 5x2y4 + 2x) = 0.

Therefore (2.5.4) is an implicit solution of (2.5.5) in either of its two possible interpreta-
tions.

You may think this example is pointless, since concocting a differential equation
that has a given implicit solution is difficult to do and not particularly interesting.
However, it illustrates the next important theorem, which we will prove by using
implicit differentiation, as in Example 2.5.1.

Theorem 2.5.1 If F = F(x,y) has continuous partial derivatives Fx and Fy, then

F(x,y) = c (2.5.6)

is an implicit solution of the differential equation

Fx(x,y)dx+ Fy(x,y)dy = 0. (2.5.7)

(Here, c is an arbitrary constant.)

Proof Regarding y as a function of x and differentiating (2.5.6) implicitly with respect
to x yields

Fx(x,y) + Fy(x,y)
dy

dx
= 0.

On the other hand, regarding x as a function of y and differentiating (2.5.6) implicitly
with respect to y yields

Fx(x,y)
dx

dy
+ Fy(x,y) = 0.

Thus, (2.5.6) is an implicit solution of (2.5.7) in either of its two possible interpretations.

We will say that the equation

M(x,y)dx+N(x,y)dy = 0 (2.5.8)

is exact on an an open rectangle R if there is a function F = F(x,y) such Fx and Fy are
continuous, and

Fx(x,y) =M(x,y) and Fy(x,y) = N(x,y) (2.5.9)

for all (x,y) in R. This usage of “exact” is related to its usage in calculus, where the
expression

Fx(x,y)dx+ Fy(x,y)dy

is the exact differential of F. (This can be obtained by substituting (2.5.9) into the left side
of (2.5.8).)
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Example 2.5.1 shows that it is easy to solve (2.5.8) if it is exact and we know a function
F that satisfies (2.5.9). The important questions are:

QUESTION 1. Given an equation (2.5.8), how can we determine whether it is exact?
QUESTION 2. If (2.5.8) is exact, how do we find a function F satisfying (2.5.9)?
To discover the answer to Question 1, assume that there is a function F that satisfies

(2.5.9) on some open rectangle R, and in addition that F has continuous mixed partial
derivatives Fxy and Fyx. Then a theorem from calculus implies that

Fxy = Fyx. (2.5.10)

If Fx =M and Fy = N, differentiating the first of these equations with respect to y and
the second with respect to x yields

Fxy =My and Fyx = Nx. (2.5.11)

From (2.5.10) and (2.5.11), we conclude that a necessary condition for exactness is that
My = Nx. This motivates the next theorem, which we state without proof.

Theorem 2.5.2 [The Exactness Condition] SupposeM and N are continuous and have contin-
uous partial derivativesMy and Nx on an open rectangle R. Then

M(x,y)dx+N(x,y)dy = 0

is exact on R if and only if
My(x,y) = Nx(x,y) (2.5.12)

for all (x,y) in R..

To help you remember the exactness condition, observe that the coefficients of dx
and dy are differentiated in (2.5.12) with respect to the “opposite” variables; that is,
the coefficient of dx is differentiated with respect to y, while the coefficient of dy is
differentiated with respect to x.

Example 2.5.2 Show that the equation

3x2ydx+ 4x3 dy = 0

is not exact on any open rectangle.

Solution Here
M(x,y) = 3x2y and N(x,y) = 4x3

so
My(x,y) = 3x2 and Nx(x,y) = 12x2.

Therefore My = Nx on the line x = 0, but not on any open rectangle, so there is no
function F such that Fx(x,y) =M(x,y) and Fy(x,y) = N(x,y) for all (x,y) on any open
rectangle.

The next example illustrates two possible methods for finding a function F that satisfies
the condition Fx =M and Fy = N ifMdx+Ndy = 0 is exact.



Section 2.5 Exact Equations 77

Example 2.5.3 Solve

(4x3y3 + 3x2)dx+ (3x4y2 + 6y2)dy = 0. (2.5.13)

Solution (Method 1) Here

M(x,y) = 4x3y3 + 3x2, N(x,y) = 3x4y2 + 6y2,

and
My(x,y) = Nx(x,y) = 12x3y2

for all (x,y). Therefore Theorem 2.5.2 implies that there is a function F such that

Fx(x,y) =M(x,y) = 4x3y3 + 3x2 (2.5.14)

and
Fy(x,y) = N(x,y) = 3x4y2 + 6y2 (2.5.15)

for all (x,y). To find F, we integrate (2.5.14) with respect to x to obtain

F(x,y) = x4y3 + x3 + φ(y), (2.5.16)

whereφ(y) is the “constant” of integration. (Hereφ is “constant” in that it is independent
of x, the variable of integration.) If φ is any differentiable function of y then F satisfies
(2.5.14). To determine φ so that F also satisfies (2.5.15), assume that φ is differentiable
and differentiate Fwith respect to y. This yields

Fy(x,y) = 3x4y2 + φ ′(y).

Comparing this with (2.5.15) shows that

φ ′(y) = 6y2.

We integrate this with respect to y and take the constant of integration to be zero because
we are interested only in finding some F that satisfies (2.5.14) and (2.5.15). This yields

φ(y) = 2y3.

Substituting this into (2.5.16) yields

F(x,y) = x4y3 + x3 + 2y3. (2.5.17)

Now Theorem 2.5.1 implies that

x4y3 + x3 + 2y3 = c

is an implicit solution of (2.5.13). Solving this for y yields the explicit solution

y =

(
c− x3

2+ x4

)1/3

.
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Solution (Method 2) Instead of first integrating (2.5.14) with respect to x, we could
begin by integrating (2.5.15) with respect to y to obtain

F(x,y) = x4y3 + 2y3 +ψ(x), (2.5.18)

where ψ is an arbitrary function of x. To determine ψ, we assume that ψ is differentiable
and differentiate Fwith respect to x, which yields

Fx(x,y) = 4x3y3 +ψ ′(x).

Comparing this with (2.5.14) shows that

ψ ′(x) = 3x2.

Integrating this and again taking the constant of integration to be zero yields

ψ(x) = x3.

Substituting this into (2.5.18) yields (2.5.17).
Here’s a summary of the procedure used in Method 1 of this example. A summary of

the procedure used in Method 2 is similar.
Procedure For Solving An Exact Equation

Step 1. Check that the equation

M(x,y)dx+N(x,y)dy = 0 (2.5.19)

satisfies the exactness condition My = Nx. If not, don’t go further with this
procedure.

Step 2. Integrate
∂F(x,y)
∂x

=M(x,y)

with respect to x to obtain

F(x,y) = G(x,y) + φ(y), (2.5.20)

where G is an antiderivative ofMwith respect to x, and φ is an unknown function
of y.

Step 3. Differentiate (2.5.20) with respect to y to obtain

∂F(x,y)
∂y

=
∂G(x,y)
∂y

+ φ ′(y).

Step 4. Equate the right side of this equation to N and solve for φ ′; thus,

∂G(x,y)
∂y

+ φ ′(y) = N(x,y), so φ ′(y) = N(x,y) −
∂G(x,y)
∂y

.
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Step 5. Integrate φ ′ with respect to y (taking the constant of integration to be zero),
and substitute the result into (2.5.20) to obtain F(x,y).

Step 6. Set F(x,y) = c to obtain an implicit solution of (2.5.19). If possible, solve for y
explicitly as a function of x.

It is a common mistake to omit Step 6. However, it is important to include this step,
since F is not itself a solution of (2.5.19).

Many equations can be conveniently solved by either of the two methods used in
Example 2.5.3. However, sometimes the integration required in one approach is more
difficult than in the other. In such cases we choose the approach that requires the easier
integration.

Example 2.5.4 Solve the equation

(yexy tan x+ exy sec2 x)dx+ xexy tan xdy = 0. (2.5.21)

Solution We leave it to you to check thatMy = Nx on any open rectangle where tan x
and sec x are defined. Here we must find a function F such that

Fx(x,y) = yexy tan x+ exy sec2 x (2.5.22)

and
Fy(x,y) = xexy tan x. (2.5.23)

It is difficult to integrate (2.5.22) with respect to x, but easy to integrate (2.5.23) with
respect to y. This yields

F(x,y) = exy tan x+ψ(x). (2.5.24)

Differentiating this with respect to x yields

Fx(x,y) = yexy tan x+ exy sec2 x+ψ ′(x).

Comparing this with (2.5.22) shows that ψ ′(x) = 0. Hence, ψ is a constant, which we
can take to be zero in (2.5.24), and

exy tan x = c

is an implicit solution of (2.5.21).
Attempting to apply our procedure to an equation that is not exact will lead to failure

in Step 4, since the function

N−
∂G

∂y

will not be independent of x if My 6= Nx (Exercise ??), and therefore cannot be the
derivative of a function of y alone. Here is an example that illustrates this.



80 Chapter 2 First Order Equations

Example 2.5.5 Verify that the equation

3x2y2 dx+ 6x3ydy = 0 (2.5.25)

is not exact, and show that the procedure for solving exact equations fails when applied
to (2.5.25).

Solution Here
My(x,y) = 6x2y and Nx(x,y) = 18x2y,

so (2.5.25) is not exact. Nevertheless, let us try to find a function F such that

Fx(x,y) = 3x2y2 (2.5.26)

and
Fy(x,y) = 6x3y. (2.5.27)

Integrating (2.5.26) with respect to x yields

F(x,y) = x3y2 + φ(y),

and differentiating this with respect to y yields

Fy(x,y) = 2x3y+ φ ′(y).

For this equation to be consistent with (2.5.27),

6x3y = 2x3y+ φ ′(y),

or
φ ′(y) = 4x3y.

This is a contradiction, since φ ′ must be independent of x. Therefore the procedure fails.

2.5 Exercises

In Exercises 1–17 determine which equations are exact and solve them.

1. 6x2y2 dx+ 4x3ydy = 0

2. (3y cos x+ 4xex + 2x2ex)dx+ (3 sin x+ 3)dy = 0

3. 14x2y3 dx+ 21x2y2 dy = 0

4. (2x− 2y2)dx+ (12y2 − 4xy)dy = 0

5. (x+ y)2 dx+ (x+ y)2 dy = 0 6. (4x+ 7y)dx+ (3x+ 4y)dy = 0

7. (−2y2 sin x+ 3y3 − 2x)dx+ (4y cos x+ 9xy2)dy = 0
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8. (2x+ y)dx+ (2y+ 2x)dy = 0

9. (3x2 + 2xy+ 4y2)dx+ (x2 + 8xy+ 18y)dy = 0

10. (2x2 + 8xy+ y2)dx+ (2x2 + xy3/3)dy = 0

11.
(
1
x
+ 2x

)
dx+

(
1
y
+ 2y

)
dy = 0

12. (y sin xy+ xy2 cos xy)dx+ (x sin xy+ xy2 cos xy)dy = 0

13.
xdx

(x2 + y2)3/2
+

ydy

(x2 + y2)3/2
= 0

14.
(
ex(x2y2 + 2xy2) + 6x

)
dx+ (2x2yex + 2)dy = 0

15.
(
x2ex

2+y(2x2 + 3) + 4x
)
dx+ (x3ex

2+y − 12y2)dy = 0

16.
(
exy(x4y+ 4x3) + 3y

)
dx+ (x5exy + 3x)dy = 0

17. (3x2 cos xy− x3y sin xy+ 4x)dx+ (8y− x4 sin xy)dy = 0

In Exercises 18–22 solve the initial value problem.

18. (4x3y2 − 6x2y− 2x− 3)dx+ (2x4y− 2x3)dy = 0, y(1) = 3

19. (−4y cos x+ 4 sin x cos x+ sec2 x)dx+ (4y− 4 sin x)dy = 0, y(π/4) = 0

20. (y3 − 1)ex dx+ 3y2(ex + 1)dy = 0, y(0) = 0

21. (sin x− y sin x− 2 cos x)dx+ cos xdy = 0, y(0) = 1

22. (2x− 1)(y− 1)dx+ (x+ 2)(x− 3)dy = 0, y(1) = −1

23. Find all functionsM such that the equation is exact.

(a) M(x,y)dx+ (x2 − y2)dy = 0
(b) M(x,y)dx+ 2xy sin x cosydy = 0
(c) M(x,y)dx+ (ex − ey sin x)dy = 0

24. Find all functions N such that the equation is exact.

(a) (x3y2 + 2xy+ 3y2)dx+N(x,y)dy = 0
(b) (ln xy+ 2y sin x)dx+N(x,y)dy = 0
(c) (x sin x+ y siny)dx+N(x,y)dy = 0

25. Rewrite the separable equation

h(y)y ′ = g(x) (A)

as an exact equation
M(x,y)dx+N(x,y)dy = 0. (B)

Show that applying the method of this section to (B) yields the same solutions that
would be obtained by applying the method of separation of variables to (A)
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2.6 INTEGRATING FACTORS

In Section 2.5 we saw that ifM,N,My andNx are continuous andMy = Nx on an open
rectangle R then

M(x,y)dx+N(x,y)dy = 0 (2.6.1)

is exact on R. Sometimes an equation that is not exact can be made exact by multiplying
it by an appropriate function. For example,

(3x+ 2y2)dx+ 2xydy = 0 (2.6.2)

is not exact, since My(x,y) = 4y 6= Nx(x,y) = 2y in (2.6.2). However, multiplying
(2.6.2) by x yields

(3x2 + 2xy2)dx+ 2x2ydy = 0, (2.6.3)

which is exact, since My(x,y) = Nx(x,y) = 4xy in (2.6.3). Solving (2.6.3) by the proce-
dure given in Section 2.5 yields the implicit solution

x3 + x2y2 = c.

In Section 2.4, we transformed equations into separable equations by use of a sub-
stitution. In this section, we transform equations into exact equations by using the
multiplication property of equality. More specifically, a function µ = µ(x,y) is called an
integrating factor for (2.6.1) if

µ(x,y)M(x,y)dx+ µ(x,y)N(x,y)dy = 0 (2.6.4)

is exact. If we know an integrating factor µ for (2.6.1), we can solve the exact equation
(2.6.4) by the method of Section 2.5. (It would be nice if we could say that (2.6.1) and
(2.6.4) always have the same solutions, but this is not always true. However, if µ(x,y) is
defined and nonzero for all (x,y), (2.6.1) and (2.6.4) are equivalent; that is, they have the
same solutions.)

Finding Integrating Factors

By applying Theorem 2.5.2 (withM and N replaced by µM and µN), we see that (2.6.4)
is exact on an open rectangle R if µM, µN, (µM)y, and (µN)x are continuous and

∂

∂y
(µM) =

∂

∂x
(µN) or, equivalently, µyM+ µMy = µxN+ µNx

on R. It is better to rewrite the last equation as

µ(My −Nx) = µxN− µyM, (2.6.5)

which reduces to the known result for exact equations; that is, ifMy = Nx then (2.6.5)
holds with µ = 1, so (2.6.1) is exact.

You may think (2.6.5) is of little value, since it involves partial derivatives of the
unknown integrating factor µ, and we have not studied methods for solving such
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equations. However, we will now show that (2.6.5) is useful if we restrict our search
to integrating factors that are products of a function of x and a function of y; that is,
µ(x,y) = P(x)Q(y). We are not saying that every equation Mdx + Ndy = 0 has an
integrating factor of this form; rather, we are saying that some equations have such
integrating factors. We will now develop a way to determine whether a given equation
has such an integrating factor, and a method for finding the integrating factor in this
case.

If µ(x,y) = P(x)Q(y), then µx(x,y) = P ′(x)Q(y) and µy(x,y) = P(x)Q ′(y), so (2.6.5)
becomes

P(x)Q(y)(My −Nx) = P
′(x)Q(y)N− P(x)Q ′(y)M, (2.6.6)

or, after dividing through by P(x)Q(y),

My −Nx =
P ′(x)
P(x)

N−
Q ′(y)
Q(y)

M. (2.6.7)

Now let

p(x) =
P ′(x)
P(x)

and q(y) =
Q ′(y)
Q(y)

,

so (2.6.7) becomes
My −Nx = p(x)N− q(y)M. (2.6.8)

We obtained (2.6.8) by assuming that Mdx + Ndy = 0 has an integrating factor
µ(x,y) = P(x)Q(y). However, we can now view (2.6.7) differently: If there are functions
p = p(x) and q = q(y) that satisfy (2.6.8) and we define

P(x) = ±e
∫
p(x)dx and Q(y) = ±e

∫
q(y)dy, (2.6.9)

then reversing the steps that led from (2.6.6) to (2.6.8) shows that µ(x,y) = P(x)Q(y) is
an integrating factor for Mdx +Ndy = 0. In using this result, we take the constants
of integration in (2.6.9) to be zero and choose the signs conveniently so the integrating
factor has the simplest form.

There is no simple general method for ascertaining whether functions p = p(x) and
q = q(y) satisfying (2.6.8) exist. However, the next theorem gives simple sufficient
conditions for the given equation to have an integrating factor that depends on only one
of the independent variables x and y, and for finding an integrating factor in this case.

Theorem 2.6.1 LetM, N,My, and Nx be continuous on an open rectangle R. Then:
(a) If (My −Nx)/N is independent of y on R and we define

p(x) =
My −Nx

N

then
µ(x) = ±e

∫
p(x)dx (2.6.10)

is an integrating factor for

M(x,y)dx+N(x,y)dy = 0 (2.6.11)

on R.
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(b) If (Nx −My)/M is independent of x on R and we define

q(y) =
Nx −My

M
,

then
µ(y) = ±e

∫
q(y)dy (2.6.12)

is an integrating factor for (2.6.11) on R.

Proof (a) If (My−Nx)/N is independent of y, then (2.6.8) holds with p = (My−Nx)/N
and q ≡ 0. Therefore

P(x) = ±e
∫
p(x)dx and Q(y) = ±e

∫
q(y)dy = ±e0 = ±1,

so (2.6.10) is an integrating factor for (2.6.11) on R.
(b) If (Nx − My)/M is independent of x then (2.6.8) holds with p ≡ 0 and q =

(Nx −My)/M, and a similar argument shows that (2.6.12) is an integrating factor for
(2.6.11) on R.

The next two examples show how to apply Theorem 2.6.1.

Example 2.6.1 Find an integrating factor for the equation

(2xy3 − 2x3y3 − 4xy2 + 2x)dx+ (3x2y2 + 4y)dy = 0 (2.6.13)

and solve the equation.

Solution In (2.6.13)

M = 2xy3 − 2x3y3 − 4xy2 + 2x, N = 3x2y2 + 4y,

and
(My) −Nx = (6xy2 − 6x3y2 − 8xy) − 6xy2 = −6x3y2 − 8xy,

so (2.6.13) is not exact. However,

My −Nx
N

= −
6x3y2 + 8xy
3x2y2 + 4y

= −2x

is independent of y, so Theorem 2.6.1(a) applies with p(x) = −2x. Since∫
p(x)dx = −

∫
2xdx = −x2,

µ(x) = e−x
2

is an integrating factor. Multiplying (2.6.13) by µ yields the exact equation

e−x
2
(2xy3 − 2x3y3 − 4xy2 + 2x)dx+ e−x

2
(3x2y2 + 4y)dy = 0. (2.6.14)
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To solve this equation, we must find a function F such that

Fx(x,y) = e−x
2
(2xy3 − 2x3y3 − 4xy2 + 2x) (2.6.15)

and
Fy(x,y) = e−x

2
(3x2y2 + 4y). (2.6.16)

Integrating (2.6.16) with respect to y yields

F(x,y) = e−x
2
(x2y3 + 2y2) +ψ(x). (2.6.17)

Differentiating this with respect to x yields

Fx(x,y) = e−x
2
(2xy3 − 2x3y3 − 4xy2) +ψ ′(x).

Comparing this with (2.6.15) shows that ψ ′(x) = 2xe−x2
; therefore, we can let ψ(x) =

−e−x
2

in (2.6.17) and conclude that

e−x
2 (
y2(x2y+ 2) − 1

)
= c

is an implicit solution of (2.6.14). It is also an implicit solution of (2.6.13).

Example 2.6.2 Find an integrating factor for

2xy3 dx+ (3x2y2 + x2y3 + 1)dy = 0 (2.6.18)

and solve the equation.

Solution In (2.6.18),
M = 2xy3, N = 3x2y2 + x2y3 + 1,

and
My −Nx = 6xy2 − (6xy2 + 2xy3) = −2xy3,

so (2.6.18) is not exact. Moreover,

My −Nx
N

= −
2xy3

3x2y2 + x2y2 + 1

is not independent of y, so Theorem 2.6.1(a) does not apply. However, Theorem 2.6.1(b)
does apply, since

Nx −My

M
=

2xy3

2xy3 = 1

is independent of x, so we can take q(y) = 1. Since∫
q(y)dy =

∫
dy = y,
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µ(y) = ey is an integrating factor. Multiplying (2.6.18) by µ yields the exact equation

2xy3ey dx+ (3x2y2 + x2y3 + 1)ey dy = 0. (2.6.19)

To solve this equation, we must find a function F such that

Fx(x,y) = 2xy3ey (2.6.20)

and
Fy(x,y) = (3x2y2 + x2y3 + 1)ey. (2.6.21)

Integrating (2.6.20) with respect to x yields

F(x,y) = x2y3ey + φ(y). (2.6.22)

Differentiating this with respect to y yields

Fy = (3x2y2 + x2y3)ey + φ ′(y),

and comparing this with (2.6.21) shows that φ ′(y) = ey. Therefore we set φ(y) = ey in
(2.6.22) and conclude that

(x2y3 + 1)ey = c

is an implicit solution of (2.6.19). It is also an implicit solution of (2.6.18).
When working with exact equations, be sure to use the formM(x,y)dx+N(x,y)dy = 0.

For example, suppose an equation is given as G(x,y)dx = H(x,y)dy; in this case, we
would first rewrite it as G(x,y)dx−H(x,y)dy = 0 and then identifyN(x,y) = −H(x,y)
before applying the method of solving.

2.6 Exercises

In Exercises 1–14, find an integrating factor that is a function of only one variable, and
then solve the given equation.

1. ydx− xdy = 0 2. 3x2ydx+ 2x3 dy = 0

3. 2y3 dx+ 3y2 dy = 0 4. (5xy+ 2y+ 5)dx+ 2xdy = 0

5. (xy+ x+ 2y+ 1)dx = −(x+ 1)dy

6. (27xy2 + 8y3)dx+ (18x2y+ 12xy2)dy = 0

7. (6xy2 + 2y)dx+ (12x2y+ 6x+ 3)dy = 0

8. −y2 dx =

(
xy2 + 3xy+

1
y

)
dy

9. (12x3y+ 24x2y2)dx+ (9x4 + 32x3y+ 4y)dy = 0

10. (x2y+ 4xy+ 2y)dx+ (x2 + x)dy = 0
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11. −ydx = −(x4 − x)dy

12. cos x cosydx+ (sin x cosy− sin x siny+ y)dy = 0

13. (2xy+ y2)dx+ (2xy+ x2 − 2x2y2 − 2xy3)dy = 0

14. y sinydx+ x(siny− y cosy)dy = 0





CHAPTER 3

LINEAR HIGHER ORDER EQUATIONS

IN THIS CHAPTER we study higher order equations, primarily second order equations
that can be written in the form

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F(x).

Such equations are said to be linear. As in the case of first order linear equations, an
equation is said to be homogeneous if F ≡ 0, or nonhomogeneous if F 6≡ 0. Because of their
many applications in science and engineering, second order differential equations have
historically been the most thoroughly studied class of differential equations. We will
look at a few of these applications at the end of the chapter. Throughout the chapter, we
will also encounter a few differential equations of order three or higher.

SECTION 3.1 is devoted to the theory of homogeneous linear equations.

SECTION 3.2 deals primarily with homogeneous equations of the special form

ay ′′ + by ′ + cy = 0,

where a, b, and c are constant (a 6= 0).

SECTION 3.3 presents the theory of nonhomogeneous linear equations.

SECTIONS 3.4 AND 3.5 present the method of undetermined coefficients, which can be used
to solve nonhomogeneous equations of the form

ay ′′ + by ′ + cy = F(x),

where a, b, and c are constants and F has a special form that is still sufficiently general to
occur in many applications. In this section we make extensive use of the idea of variation
of parameters introduced in Chapter 2.

SECTION 3.6 deals with reduction of order, a technique based on the idea of variation
of parameters, which enables us to find the general solution of a nonhomogeneous

89



90 Chapter 3 Linear Higher Order Equations

linear second order equation provided that we know one nontrivial (not identically zero)
solution of the associated homogeneous equation.

SECTION 3.7 deals with the method traditionally called variation of parameters, which
enables us to find the general solution of a nonhomogeneous linear second order equa-
tion provided that we know two nontrivial solutions (with nonconstant ratio) of the
associated homogeneous equation.

SECTION 3.8 looks at applications of linear higher order equations to spring—mass sys-
tems. In particular, we consider simple harmonic motion, undamped forced oscillation,
and free vibrations with damping.
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3.1 HOMOGENEOUS LINEAR EQUATIONS

A second order differential equation is said to be linear if it can be written as

y ′′ + p(x)y ′ + q(x)y = f(x). (3.1.1)

We say that (3.1.1) is homogeneous if f ≡ 0 or nonhomogeneous if f 6≡ 0. Since these
definitions are like the corresponding definitions for the linear first order equation

y ′ + p(x)y = f(x), (3.1.2)

it is natural to expect similarities between methods of solving (3.1.1) and (3.1.2). How-
ever, solving (3.1.1) is more difficult than solving (3.1.2). For example, while Theo-
rem 2.1.1 gives a formula for the general solution of (3.1.2) in the case where f ≡ 0 and
Theorem 2.1.2 gives a formula for the case where f 6≡ 0, there are no formulas for the
general solution of (3.1.1) in either case. Therefore we must be content to solve linear
second order equations of special forms.

In Section 2.1, we first considered the homogeneous equation y ′ + p(x)y = 0 and
then used a nontrivial solution of this equation to find the general solution of the
nonhomogeneous equation y ′ + p(x)y = f(x). Although the progression from the
homogeneous to the nonhomogeneous case is not that simple for the linear second order
equation, it is still necessary to solve the homogeneous equation

y ′′ + p(x)y ′ + q(x)y = 0 (3.1.3)

in order to solve the nonhomogeneous equation (3.1.1). This section is devoted to solving
homogeneous equations of this type.

The next theorem gives sufficient conditions for existence and uniqueness of solutions
of initial value problems for (3.1.3). We omit the proof.

Theorem 3.1.1 Suppose p and q are continuous on an open interval (a,b), let x0 be any point
in (a,b), and let k0 and k1 be arbitrary real numbers. Then the initial value problem

y ′′ + p(x)y ′ + q(x)y = 0, y(x0) = k0, y ′(x0) = k1

has a unique solution on (a,b).

Since y ≡ 0 is obviously a solution of (3.1.3) we call it the trivial solution. Any other
solution is nontrivial. Notice that under the assumptions of Theorem 3.1.1, the only
solution of the initial value problem

y ′′ + p(x)y ′ + q(x)y = 0, y(x0) = 0, y ′(x0) = 0

on (a,b) is the trivial solution.
The next three examples illustrate concepts that we will develop later in this section.

You should not be concerned with how to find the given solutions of the equations in
these examples. This will be explained in later sections.
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Example 3.1.1 The coefficients of y ′ and y in

y ′′ − y = 0 (3.1.4)

are the constant functions p ≡ 0 and q ≡ −1, which are continuous on (−∞,∞).
Therefore Theorem 3.1.1 implies that every initial value problem for (3.1.4) has a unique
solution on (−∞,∞).
(a) Verify that y1 = ex and y2 = e−x are solutions of (3.1.4) on (−∞,∞).

(b) Verify that if c1 and c2 are arbitrary constants, y = c1e
x + c2e

−x is a solution of
(3.1.4) on (−∞,∞).

(c) Solve the initial value problem

y ′′ − y = 0, y(0) = 1, y ′(0) = 3. (3.1.5)

Solution (a) If y1 = ex then both y ′1 = ex and y ′′1 = ex, so that y ′′1 − y1 = 0. If y2 = e−x,
then y ′2 = −e−x and y ′′2 = e−x so that y ′′2 = y2. This verifies that y ′′2 − y2 = 0.

(b) If
y = c1e

x + c2e
−x (3.1.6)

then
y ′ = c1ex − c2e−x (3.1.7)

and
y ′′ = c1ex + c2e−x,

so

y ′′ − y = (c1e
x + c2e

−x) − (c1e
x + c2e

−x)

= c1(e
x − ex) + c2(e

−x − e−x) = 0

for all x. Therefore y = c1e
x + c2e

−x is a solution of (3.1.4) on (−∞,∞).
(c) We can solve (3.1.5) by choosing c1 and c2 in (3.1.6) so that y(0) = 1 and y ′(0) = 3.

Setting x = 0 in (3.1.6) and (3.1.7) shows that this is equivalent to

c1 + c2 = 1
c1 − c2 = 3.

Solving this system of equations yields c1 = 2 and c2 = −1. Therefore y = 2ex − e−x is
the unique solution of (3.1.5) on (−∞,∞).

The next example will be a useful reference for the technique discussed in the next
section.

Example 3.1.2 Letω be a positive constant. The coefficients of y ′ and y in

y ′′ +ω2y = 0 (3.1.8)

are the constant functions p ≡ 0 and q ≡ ω2, which are continuous on (−∞,∞).
Therefore Theorem 3.1.1 implies that every initial value problem for (3.1.8) has a unique
solution on (−∞,∞).
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(a) Verify that y1 = cosωx and y2 = sinωx are solutions of (3.1.8) on (−∞,∞).

(b) Verify that if c1 and c2 are arbitrary constants then y = c1 cosωx + c2 sinωx is a
solution of (3.1.8) on (−∞,∞).

(c) Solve the initial value problem

y ′′ +ω2y = 0, y(0) = 1, y ′(0) = 3. (3.1.9)

Solution (a) If y1 = cosωx then y ′1 = −ω sinωx and y ′′1 = −ω2 cosωx. Substitution
then verifies that y ′′1 + ω2y1 = 0. If y2 = sinωx then, y ′2 = ω cosωx and y ′′2 =
−ω2 sinωx. Again, substitution is used to verify that y ′′2 +ω2y2 = 0.

(b) If
y = c1 cosωx+ c2 sinωx (3.1.10)

then
y ′ = ω(−c1 sinωx+ c2 cosωx) (3.1.11)

and
y ′′ = −ω2(c1 cosωx+ c2 sinωx),

so

y ′′ +ω2y = −ω2(c1 cosωx+ c2 sinωx) +ω2(c1 cosωx+ c2 sinωx)
= c1ω

2(− cosωx+ cosωx) + c2ω2(− sinωx+ sinωx) = 0

for all x. Therefore y = c1 cosωx+ c2 sinωx is a solution of (3.1.8) on (−∞,∞).
(c) To solve (3.1.9), we must choose c1 and c2 in (3.1.10) so that y(0) = 1 and y ′(0) = 3.

Setting x = 0 in (3.1.10) and (3.1.11) shows that c1 = 1 and c2 = 3/ω. Therefore

y = cosωx+
3
ω

sinωx

is the unique solution of (3.1.9) on (−∞,∞).
Theorem 3.1.1 implies that if k0 and k1 are arbitrary real numbers then the initial value

problem

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0, y(x0) = k0, y ′(x0) = k1 (3.1.12)

has a unique solution on an interval (a,b) that contains x0, provided that P2, P1, and
P0 are continuous and P2 has no zeros on (a,b). To see this, we rewrite the differential
equation in (3.1.12) as

y ′′ +
P1(x)

P2(x)
y ′ +

P0(x)

P2(x)
y = 0

and apply Theorem 3.1.1 with p = P1/P2 and q = P0/P2.
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Example 3.1.3 The equation
x2y ′′ + xy ′ − 4y = 0 (3.1.13)

has the form of the differential equation in (3.1.12), with P2(x) = x2, P1(x) = x, and
P0(x) = −4, which are are all continuous on (−∞,∞). However, since P2(0) = 0 we
must consider solutions of (3.1.13) on (−∞, 0) and (0,∞). Since P2 has no zeros on these
intervals, Theorem 3.1.1 implies that the initial value problem

x2y ′′ + xy ′ − 4y = 0, y(x0) = k0, y ′(x0) = k1

has a unique solution on (0,∞) if x0 > 0, or on (−∞, 0) if x0 < 0.
(a) Verify that y1 = x2 is a solution of (3.1.13) on (−∞,∞) and y2 = 1/x2 is a solution

of (3.1.13) on (−∞, 0) and (0,∞).

(b) Verify that if c1 and c2 are any constants then y = c1x
2 + c2/x

2 is a solution of
(3.1.13) on (−∞, 0) and (0,∞).

(c) Solve the initial value problem

x2y ′′ + xy ′ − 4y = 0, y(1) = 2, y ′(1) = 0. (3.1.14)

(d) Solve the initial value problem

x2y ′′ + xy ′ − 4y = 0, y(−1) = 2, y ′(−1) = 0. (3.1.15)

Solution (a) If y1 = x2 then y ′1 = 2x and y ′′1 = 2, so

x2y ′′1 + xy ′1 − 4y1 = x2(2) + x(2x) − 4x2,

which reduces to zero for x in (−∞,∞). If y2 = 1/x2, then y ′2 = −2/x3 and y ′′2 = 6/x4,
so

x2y ′′2 + xy ′2 − 4y2 = x2
(

6
x4

)
− x

(
2
x3

)
−

4
x2 ,

which reduces to zero for x in (−∞, 0) or (0,∞).
(b) If

y = c1x
2 +

c2

x2 (3.1.16)

then
y ′ = 2c1x−

2c2
x3 (3.1.17)

and
y ′′ = 2c1 +

6c2
x4 ,
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so

x2y ′′ + xy ′ − 4y = x2
(
2c1 +

6c2
x4

)
+ x

(
2c1x−

2c2
x3

)
− 4
(
c1x

2 +
c2

x2

)
= c1(2x2 + 2x2 − 4x2) + c2

(
6
x2 −

2
x2 −

4
x2

)
= c1 · 0+ c2 · 0

= 0

for x in (−∞, 0) or (0,∞).
(c) To solve (3.1.14), we choose c1 and c2 in (3.1.16) so that y(1) = 2 and y ′(1) = 0.

Setting x = 1 in (3.1.16) and (3.1.17) shows that this is equivalent to

c1 + c2 = 2
2c1 − 2c2 = 0.

Solving this system of equations yields c1 = 1 and c2 = 1. Therefore, y = x2 + 1/x2 is
the unique solution of (3.1.14) on (0,∞).

(d) We can solve (3.1.15) by choosing c1 and c2 in (3.1.16) so that y(−1) = 2 and
y ′(−1) = 0. Setting x = −1 in (3.1.16) and (3.1.17) shows that this is equivalent to

c1 + c2 = 2
−2c1 + 2c2 = 0.

Solving this system of equations yields c1 = 1 and c2 = 1. Therefore y = x2 + 1/x2 is the
unique solution of (3.1.15) on (−∞, 0).

Although the formulas for the solutions of (3.1.14) and (3.1.15) are both y = x2 + 1/x2,
you should not conclude that these two initial value problems have the same solution.
Remember that a solution of an initial value problem is defined on an interval that contains
the initial point; therefore, the solution of (3.1.14) is y = x2 + 1/x2 on the interval (0,∞),
which contains the initial point x0 = 1, while the solution of (3.1.15) is y = x2 + 1/x2 on
the interval (−∞, 0), which contains the initial point x0 = −1.

Initial value problems impose conditions on a single point x0. However, many applica-
tions involve solving differential equations where conditions have been imposed on two
different points x0 and x1. A boundary value problem is a differential equation together
with conditions specified on the dependent variable or its derivatives at two different
points. For example,

y ′′ − y = 0, y(0) = 1, y(2) = 3

is a boundary value problem. A solution of this problem is a function satisfying the
differential equation on some interval that contains both x = 0 and x = 2; that is,
the solution passes through the points (0, 1) and (2, 3). Unfortunately, even when the
conditions of Theorem 3.1.1 are satisfied, it is not known whether a boundary value
problem will have none, one, or multiple solutions.
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Example 3.1.4
The homogeneous linear second order equation y ′′ + 16y = 0 has the two-parameter
family of solutions

y = c1cos4x+ c2sin4x.

(You should verify this.)
(a) Find the solution of y ′′ + 16y = 0 that satisfies the boundary conditions y(0) = 0

and y(π/2) = 0.

(b) Find the solution of y ′′ + 16y = 0 that satisfies the boundary conditions y(0) = 0
and y(π/8) = 0.

(c) Find the solution of y ′′ + 16y = 0 that satisfies the boundary conditions y(0) = 0
and y(π/2) = 1.

Solution (a) Setting 0 = c1cos0+ c2sin0 implies that c1 = 0 and therefore y = c2sin4x.
Before applying the second condition, notice that substituting x = π/2 into sin4x gives
sin2π = 0. This means that 0 = c2sin4(π/2) is true for any choice of c2. Therefore, the
boundary value problem

y ′′ + 16y = 0, y(0) = 0, y(π/2) = 0

has infinitely many solutions. (b) As before, the first condition implies that c1 = 0 and
therefore y = c2sin4x. This time, notice that substituting x = π/8 into sin4x gives
sinπ/2 = 1. This means that 0 = c2 is required to fulfill the second condition. In fact,
the boundary value problem

y ′′ + 16y = 0, y(0) = 0, y(π/8) = 0

has only the one solution y = 0. (c) Once more, the first condition implies that c1 = 0
and therefore y = c2sin4x. Here however, the substitution of x = π/2 into sin4x that
gives sin2π = 0 leads to the contradiction 1 = 0. This means that the boundary value
problem

y ′′ + 16y = 0, y(0) = 0, y(π/8) = 0

has no solutions.

The General Solution of a Homogeneous Linear Second Order Equation

If y1 and y2 are defined on an interval (a,b) and c1 and c2 are constants, then

y = c1y1 + c2y2

is a linear combination of y1 and y2. For example, y = 2 cos x+7 sin x is a linear combination
of y1 = cos x and y2 = sin x, with c1 = 2 and c2 = 7.

The next theorem states a fact that we illustrated in Examples 3.1.1, 3.1.2, and 3.1.3.
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Theorem 3.1.2 If y1 and y2 are solutions of the homogeneous equation

y ′′ + p(x)y ′ + q(x)y = 0 (3.1.18)

on (a,b), then any linear combination

y = c1y1 + c2y2 (3.1.19)

of y1 and y2 is also a solution of (3.1.18) on (a,b).

Proof If
y = c1y1 + c2y2

then
y ′ = c1y ′1 + c2y

′
2 and y ′′ = c1y ′′1 + c2y

′′
2 .

Therefore

y ′′ + p(x)y ′ + q(x)y = (c1y
′′
1 + c2y

′′
2 ) + p(x)(c1y

′
1 + c2y

′
2) + q(x)(c1y1 + c2y2)

= c1
(
y ′′1 + p(x)y ′1 + q(x)y1

)
+ c2

(
y ′′2 + p(x)y ′2 + q(x)y2

)
= c1 · 0+ c2 · 0
= 0,

since y1 and y2 are solutions of (3.1.18).
We say that {y1,y2} is a fundamental set of solutions of (3.1.18) on (a,b) if every solution

of (3.1.18) on (a,b) can be written as a linear combination of y1 and y2 as in (3.1.19). In
this case we say that (3.1.19) is the general solution of (3.1.18) on (a,b).

Linear Independence

We need a way to determine whether a given set {y1,y2} of solutions of (3.1.18) is a
fundamental set. The next definition will enable us to state necessary and sufficient
conditions for this.

We say that two functions y1 and y2 defined on an interval (a,b) are linearly independent
on (a,b) if neither is a constant multiple of the other on (a,b). (In particular, this means
that neither can be the trivial solution of (3.1.18), since, for example, if y1 ≡ 0 we could
write y1 = 0y2.) We will also say that the set {y1,y2} is linearly independent on (a,b).

Theorem 3.1.3 Suppose p and q are continuous on (a,b). Then a set {y1,y2} of solutions of

y ′′ + p(x)y ′ + q(x)y = 0 (3.1.20)

on (a,b) is a fundamental set if and only if {y1,y2} is linearly independent on (a,b).

We will present the proof of Theorem 3.1.3 in steps worth regarding as theorems in
their own right. However, let us first interpret Theorem 3.1.3 in terms of Examples 3.1.1,
3.1.2, and 3.1.3.
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Example 3.1.5

(a) In Example 3.1.1, since ex/e−x = e2x is nonconstant, Theorem 3.1.3 implies that
y = c1e

x + c2e
−x is the general solution of y ′′ − y = 0 on (−∞,∞).

(b) In Example 3.1.2, since cosωx/ sinωx = cotωx is nonconstant, Theorem 3.1.3
implies that y = c1 cosωx + c2 sinωx is the general solution of y ′′ +ω2y = 0 on
(−∞,∞).

(c) In Example ??, since x2/x−2 = x4 is nonconstant, Theorem 3.1.3 implies that y =
c1x

2 + c2/x
2 is the general solution of x2y ′′ + xy ′ − 4y = 0 on (−∞, 0) and (0,∞).

The Wronskian and Abel’s Formula

To motivate a result that we need in order to prove Theorem 3.1.3, let us see what is
required to prove that {y1,y2} is a fundamental set of solutions of (3.1.20) on (a,b). Let
x0 be an arbitrary point in (a,b), and suppose y is an arbitrary solution of (3.1.20) on
(a,b). Then y is the unique solution of the initial value problem

y ′′ + p(x)y ′ + q(x)y = 0, y(x0) = k0, y ′(x0) = k1; (3.1.21)

that is, k0 and k1 are the numbers obtained by evaluating y and y ′ at x0. Moreover, k0
and k1 can be any real numbers, since Theorem 3.1.1 implies that (3.1.21) has a solution
no matter how k0 and k1 are chosen. Therefore {y1,y2} is a fundamental set of solutions
of (3.1.20) on (a,b) if and only if it is possible to write the solution of an arbitrary initial
value problem (3.1.21) as y = c1y1 + c2y2. This is equivalent to requiring that the system

c1y1(x0) + c2y2(x0) = k0
c1y
′
1(x0) + c2y

′
2(x0) = k1

(3.1.22)

has a solution (c1, c2) for every choice of (k0,k1). Let us try to solve (3.1.22).
Multiplying the first equation in (3.1.22) by y ′2(x0) and the second by y2(x0) yields

c1y1(x0)y
′
2(x0) + c2y2(x0)y

′
2(x0) = y ′2(x0)k0

c1y
′
1(x0)y2(x0) + c2y

′
2(x0)y2(x0) = y2(x0)k1,

and subtracting the second equation here from the first yields(
y1(x0)y

′
2(x0) − y

′
1(x0)y2(x0)

)
c1 = y ′2(x0)k0 − y2(x0)k1. (3.1.23)

Multiplying the first equation in (3.1.22) by y ′1(x0) and the second by y1(x0) yields

c1y1(x0)y
′
1(x0) + c2y2(x0)y

′
1(x0) = y ′1(x0)k0

c1y
′
1(x0)y1(x0) + c2y

′
2(x0)y1(x0) = y1(x0)k1,

and subtracting the first equation here from the second yields(
y1(x0)y

′
2(x0) − y

′
1(x0)y2(x0)

)
c2 = y1(x0)k1 − y

′
1(x0)k0. (3.1.24)
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If
y1(x0)y

′
2(x0) − y

′
1(x0)y2(x0) = 0,

it is impossible to satisfy (3.1.23) and (3.1.24) (and therefore (3.1.22)) unless k0 and k1
happen to satisfy

y1(x0)k1 − y
′
1(x0)k0 = 0

y ′2(x0)k0 − y2(x0)k1 = 0.

On the other hand, if
y1(x0)y

′
2(x0) − y

′
1(x0)y2(x0) 6= 0 (3.1.25)

we can divide (3.1.23) and (3.1.24) through by the quantity on the left to obtain

c1 =
y ′2(x0)k0 − y2(x0)k1

y1(x0)y ′2(x0) − y ′1(x0)y2(x0)

c2 =
y1(x0)k1 − y

′
1(x0)k0

y1(x0)y ′2(x0) − y ′1(x0)y2(x0)
,

(3.1.26)

no matter how k0 and k1 are chosen. This motivates us to consider conditions on y1 and
y2 that imply (3.1.25).

Theorem 3.1.4 Suppose p and q are continuous on (a,b), let y1 and y2 be solutions of

y ′′ + p(x)y ′ + q(x)y = 0 (3.1.27)

on (a,b), and define
W = y1y

′
2 − y

′
1y2. (3.1.28)

Let x0 be any point in (a,b). Then

W(x) =W(x0)e
−
∫x
x0
p(t)dt, a < x < b. (3.1.29)

Therefore eitherW has no zeros in (a,b) orW ≡ 0 on (a,b).

Proof Differentiating (3.1.28) yields

W ′ = y ′1y
′
2 + y1y

′′
2 − y ′1y

′
2 − y

′′
1 y2 = y1y

′′
2 − y ′′1 y2. (3.1.30)

Since y1 and y2 both satisfy (3.1.27),

y ′′1 = −py ′1 − qy1 and y ′′2 = −py ′2 − qy2.

Substituting these into (3.1.30) yields

W ′ = −y1
(
py ′2 + qy2

)
+ y2

(
py ′1 + qy1

)
= −p(y1y

′
2 − y2y

′
1) − q(y1y2 − y2y1)

= −p(y1y
′
2 − y2y

′
1)

= −pW.



100 Chapter 3 Linear Higher Order Equations

ThereforeW ′ + p(x)W = 0; that is,W is the solution of the initial value problem

y ′ + p(x)y = 0, y(x0) =W(x0).

We leave it to you to verify by separation of variables that this implies (3.1.29). If
W(x0) 6= 0, (3.1.29) implies thatW has no zeros in (a,b), since an exponential is never
zero. On the other hand, ifW(x0) = 0, (3.1.29) implies thatW(x) = 0 for all x in (a,b).

The functionW defined in (3.1.28) is the Wronskian of {y1,y2}. Formula (3.1.29) is Abel’s
formula.

The Wronskian of {y1,y2} is usually written as the determinant

W =

∣∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣∣ .
The expressions in (3.1.26) for c1 and c2 can be written in terms of determinants as

c1 =
1

W(x0)

∣∣∣∣∣ k0 y2(x0)

k1 y ′2(x0)

∣∣∣∣∣ and c2 =
1

W(x0)

∣∣∣∣∣ y1(x0) k0

y ′1(x0) k1

∣∣∣∣∣ .
If you have taken linear algebra you may recognize this as Cramer’s rule.

Example 3.1.6 Verify Abel’s formula for the differential equations and the corresponding
solutions, from Examples 3.1.1, 3.1.2, and 3.1.3:
(a) y ′′ − y = 0; y1 = ex, y2 = e−x

(b) y ′′ +ω2y = 0; y1 = cosωx, y2 = sinωx
(c) x2y ′′ + xy ′ − 4y = 0; y1 = x2, y2 = 1/x2

Solution (a) Here there is no y ′ term, so p ≡ 0. Therefore we can verify Abel’s formula
by showing thatW is constant. By computing the Wronskian as a determinant, we see
that

W(x) =

∣∣∣∣∣ e
x e−x

ex −e−x

∣∣∣∣∣
= ex(−e−x) − exe−x

= −2

for all x.
(b) Again, since p ≡ 0, we verify Abel’s formula by showing that W is constant. In

this case,

W(x) =

∣∣∣∣∣ cosωx sinωx

−ω sinωx ω cosωx

∣∣∣∣∣
= cosωx(ω cosωx) − (−ω sinωx) sinωx
= ω(cos2ωx+ sin2ωx)

= ω
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for all x.
(c) Computing the Wronskian of y1 = x2 and y2 = 1/x2 directly yields

W(x) =

∣∣∣∣∣ x
2 1/x2

2x −2/x3

∣∣∣∣∣
= x2

(
−

2
x3

)
− 2x

(
1
x2

)
= ) −

4
x
.

To verify Abel’s formula, we rewrite the differential equation as

y ′′ +
1
x
y ′ −

4
x2y = 0

to see that p(x) = 1/x. If x0 and x are either both in (−∞, 0) or both in (0,∞) then∫x
x0

p(t)dt =

∫x
x0

dt

t
= ln

(
x

x0

)
,

so the right side of Abel’s formula becomes

W(x) = W(x0)e
− ln(x/x0)

= W(x0)
x0

x

= −

(
4
x0

)(x0

x

)
= −

4
x
,

which is consistent with the result we got from computing the Wronskian directly.
The next theorem will enable us to complete the proof of Theorem 3.1.3.

Theorem 3.1.5 Suppose p and q are continuous on an open interval (a,b), let y1 and y2 be
solutions of

y ′′ + p(x)y ′ + q(x)y = 0 (3.1.31)

on (a,b), and letW = y1y
′
2 − y

′
1y2. Then y1 and y2 are linearly independent on (a,b) if and

only ifW has no zeros on (a,b).

Proof We first show that ifW(x0) = 0 for some x0 in (a,b), then y1 and y2 are linearly
dependent on (a,b). Let I be a subinterval of (a,b) on which y1 has no zeros. (If there is
no such subinterval, y1 ≡ 0 on (a,b), so y1 and y2 are linearly independent, and we are
finished with this part of the proof.) Then y2/y1 is defined on I, and(

y2

y1

) ′
=
y1y

′
2 − y

′
1y2

y2
1

=
W

y2
1
. (3.1.32)
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However, if W(x0) = 0, Theorem 3.1.4 implies that W ≡ 0 on (a,b). Therefore (3.1.32)
implies that (y2/y1)

′ ≡ 0, so y2/y1 = c (constant) on I. This shows that y2(x) = cy1(x)
for all x in I. However, we want to show that y2 = cy1(x) for all x in (a,b). Let
Y = y2 − cy1. Then Y is a solution of (3.1.31) on (a,b) such that Y ≡ 0 on I, and therefore
Y ′ ≡ 0 on I. Consequently, if x0 is chosen arbitrarily in I then Y is a solution of the initial
value problem

y ′′ + p(x)y ′ + q(x)y = 0, y(x0) = 0, y ′(x0) = 0,

which implies that Y ≡ 0 on (a,b), by the paragraph following Theorem 3.1.1. Hence,
y2 − cy1 ≡ 0 on (a,b), which implies that y1 and y2 are not linearly independent on
(a,b).

Now supposeW has no zeros on (a,b). Then y1 cannot be identically zero on (a,b)
(why not?), and therefore there is a subinterval I of (a,b) on which y1 has no zeros.
Since (3.1.32) implies that y2/y1 is nonconstant on I, y2 is not a constant multiple of
y1 on (a,b). This means that y1 and y2 are linearly independent on (a,b). A similar
argument shows that y1 is not a constant multiple of y2 on (a,b), since(

y1

y2

) ′
=
y ′1y2 − y1y

′
2

y2
2

= −
W

y2
2

on any subinterval of (a,b) where y2 has no zeros.
We can now complete the proof of Theorem 3.1.3. From Theorem 3.1.5, two solutions

y1 and y2 of (3.1.31) are linearly independent on (a,b) if and only if W has no zeros
on (a,b). From Theorem 3.1.4 and the motivating comments preceding it, {y1,y2}

is a fundamental set of solutions of (3.1.31) if and only if W has no zeros on (a,b).
Therefore {y1,y2} is a fundamental set for (3.1.31) on (a,b) if and only if {y1,y2} is
linearly independent on (a,b).

The next theorem summarizes the relationships among the concepts discussed in this
section.

Theorem 3.1.6 Suppose p and q are continuous on an open interval (a,b) and let y1 and y2
be solutions of

y ′′ + p(x)y ′ + q(x)y = 0 (3.1.33)

on (a,b). Then the following statements are equivalent; that is, they are either all true or all
false.
(a) The general solution of (3.1.33) on (a,b) is y = c1y1 + c2y2.

(b) {y1,y2} is a fundamental set of solutions of (3.1.33) on (a,b).

(c) {y1,y2} is linearly independent on (a,b).

(d) The Wronskian of {y1,y2} is nonzero at some point in (a,b).

(e) The Wronskian of {y1,y2} is nonzero at all points in (a,b).
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We can apply this theorem to an equation written as

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0

on an interval (a,b) where P2, P1, and P0 are continuous and P2 has no zeros.

3.1 Exercises

1. (a) Verify that y1 = e2x and y2 = e5x are solutions of

y ′′ − 7y ′ + 10y = 0 (A)

on (−∞,∞).
(b) Verify that if c1 and c2 are arbitrary constants then y = c1e

2x + c2e
5x is a

solution of (A) on (−∞,∞).
(c) Solve the initial value problem

y ′′ − 7y ′ + 10y = 0, y(0) = −1, y ′(0) = 1.

(d) Solve the initial value problem

y ′′ − 7y ′ + 10y = 0, y(0) = k0, y ′(0) = k1.

2. (a) Verify that y1 = ex cos x and y2 = ex sin x are solutions of

y ′′ − 2y ′ + 2y = 0 (A)

on (−∞,∞).
(b) Verify that if c1 and c2 are arbitrary constants then y = c1e

x cos x+ c2ex sin x
is a solution of (A) on (−∞,∞).

(c) Solve the initial value problem

y ′′ − 2y ′ + 2y = 0, y(0) = 3, y ′(0) = −2.

(d) Solve the initial value problem

y ′′ − 2y ′ + 2y = 0, y(0) = k0, y ′(0) = k1.

3. (a) Verify that y1 = ex and y2 = xex are solutions of

y ′′ − 2y ′ + y = 0 (A)

on (−∞,∞).
(b) Verify that if c1 and c2 are arbitrary constants then y = ex(c1 + c2x) is a

solution of (A) on (−∞,∞).
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(c) Solve the initial value problem

y ′′ − 2y ′ + y = 0, y(0) = 7, y ′(0) = 4.

(d) Solve the initial value problem

y ′′ − 2y ′ + y = 0, y(0) = k0, y ′(0) = k1.

4. y = c1 cos 2x+ c2 sin 2x is a two-parameter family of solutions for the second order
differential equation y ′′+4y = 0. If possible, find a solution of the differential equa-
tion that satisfies the given boundary conditions. (a) y(0) = 0,y(π/4) = 3 (b) y(0) = 0,y(π) = 0

(c) y ′(0) = 0,y ′(π/6) = 0 (d) y ′(π/2) = 1,y ′(π) = 0

5. y = c1e
x cos x+ c2ex sin x is a two-parameter family of solutions for the second or-

der differential equation y ′′−2y ′+2y = 0 on the interval (−∞,∞). If possible, find
a solution of the differential equation that satisfies the given boundary conditions.
(a) y(0) = 1,y ′(π) = 0 (b) y(0) = 1,y(π) = −1

(c) y(0) = 1,y(π/2) = 1 (d) y(0) = 0,y(π) = 0

6. y = c1x
2 + c2x

4 + 3 is a two-parameter family of solutions for the second order dif-
ferential equation x2y ′′− 5xy ′+ 8y = 24 on the interval (−∞,∞). If possible, find
a solution of the differential equation that satisfies the given boundary conditions.
(a) y(−1) = 0,y(1) = 4 (b) y(0) = 1,y(1) = 2

(c) y(0) = 3,y(1) = 0 (d) y(1) = 3,y(2) = 15

7. Compute the Wronskians of the given sets of functions.

(a) {1, ex} (b) {ex, ex sin x}

(c) {x+ 1, x2 + 2} (d) {x1/2, x−1/3}

(e) {
sin x
x

,
cos x
x

} (f) {x ln |x|, x2 ln |x|}
(g) {ex cos

√
x, ex sin

√
x}

8. (a) Verify that y1 = 1/(x− 1) and y2 = 1/(x+ 1) are solutions of

(x2 − 1)y ′′ + 4xy ′ + 2y = 0 (A)

on (−∞,−1), (−1, 1), and (1,∞). What is the general solution of (A) on each
of these intervals?

(b) Solve the initial value problem

(x2 − 1)y ′′ + 4xy ′ + 2y = 0, y(0) = −5, y ′(0) = 1.

What is the domain of the solution?
(c) Graph the solution of the initial value problem.
(d) Verify Abel’s formula for y1 and y2, with x0 = 0.
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9. Use Abel’s formula to find the Wronskian of a given set {y1,y2} of solutions of

y ′′ + 3(x2 + 1)y ′ − 2y = 0,

given thatW(π) = 0.

10. Use Abel’s formula to find the Wronskian of a given set {y1,y2} of solutions of

(1− x2)y ′′ − 2xy ′ + α(α+ 1)y = 0,

given thatW(0) = 1. (This is Legendre’s equation.)

11. Use Abel’s formula to find the Wronskian of a given set {y1,y2} of solutions of

x2y ′′ + xy ′ + (x2 − ν2)y = 0,

given thatW(1) = 1. (This is Bessel’s equation.)

12. (This exercise shows that if you know one nontrivial solution of y ′′ + p(x)y ′ +
q(x)y = 0, you can use Abel’s formula to find another.)

Suppose p and q are continuous and y1 is a solution of

y ′′ + p(x)y ′ + q(x)y = 0 (A)

that has no zeros on (a,b). Let P(x) =
∫
p(x)dx be any antiderivative of p on

(a,b).

(a) Show that if K is an arbitrary nonzero constant and y2 satisfies

y1y
′
2 − y

′
1y2 = Ke−P(x) (B)

on (a,b), then y2 also satisfies (A) on (a,b), and {y1,y2} is a fundamental set
of solutions on (A) on (a,b).

(b) Conclude from (a) that if y2 = uy1 where u ′ = K
e−P(x)

y2
1(x)

, then {y1,y2} is a

fundamental set of solutions of (A) on (a,b).

In Exercises 13–26 use the method suggested by Exercise 12 to find a second solution y2 that is
not a constant multiple of the solution y1. Choose K conveniently to simplify y2.

13. y ′′ − 2y ′ − 3y = 0; y1 = e3x

14. y ′′ − 6y ′ + 9y = 0; y1 = e3x

15. y ′′ − 2ay ′ + a2y = 0 (a = constant); y1 = eax

16. x2y ′′ + xy ′ − y = 0; y1 = x

17. x2y ′′ − xy ′ + y = 0; y1 = x

18. x2y ′′ − (2a− 1)xy ′ + a2y = 0 (a = nonzero constant); x > 0; y1 = xa

19. 4x2y ′′ − 4xy ′ + (3− 16x2)y = 0; y1 = x1/2e2x
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20. (x− 1)y ′′ − xy ′ + y = 0; y1 = ex

21. x2y ′′ − 2xy ′ + (x2 + 2)y = 0; y1 = x cos x

22. 4x2(sin x)y ′′ − 4x(x cos x+ sin x)y ′ + (2x cos x+ 3 sin x)y = 0; y1 = x1/2

23. (3x− 1)y ′′ − (3x+ 2)y ′ − (6x− 8)y = 0; y1 = e2x

24. (x2 − 4)y ′′ + 4xy ′ + 2y = 0; y1 =
1

x− 2

25. (2x+ 1)xy ′′ − 2(2x2 − 1)y ′ − 4(x+ 1)y = 0; y1 =
1
x

26. (x2 − 2x)y ′′ + (2− x2)y ′ + (2x− 2)y = 0; y1 = ex

3.2 CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

If a,b, and c are real constants and a 6= 0, then

ay ′′ + by ′ + cy = F(x)

is said to be a constant coefficient equation. We first consider the homogeneous constant
coefficient equation

ay ′′ + by ′ + cy = 0. (3.2.1)

As we will see, all solutions of (3.2.1) are defined on (−∞,∞). This being the case, we
will omit references to the interval on which solutions are defined, or on which a given
set of solutions is a fundamental set, etc., since the interval will always be (−∞,∞).

The key to solving (3.2.1) is that if y = erx where r is a constant then the left side
of (3.2.1) is a multiple of erx. So if y = erx, then y ′ = rerx and y ′′ = r2erx. We can
substitute into (3.2.1) to get

ar2erx + brerx + cerx = (ar2 + br+ c)erx. (3.2.2)

The quadratic polynomial
p(r) = ar2 + br+ c

is the characteristic polynomial of (3.2.1), and p(r) = 0 is the characteristic equation. From
(3.2.2) we can see that y = erx is a solution of (3.2.1) if and only if p(r) = 0.

The roots of the characteristic equation are given by the quadratic formula

r =
−b±

√
b2 − 4ac
2a

. (3.2.3)

We consider three cases:

CASE 1. b2 − 4ac > 0, so the characteristic equation has two distinct real roots.

CASE 2. b2 − 4ac = 0, so the characteristic equation has a repeated real root.
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CASE 3. b2 − 4ac < 0, so the characteristic equation has complex roots.

In each case we will start with an example.

Case 1: Distinct Real Roots

Example 3.2.1

(a) Find the general solution of

y ′′ + 6y ′ + 5y = 0. (3.2.4)

(b) Solve the initial value problem

y ′′ + 6y ′ + 5y = 0, y(0) = 3, y ′(0) = −1. (3.2.5)

Solution (a) The characteristic polynomial p(r) of (3.2.4) is

r2 + 6r+ 5 = (r+ 1)(r+ 5).

Since p(−1) = p(−5) = 0, y1 = e−x and y2 = e−5x are solutions of (3.2.4). Since
y2/y1 = e−4x is nonconstant, Theorem 3.1.6 implies that the general solution of (3.2.4) is

y = c1e
−x + c2e

−5x. (3.2.6)

(b) We must determine c1 and c2 in (3.2.6) so that y satisfies the initial conditions in
(3.2.5). Differentiating (3.2.6) yields

y ′ = −c1e
−x − 5c2e−5x. (3.2.7)

Imposing the initial conditions y(0) = 3 and y ′(0) = −1 in (3.2.6) and (3.2.7) yields

c1 + c2 = 3
−c1 − 5c2 = −1.

The solution of this system is c1 = 7/2, c2 = −1/2. Therefore the solution of (3.2.5) is

y =
7
2
e−x −

1
2
e−5x.

Figure 3.1 is a graph of this solution.
To summarize, if the characteristic equation has arbitrary distinct real roots r1 and r2,

then y1 = er1x and y2 = er2x are solutions of ay ′′+by ′+cy = 0. Since y2/y1 = e(r2−r1)x

is nonconstant, Theorem 3.1.6 implies that {y1,y2} is a fundamental set of solutions of
ay ′′ + by ′ + cy = 0.



108 Chapter 3 Linear Higher Order Equations

1 2 3 4 5

1

2

3

y = 7
2e

−x − 1
2e

−5x

x

y

Figure 3.1 y =
7
2
e−x −

1
2
e−5x

Case 2: A Repeated Real Root

Example 3.2.2

(a) Find the general solution of

y ′′ + 6y ′ + 9y = 0. (3.2.8)

(b) Solve the initial value problem

y ′′ + 6y ′ + 9y = 0, y(0) = 3, y ′(0) = −1. (3.2.9)

Solution (a) The characteristic polynomial p(r) of (3.2.8) is

r2 + 6r+ 9 = (r+ 3)2,

so the characteristic equation has the repeated real root r1 = −3. Therefore y1 = e−3x

is a solution of (3.2.8). Since the characteristic equation has no other roots, (3.2.8) has
no other solutions of the form erx. We look for solutions of the form y = uy1 = ue−3x,
where u is a function that we will now determine. (This should remind you of the
method of variation of parameters that was used to solve the nonhomogeneous equation
y ′ + p(x)y = f(x), given a solution y1 of the complementary equation y ′ + p(x)y = 0.)

If y = ue−3x, then

y ′ = u ′e−3x − 3ue−3x and y ′′ = u ′′e−3x − 6u ′e−3x + 9ue−3x,

so

y ′′ + 6y ′ + 9y = e−3x [(u ′′ − 6u ′ + 9u) + 6(u ′ − 3u) + 9u
]

= e−3x [u ′′ − (6− 6)u ′ + (9− 18+ 9)u
]

= u ′′e−3x.
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Therefore y = ue−3x is a solution of (3.2.8) if and only if u ′′ = 0, which is equivalent to
u = c1 + c2x, where c1 and c2 are constants. Therefore any function of the form

y = e−3x(c1 + c2x) (3.2.10)

is a solution of (3.2.8). Letting c1 = 1 and c2 = 0 yields the solution y1 = e−3x that we
already knew. Letting c1 = 0 and c2 = 1 yields the second solution y2 = xe−3x. Since
y2/y1 = x is nonconstant, Theorem 3.1.6 implies that {y1,y2} is a fundamental set of
solutions of (3.2.8), and (3.2.10) is the general solution.

(b) To solve the initial value problem, differentiate (3.2.10) to get

y ′ = −3e−3x(c1 + c2x) + c2e
−3x. (3.2.11)

Now impose the initial conditions y(0) = 3 and y ′(0) = −1 in (3.2.10) and (3.2.11) to
obtain c1 = 3 and −3c1 + c2 = −1. (So c2 = 8.) Therefore the solution of (3.2.9) is

y = e−3x(3+ 8x).

Figure 3.2 is a graph of this solution.

1 2 3

1

2

3

y = e−3x(3 + 8x)
x

y

Figure 3.2 y = e−3x(3+ 8x)
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In general, if the characteristic equation of ay ′′+by ′+cy = 0 has an arbitrary repeated
root r1, the characteristic polynomial must be

p(r) = a(r− r1)
2 = a(r2 − 2r1r+ r21).

Therefore
ar2 + br+ c = ar2 − (2ar1)r+ ar21,

which implies that b = −2ar1 and c = ar21. Therefore ay ′′ + by ′ + cy = 0 can be written
as a(y ′′ − 2r1y ′ + r21y) = 0. Since a 6= 0 this equation has the same solutions as

y ′′ − 2r1y ′ + r21y = 0. (3.2.12)

Since p(r1) = 0, y1 = er1x is a solution of ay ′′ + by ′ + cy = 0, and therefore of
(3.2.12). Proceeding as in Example 3.2.2, we look for other solutions of (3.2.12) of the
form y = uer1x; then

y ′ = u ′er1x + ruer1x and y ′′ = u ′′er1x + 2r1u ′er1x + r21ue
r1x,

so

y ′′ − 2r1y ′ + r21y = erx
[
(u ′′ + 2r1u ′ + r21u) − 2r1(u ′ + r1u) + r21u

]
= er1x

[
u ′′ + (2r1 − 2r1)u ′ + (r21 − 2r21 + r

2
1)u
]

= u ′′er1x.

Therefore y = uer1x is a solution of (3.2.12) if and only if u ′′ = 0, which is equivalent to
u = c1 + c2x, where c1 and c2 are constants. Hence, any function of the form

y = er1x(c1 + c2x) (3.2.13)

is a solution of (3.2.12). Letting c1 = 1 and c2 = 0 here yields the solution y1 = er1x that
we already knew. Letting c1 = 0 and c2 = 1 yields the second solution y2 = xer1x. Since
y2/y1 = x is nonconstant, 3.1.6 implies that {y1,y2} is a fundamental set of solutions of
(3.2.12), and (3.2.13) is the general solution.

Case 3: Complex Conjugate Roots

Example 3.2.3

(a) Find the general solution of

y ′′ + 4y ′ + 13y = 0. (3.2.14)

(b) Solve the initial value problem

y ′′ + 4y ′ + 13y = 0, y(0) = 2, y ′(0) = −3. (3.2.15)



Section 3.2 Constant Coefficient Homogeneous Equations 111

Solution (a) The characteristic polynomial p(r) of (3.2.14) is

r2 + 4r+ 13 = r2 + 4r+ 4+ 9 = (r+ 2)2 + 9.

By the square root property, the roots of the characteristic equation are r1 = −2 + 3i
and r2 = −2 − 3i. (Alternatively, the quadratic formula may be employed to find the
roots of the characteristic equation.) By analogy with Case 1, it is reasonable to expect
that e(−2+3i)x and e(−2−3i)x are solutions of (3.2.14). This is true. However there are
difficulties here, since you are probably not familiar with exponential functions involving
the imaginary unit i. Such functions are inconvenient to work with, so we will take a
simpler approach. Notice that

e(−2+3i)x = e−2xe3ix and e(−2−3i)x = e−2xe−3ix;

even though we have not defined e3ix and e−3ix, it is reasonable to expect that every
linear combination of e(−2+3i)x and e(−2−3i)x can be written as y = ue−2x, where u
depends upon x. To determine u, we note that if y = ue−2x then

y ′ = u ′e−2x − 2ue−2x and y ′′ = u ′′e−2x − 4u ′e−2x + 4ue−2x,

so

y ′′ + 4y ′ + 13y = e−2x [(u ′′ − 4u ′ + 4u) + 4(u ′ − 2u) + 13u
]

= e−2x [u ′′ − (4− 4)u ′ + (4− 8+ 13)u
]

= e−2x(u ′′ + 9u).

Therefore y = ue−2x is a solution of (3.2.14) if and only if

u ′′ + 9u = 0.

From Example 3.1.2, the general solution of this equation is

u = c1 cos 3x+ c2 sin 3x.

Therefore any function of the form

y = e−2x(c1 cos 3x+ c2 sin 3x) (3.2.16)

is a solution of (3.2.14). Letting c1 = 1 and c2 = 0 yields the solution y1 = e−2x cos 3x.
Letting c1 = 0 and c2 = 1 yields the second solution y2 = e−2x sin 3x. Since y2/y1 =
tan 3x is nonconstant, 3.1.6 implies that {y1,y2} is a fundamental set of solutions of
(3.2.14), and (3.2.16) is the general solution.

(b) Imposing the condition y(0) = 2 in (3.2.16) shows that c1 = 2. Differentiating
(3.2.16) yields

y ′ = −2e−2x(c1 cos 3x+ c2 sin 3x) + 3e−2x(−c1 sin 3x+ c2 cos 3x),
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1 2

1

2 y = e−2x(2 cos 3x+ 1
3 sin 3x)

x

y

Figure 3.3 y = e−2x(2 cos 3x+
1
3
sin 3x)

and imposing the initial condition y ′(0) = −3 here yields −3 = −2c1 + 3c2 = −4+ 3c2,
so c2 = 1/3. Therefore the solution of (3.2.15) is

y = e−2x(2 cos 3x+
1
3
sin 3x).

Figure 3.3 is a graph of this function.
To generalize the preceding example, suppose the characteristic equation of ay ′′ +

by ′ + cy = 0 is such that b2 − 4ac < 0 with roots

r1 = λ+ iω, r2 = λ− iω, (3.2.17)

where

λ = −
b

2a
and ω =

√
4ac− b2

2a
.

Do not memorize these formulas. Just remember that r1 and r2 are of the form (3.2.17),
where λ is an arbitrary real number andω is positive. Recall that r1 and r2 are complex
conjugates, which means that they have the same real part and their imaginary parts have
the same absolute values, but opposite signs. Here, λ andω are the real and imaginary
parts, respectively, of r1. Similarly, λ and −ω are the real and imaginary parts of r2.

As in Example 3.2.3, it is reasonable to expect that the solutions of ay ′′ + by ′ + cy = 0
are linear combinations of e(λ+iω)x and e(λ−iω)x. Again, the exponential notation
suggests that

e(λ+iω)x = eλxeiωx and e(λ−iω)x = eλxe−iωx,

so even though we have not defined eiωx and e−iωx, it is reasonable to expect that
every linear combination of e(λ+iω)x and e(λ−iω)x can be written as y = ueλx, where u
depends upon x. To determine u, we first observe that since r1 = λ+ iω and r2 = λ− iω
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are the roots of the characteristic equation, pmust be of the form

p(r) = a(r− r1)(r− r2)
= a(r− λ− iω)(r− λ+ iω)
= a

[
(r− λ)2 +ω2]

= a(r2 − 2λr+ λ2 +ω2).

Therefore ay ′′ + by ′ + cy = 0 can be written as

a
[
y ′′ − 2λy ′ + (λ2 +ω2)y

]
= 0.

Since a 6= 0 this equation has the same solutions as

y ′′ − 2λy ′ + (λ2 +ω2)y = 0. (3.2.18)

To determine u we note that if y = ueλx then

y ′ = u ′eλx + λueλx and y ′′ = u ′′eλx + 2λu ′eλx + λ2ueλx.

Substituting these expressions into (3.2.18) and factoring out eλx leaves

(u ′′ + 2λu ′ + λ2u) − 2λ(u ′ + λu) + (λ2 +ω2)u = 0,

which simplifies to
u ′′ +ω2u = 0.

From Example 3.1.2, the general solution of this equation is

u = c1 cosωx+ c2 sinωx.

Therefore any function of the form

y = eλx(c1 cosωx+ c2 sinωx) (3.2.19)

is a solution of (3.2.18). Letting c1 = 1 and c2 = 0 here yields the solution y1 = eλx cosωx.
Letting c1 = 0 and c2 = 1 yields a second solution y2 = eλx sinωx. Since y2/y1 = tanωx
is nonconstant, Theorem 3.1.6 implies that {y1,y2} is a fundamental set of solutions of
(3.2.18), and (3.2.19) is the general solution.
The next theorem compiles the results of the three examples just discussed.

Theorem 3.2.1 Let p(r) = ar2 + br+ c be the characteristic polynomial of

ay ′′ + by ′ + cy = 0. (3.2.20)

Then:
(a) If p(r) = 0 has distinct real roots r1 and r2, then the general solution of (3.2.20) is

y = c1e
r1x + c2e

r2x.



114 Chapter 3 Linear Higher Order Equations

(b) If p(r) = 0 has a repeated root r1, then the general solution of (3.2.20) is

y = er1x(c1 + c2x).

(c) If p(r) = 0 has complex conjugate roots r1 = λ + iω and r2 = λ − iω (where ω > 0),
then the general solution of (3.2.20) is

y = eλx(c1 cosωx+ c2 sinωx).

Equations of Order Three or Higher

If an, an−1, . . . , a0 are constants, then

any
(n) + an−1y

(n−1) + · · ·+ a0y = 0. (3.2.21)

can be classified as a constant coefficient, homogeneous, differential equation of order n.
Suppose we are able to solve the corresponding characteristic equation

anr
n + an−1r

n−1 + · · ·+ a1r+ a0 = 0 (3.2.22)

and find that there are n distinct, real roots r1, r2, . . . , rn. In this case, the general solution
of (3.2.21) is

y = c1e
r1x + c2e

r2x + · · ·+ cnernx,
as might be expected based on part (a) of Theorem 3.2.1.

Unfortunately, parts (b) and (c) of Theorem 3.2.1 are more difficult to generalize. While
it is true that the solutions of (3.2.21) are determined by the zeros of the characteristic
polynomial, there are many different combinations of roots that may occur. For example,
a polynomial equation of degree three with real coefficients could have three distinct real
roots; two distinct real roots, one of multiplicity one and the other of multiplicity two;
one real root of multiplicity three; or one real root and one pair of complex conjugate
roots. (Recall that complex conjugate roots of a polynomial equation correspond to the
presence of an irreducible quadratic factor in the polynomial and therefore always appear
in pairs.) Finally, while the quadratic formula can be used to solve any polynomial
equation of degree two, it may be difficult or impossible to find roots of a polynomial
equation of degree three or higher. The good news is that finding the general solution
of a higher order equation uses the same concept of linear combinations just discussed,
and the fundamental set of solutions used in the combinations are much as would be
expected.

The next theorem is analogous to Theorem 3.1.6. As with the definitions of a funda-
mental set of solutions and the general solution, the definitions of a linearly independent
set and the Wronskian extend to higher dimensions as expected.

Theorem 3.2.2 Suppose the homogeneous linear n-th order equation

Pn(x)y
(n) + Pn−1(x)y

(n−1) + · · ·+ P0(x)y = 0, (3.2.23)
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is such that all coefficients Pn, Pn−1, . . . , P0 are continuous on (a,b) and Pn has no zeros on
(a,b). Let y1, y2, . . . , yn be n solutions of (3.2.23) on (a,b). Then the following statements
are equivalent; that is, they are either all true or all false:
(a) The general solution of (3.2.23) on (a,b) is y = c1y1 + c2y2 + · · ·+ cnyn.
(b) {y1,y2, . . . ,yn} is a fundamental set of solutions of (3.2.23) on (a,b).

(c) {y1,y2, . . . ,yn} is linearly independent on (a,b).

(d) The Wronskian of {y1,y2, . . . ,yn} is nonzero at some point in (a,b).

(e) The Wronskian of {y1,y2, . . . ,yn} is nonzero at all points in (a,b).

Since we are currently interested in constant coefficient equations and constants are
continuous on (−∞,∞), the domain of the solution will be (a,b) = (−∞,∞). Therefore,
we choose to omit continued reference to the domain of the solution in this section.

Although we omit the proof of Theorem 3.2.2, we will demonstrate the use of the
Wronskian to verify the linear independence of the solutions in the following examples.

Example 3.2.4

(a) Find the general solution of

y ′′′ − 6y ′′ + 11y ′ − 6y = 0. (3.2.24)

(b) Solve the initial value problem

y ′′′ − 6y ′′ + 11y ′ − 6y = 0, y(0) = 4, y ′(0) = 5, y ′′(0) = 9. (3.2.25)

(Notice that the number of initial conditions must match the order of the differential
equation.)

Solution The characteristic polynomial p(r) of (3.2.24) is

r3 − 6r2 + 11r− 6 = (r− 1)(r− 2)(r− 3).

(By inspection, r = 1 is a root; then use polynomial division to find a quadratic equation
that is easily factored.) Therefore {ex, e2x, e3x} is a set of solutions of (3.2.24). To verify
that this is a fundamental set of solutions, we evaluate the WronskianW(x) to confirm
that it is nonzero. ∣∣∣∣∣∣

ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x

∣∣∣∣∣∣ = e6x
∣∣∣∣∣∣
1 1 1
1 2 3
1 4 9

∣∣∣∣∣∣
The value of the 3x3 determinant is 2, and 2e6x is never zero, so this is a fundamental set
of solutions. Therefore the general solution of (3.2.24) is

y = c1e
x + c2e

2x + c3e
3x. (3.2.26)
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(b) We must determine c1, c2 and c3 in (3.2.26) so that y satisfies the initial conditions
in (3.2.25). Differentiating (3.2.26) twice yields

y ′ = c1e
x + 2c2e2x + 3c3e3x

y ′′ = c1e
x + 4c2e2x + 9c3e3x.

(3.2.27)

Setting x = 0 in (3.2.26) and (3.2.27) and imposing the initial conditions yields

c1 + c2 + c3 = 4
c1 + 2c2 + 3c3 = 5
c1 + 4c2 + 9c3 = 9.

The solution of this system is c1 = 4, c2 = −1, c3 = 1. Therefore the solution of (3.2.25) is

y = 4ex − e2x + e3x

It is helpful to understand that there is no need to obtain a formula for the Wronskian.
Theorem 3.2.2 tells us that the Wronskian either has no zeros on (a,b) or is zero every-
where. This means we can simply evaluate the Wronskian at some convenient point in
(a,b). This is demonstrated in the next two examples.

Example 3.2.5 Find the general solution of

y(4) − 16y = 0. (3.2.28)

Solution The characteristic polynomial of (3.2.28) is p(r) = r4 − 16 which factors as

(r2 − 4)(r2 + 4) = (r− 2)(r+ 2)(r2 + 4).

Based on Theorem 3.2.1, it is reasonable to expect that {e2x, e−2x, cos 2x, sin 2x} is a
fundamental set of solutions of (3.2.28). The Wronskian of this set is

W(x) =

∣∣∣∣∣∣∣∣
e2x e−2x cos 2x sin 2x
2e2x −2e−2x −2 sin 2x 2 cos 2x
4e2x 4e−2x −4 cos 2x −4 sin 2x
8e2x −8e−2x 8 sin 2x −8 cos 2x

∣∣∣∣∣∣∣∣ .
Rather than finding a formula for the Wronskian, we test the convenient point x = 0:

W(0) =

∣∣∣∣∣∣∣∣
1 1 1 0
2 −2 0 2
4 4 −4 0
8 −8 0 −8

∣∣∣∣∣∣∣∣
Using technology, the value of the 4x4 determinant is found to be −512. Therefore,
{e2x, e−2x, cos 2x, sin 2x} is linearly independent, and

y1 = c1e
2x + c2e

−2x + c3 cos 2x+ c4 sin 2x

is the general solution of (3.2.28).
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Example 3.2.6 Find the general solution of

y ′′′ − y ′′ + y ′ − y = 0. (3.2.29)

Solution The characteristic polynomial p(r) of (3.2.29) is

r3 − r2 + r− 1 = (r− 1)(r2 + 1).

Based on Theorem 3.2.1, it is reasonable to expect that {ex, cos x, sin x} is a fundamental
set of solutions of (3.2.29). The Wronskian of this set is

W(x) =

∣∣∣∣∣∣
cos x sin x ex

− sin x cos x ex

− cos x − sin x ex

∣∣∣∣∣∣ .
For convenience, we evaluateW(0) to get∣∣∣∣∣∣

1 0 1
0 1 1

−1 0 1

∣∣∣∣∣∣ = 2,

which verifies that {cos x, sin x, ex} is linearly independent and therefore

y = c1 cos x+ c2 sin x+ c3ex

is the general solution of (3.2.29).
The concept of repeated roots can be extended to higher order equations as well. For

example, if (3.2.22) has a single real root r of multiplicitym, then

{erx, xerx, . . . , xm−1erx}

is a fundamental set of solutions and

y = c1e
rx + c2xe

rx + · · ·+ cmxm−1erx

is the general solution of (3.2.21).

Example 3.2.7 Find the general solution of

y ′′′ + 3y ′′ + 3y ′ + y = 0. (3.2.30)

Solution The characteristic polynomial p(r) of (3.2.30) is

r3 + 3r2 + 3r+ 1 = (r+ 1)3.

Therefore the general solution of (3.2.30) is

y = e−x(c1 + c2x+ c3x
2).
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(We leave it to you to verify linear independence by inspection of the Wronskian.)

3.2 Exercises

In Exercises 1–18 find the general solution.

1. y ′′ + 5y ′ − 6y = 0 2. y ′′ − 4y ′ + 5y = 0

3. y ′′ + 8y ′ + 7y = 0 4. y ′′ − 4y ′ + 4y = 0

5. y ′′ + 2y ′ + 10y = 0 6. y ′′ + 6y ′ + 10y = 0

7. y ′′ − 8y ′ + 16y = 0 8. y ′′ + y ′ = 0

9. y ′′ − 2y ′ + 3y = 0 10. y ′′ + 6y ′ + 13y = 0

11. 4y ′′ + 4y ′ + 10y = 0 12. 10y ′′ − 3y ′ − y = 0

13. y ′′′ − 3y ′′ + 3y ′ − y = 0
14. y(4) + 8y ′′ − 9y = 0

15. y ′′′ − y ′′ + 16y ′ − 16y = 0 16. 2y ′′′ + 3y ′′ − 2y ′ − 3y = 0

17. y(4) − 16y = 0 18. y(4) + 12y ′′ + 36y = 0

In Exercises 19–28 solve the initial value problem.

19. y ′′ + 14y ′ + 50y = 0, y(0) = 2, y ′(0) = −17

20. 6y ′′ − y ′ − y = 0, y(0) = 10, y ′(0) = 0

21. 6y ′′ + y ′ − y = 0, y(0) = −1, y ′(0) = 3

22. 4y ′′ − 4y ′ − 3y = 0, y(0) =
13
12

, y ′(0) =
23
24

23. 4y ′′ − 12y ′ + 9y = 0, y(0) = 3, y ′(0) =
5
2

24. y ′′′ − 2y ′′ + 4y ′ − 8y = 0, y(0) = 2, y ′(0) = −2, y ′′(0) = 0

25. y ′′′ + 3y ′′ − y ′ − 3y = 0, y(0) = 0, y ′(0) = 14, y ′′(0) = −40

26. 8y ′′′ − 4y ′′ − 2y ′ + y = 0, y(0) = 4, y ′(0) = −3, y ′′(0) = −1

27. y(4) − 16y = 0, y(0) = 2, y ′(0) = 2, y ′′(0) = −2, y ′′′(0) = 0

28. 4y(4) − 13y ′′ + 9y = 0, y(0) = 1, y ′(0) = 3, y ′′(0) = 1, y ′′′(0) = 3

In Exercises 29–34 solve the initial value problem and graph the solution.
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29. y ′′ + 7y ′ + 12y = 0, y(0) = −1, y ′(0) = 0

30. y ′′ − 6y ′ + 9y = 0, y(0) = 0, y ′(0) = 2

31. 36y ′′ − 12y ′ + y = 0, y(0) = 3, y ′(0) =
5
2

32. y ′′ + 4y ′ + 10y = 0, y(0) = 3, y ′(0) = −2

33. y ′′′ − y ′′ − y ′ + y = 0, y(0) = −2, y ′(0) = 9, y ′′(0) = 4

34. 3y ′′′ − y ′′ − 7y ′ + 5y = 0, y(0) =
14
5
, y ′(0) = 0, y ′′(0) = 10

In Exercises 35–36 solve the boundary value problem.

35. y ′′ − 10y ′ + 25y = 0, y(0) = 1, y(1) = 0

36. y ′′ + y = 0, y ′(0) = 0, y ′(π/2) = 0

3.3 NONHOMOGENEOUS LINEAR EQUATIONS

We will now consider the nonhomogeneous linear second order equation

y ′′ + p(x)y ′ + q(x)y = f(x), (3.3.1)

where the function f is not identically zero. The next theorem, an extension of Theo-
rem 3.1.1, gives sufficient conditions for existence and uniqueness of solutions of initial
value problems for (3.3.1). We omit the proof, which is beyond the scope of this book.

Theorem 3.3.1 Suppose p, ,q and f are continuous on an open interval (a,b), let x0 be any
point in (a,b), and let k0 and k1 be arbitrary real numbers. Then the initial value problem

y ′′ + p(x)y ′ + q(x)y = f(x), y(x0) = k0, y ′(x0) = k1

has a unique solution on (a,b).

To find the general solution of (3.3.1) on an interval (a,b) where p, q, and f are
continuous, it is necessary to find the general solution of the associated homogeneous
equation

y ′′ + p(x)y ′ + q(x)y = 0 (3.3.2)

on (a,b). We call (3.3.2) the complementary equation for (3.3.1).
The next theorem shows how to find the general solution of (3.3.1) if we know one

solution yp of (3.3.1) and a fundamental set of solutions of (3.3.2). We call yp a particular
solution of (3.3.1). The particular solution may be found by observation, by guessing
(then checking), or by some other means. In this section, we will limit ourselves to
applications of Theorem 3.3.2 where we can guess at the form of the particular solution.
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Theorem 3.3.2 Suppose p, q, and f are continuous on (a,b). Let yp be a particular solution of

y ′′ + p(x)y ′ + q(x)y = f(x) (3.3.3)

on (a,b), and let {y1,y2} be a fundamental set of solutions of the complementary equation

y ′′ + p(x)y ′ + q(x)y = 0 (3.3.4)

on (a,b). Then y is a solution of (3.3.3) on (a,b) if and only if

y = yp + c1y1 + c2y2, (3.3.5)

where c1 and c2 are constants.

Proof We first show that y in (3.3.5) is a solution of (3.3.3) for any choice of the constants
c1 and c2. Differentiating (3.3.5) twice yields

y ′ = y ′p + c1y
′
1 + c2y

′
2 and y ′′ = y ′′p + c1y

′′
1 + c2y

′′
2 ,

so

y ′′ + p(x)y ′ + q(x)y = (y ′′p + c1y
′′
1 + c2y

′′
2 ) + p(x)(y

′
p + c1y

′
1 + c2y

′
2)

+q(x)(yp + c1y1 + c2y2)

= (y ′′p + p(x)y ′p + q(x)yp) + c1(y
′′
1 + p(x)y ′1 + q(x)y1)

+c2(y
′′
2 + p(x)y ′2 + q(x)y2)

= f+ c1 · 0+ c2 · 0
= f,

since yp satisfies (3.3.3) and y1 and y2 satisfy (3.3.4).
Now we will show that every solution of (3.3.3) has the form (3.3.5) for some choice of

the constants c1 and c2. Suppose y is a solution of (3.3.3). We will show that y− yp is a
solution of (3.3.4), and therefore of the form y− yp = c1y1 + c2y2, which implies (3.3.5).
To see this, we compute

(y− yp)
′′ + p(x)(y− yp)

′ + q(x)(y− yp) = (y ′′ − y ′′p) + p(x)(y
′ − y ′p)

+q(x)(y− yp)

= (y ′′ + p(x)y ′ + q(x)y)

−(y ′′p + p(x)y ′p + q(x)yp)

= f(x) − f(x)

= 0,

since y and yp both satisfy (3.3.3).
We say that (3.3.5) is the general solution of (3.3.3) on (a,b).
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If P2, P1, and F are continuous and P2 has no zeros on (a,b), then Theorem 3.3.2
implies that the general solution of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F(x) (3.3.6)

on (a,b) is y = yp + c1y1 + c2y2, where yp is a particular solution of (3.3.6) on (a,b)
and {y1,y2} is a fundamental set of solutions of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0

on (a,b). To see this, we rewrite (3.3.6) as

y ′′ +
P1(x)

P2(x)
y ′ +

P0(x)

P2(x)
y =

F(x)

P2(x)

and apply Theorem 3.3.2 with p = P1/P2, q = P0/P2, and f = F/P2.
To avoid awkward wording in examples and exercises, we will not specify the interval

(a,b) when we ask for the general solution of a specific linear second order equation, or
for a fundamental set of solutions of a homogeneous linear second order equation. Let us
agree that this always means that we want the general solution (or a fundamental set of
solutions, as the case may be) on every open interval on which p, q, and f are continuous
if the equation is of the form (3.3.3), or on which P2, P1, P0, and F are continuous and P2
has no zeros, if the equation is of the form (3.3.6). We leave it to you to identify these
intervals in specific examples and exercises.

For completeness, we point out that if P2, P1, P0, and F are all continuous on an open
interval (a,b), but P2 does have a zero in (a,b), then (3.3.6) may fail to have a general
solution on (a,b) in the sense just defined.

Example 3.3.1

(a) Find the general solution of
y ′′ + y = 1. (3.3.7)

(b) Solve the initial value problem

y ′′ + y = 1, y(0) = 2, y ′(0) = 7. (3.3.8)

Solution (a) We can apply Theorem 3.3.2 with (a,b) = (−∞,∞), since the functions
p ≡ 0, q ≡ 1, and f ≡ 1 in (??) are continuous on (−∞,∞). By inspection we see that
yp ≡ 1 is a particular solution of (??). Since y1 = cos x and y2 = sin x form a fundamental
set of solutions of the complementary equation y ′′ + y = 0, the general solution of (??) is

y = 1+ c1 cos x+ c2 sin x. (3.3.9)

(b) Imposing the initial condition y(0) = 2 in (3.3.9) yields 2 = 1 + c1, so c1 = 1.
Differentiating (3.3.9) yields

y ′ = −c1 sin x+ c2 cos x.
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Imposing the initial condition y ′(0) = 7 here yields c2 = 7, so the solution of (??) is

y = 1+ cos x+ 7 sin x.

Figure 3.1 is a graph of this function.

1 3 5

−8

−4

4

8

y = 1 + cos x + 7 sin x

x

y

Figure 3.1 y = 1+ cos x+ 7 sin x

Example 3.3.2

(a) Find the general solution of

y ′′ − 2y ′ + y = −3− x+ x2. (3.3.10)

(b) Solve the initial value problem

y ′′ − 2y ′ + y = −3− x+ x2, y(0) = −2, y ′(0) = 1. (3.3.11)

Solution (a) The characteristic polynomial of the complementary equation

y ′′ − 2y ′ + y = 0

is r2 − 2r+ 1 = (r− 1)2, so y1 = ex and y2 = xex form a fundamental set of solutions of
the complementary equation. To guess a form for a particular solution of (3.3.10), we
note that substituting a second degree polynomial yp = A+ Bx+ Cx2 into the left side
of (3.3.10) will produce another second degree polynomial with coefficients that depend
upon A, B, and C. The trick is to choose A, B, and C so the polynomials on the two sides
of (3.3.10) have the same coefficients; thus, if

yp = A+ Bx+ Cx2 then y ′p = B+ 2Cx and y ′′p = 2C,
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so

y ′′p − 2y ′p + yp = 2C− 2(B+ 2Cx) + (A+ Bx+ Cx2)

= (2C− 2B+A) + (−4C+ B)x+ Cx2

= −3− x+ x2.

Equating coefficients of like powers of x on the two sides of the last equality yields

C = 1
B− 4C = −1

A− 2B+ 2C = −3,

so C = 1, B = −1+ 4C, and A = −3− 2C+ 2B. Substitution then shows that B = 3 and
A = 1. Therefore yp = 1+ 3x+ x2 is a particular solution of (3.3.10) and Theorem 3.3.2
implies that

y = 1+ 3x+ x2 + ex(c1 + c2x) (3.3.12)

is the general solution of (3.3.10).
(b) Imposing the initial condition y(0) = −2 in (3.3.12) yields −2 = 1+ c1, so c1 = −3.

Differentiating (3.3.12) yields

y ′ = 3+ 2x+ ex(c1 + c2x) + c2ex,

and imposing the initial condition y ′(0) = 1 yields 1 = 3+ c1 + c2, so c2 = 1. Therefore
the solution of (3.3.11) is

y = 1+ 3x+ x2 − ex(3− x).

Figure 3.2 is a graph of this solution.

1 2

2

6
y = 1 + 3x + x2 − ex(3 − x)

x

y

Figure 3.2 y = 1+ 3x+ x2 − ex(3− x)
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Example 3.3.3 Find the general solution of

x2y ′′ + xy ′ − 4y = 2x4 (3.3.13)

on (−∞, 0) and (0,∞).

Solution In Example 3.1.3, we verified that y1 = x2 and y2 = 1/x2 form a fundamental
set of solutions of the complementary equation

x2y ′′ + xy ′ − 4y = 0

on (−∞, 0) and (0,∞). To find a particular solution of (3.3.13), we note that if yp = Ax4,
where A is a constant, then both sides of (3.3.13) will be constant multiples of x4 and we
may be able to choose A so the two sides are equal. This is true in this example, since if
yp = Ax4 then substituting derivatives gives

x2y ′′p + xy ′p − 4yp = x2(12Ax2) + x(4Ax3) − 4Ax4.

Algebraic simplification of (3.3.13) then yields 12Ax4 = 2x4, so we can choose A = 1/6
to make the equation true. Therefore, yp = x4/6 is a particular solution of (3.3.13) on
(−∞,∞). Theorem 3.3.2 implies that the general solution of (3.3.13) on (−∞, 0) and
(0,∞) is

y =
x4

6
+ c1x

2 +
c2

x2 .

The Principle of Superposition

The next theorem enables us to break a nonhomogeous equation into simpler parts, find
a particular solution for each part, and then combine their solutions to obtain a particular
solution of the original problem.

Theorem 3.3.3 [The Principle of Superposition] Suppose yp1 is a particular solution of

y ′′ + p(x)y ′ + q(x)y = f1(x)

on (a,b) and yp2 is a particular solution of

y ′′ + p(x)y ′ + q(x)y = f2(x)

on (a,b). Then
yp = yp1 + yp2

is a particular solution of

y ′′ + p(x)y ′ + q(x)y = f1(x) + f2(x)

on (a,b).



Section 3.3 Nonhomogeneous Linear Equations 125

Proof If yp = yp1 + yp2 then

y ′′p + p(x)y ′p + q(x)yp = (yp1 + yp2)
′′ + p(x)(yp1 + yp2)

′ + q(x)(yp1 + yp2)

=
(
y ′′p1

+ p(x)y ′p1
+ q(x)yp1

)
+
(
y ′′p2

+ p(x)y ′p2
+ q(x)yp2

)
= f1(x) + f2(x).

It is easy to generalize Theorem 3.3.3 to the equation

y ′′ + p(x)y ′ + q(x)y = f(x) (3.3.14)

where
f = f1 + f2 + · · ·+ fk;

thus, if ypi is a particular solution of

y ′′ + p(x)y ′ + q(x)y = fi(x)

on (a,b) for i = 1, 2, . . . , k, then yp1 + yp2 + · · ·+ ypk is a particular solution of (3.3.14)
on (a,b). Moreover, by a proof similar to the proof of Theorem 3.3.3 we can formulate
the principle of superposition in terms of a linear equation written in the form

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F(x);

that is, if yp1 is a particular solution of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F1(x)

on (a,b) and yp2 is a particular solution of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F2(x)

on (a,b), then yp1 + yp2 is a solution of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F1(x) + F2(x)

on (a,b).

Example 3.3.4 The function yp1 = x4/15 is a particular solution of

x2y ′′ + 4xy ′ + 2y = 2x4 (3.3.15)

on (−∞,∞) and yp2 = x2/3 is a particular solution of

x2y ′′ + 4xy ′ + 2y = 4x2 (3.3.16)

on (−∞,∞). Use the principle of superposition to find a particular solution of

x2y ′′ + 4xy ′ + 2y = 2x4 + 4x2 (3.3.17)

on (−∞,∞).
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Solution The right side F(x) = 2x4 + 4x2 in (3.3.17) is the sum of the right sides

F1(x) = 2x4 and F2(x) = 4x2.

in (3.3.15) and (3.3.16). Therefore the principle of superposition implies that

yp = yp1 + yp2 =
x4

15
+
x2

3
is a particular solution of (3.3.17).

3.3 Exercises

In Exercises 1–6 find a particular solution by the method used in Example 3.3.2. Then
find the general solution and, where indicated, solve the initial value problem and graph
the solution.

1. y ′′ + 5y ′ − 6y = 22+ 18x− 18x2

2. y ′′ − 4y ′ + 5y = 1+ 5x

3. y ′′ + 8y ′ + 7y = −8− x+ 24x2 + 7x3

4. y ′′ − 4y ′ + 4y = 2+ 8x− 4x2

5. y ′′ + 2y ′ + 10y = 4+ 26x+ 6x2 + 10x3, y(0) = 2, y ′(0) = 9

6. y ′′ + 6y ′ + 10y = 22+ 20x, y(0) = 2, y ′(0) = −2

7. Show that the method used in Example 3.3.2 will not yield a particular solution of

y ′′ + y ′ = 1+ 2x+ x2; (A)

that is, (A) does not have a particular solution of the form yp = A + Bx + Cx2,
where A, B, and C are constants.

In Exercises 8–13 find a particular solution by the method used in Example 3.3.3.

8. x2y ′′ + 7xy ′ + 8y =
6
x

9. x2y ′′ − 7xy ′ + 7y = 13x1/2

10. x2y ′′ − xy ′ + y = 2x3
11. x2y ′′ + 5xy ′ + 4y =

1
x3

12. x2y ′′ + xy ′ + y = 10x1/3 13. x2y ′′ − 3xy ′ + 13y = 2x4

14. Show that the method suggested for finding a particular solution in Exercises 8-13
will not yield a particular solution of

x2y ′′ + 3xy ′ − 3y =
1
x3 ; (A)

that is, (A) does not have a particular solution of the form yp = A/x3.
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15. Prove: If a, b, c, α, andM are constants andM 6= 0 then

ax2y ′′ + bxy ′ + cy =Mxα

has a particular solution yp = Axα (A = constant) if and only if aα(α−1)+bα+c 6=
0.

If a, b, c, and α are constants, then

a(eαx) ′′ + b(eαx) ′ + ceαx = (aα2 + bα+ c)eαx.

Use this in Exercises 16–21 to find a particular solution . Then find the general solution and,
where indicated, solve the initial value problem and graph the solution.

16. y ′′ + 5y ′ − 6y = 6e3x 17. y ′′ − 4y ′ + 5y = e2x

18. y ′′ + 8y ′ + 7y = 10e−2x, y(0) = −2, y ′(0) = 10

19. y ′′ − 4y ′ + 4y = ex, y(0) = 2, y ′(0) = 0

20. y ′′ + 2y ′ + 10y = ex/2 21. y ′′ + 6y ′ + 10y = e−3x

22. Show that the method suggested for finding a particular solution in Exercises 16-21
will not yield a particular solution of

y ′′ − 7y ′ + 12y = 5e4x; (A)

that is, (A) does not have a particular solution of the form yp = Ae4x.

23. Prove: If α andM are constants andM 6= 0 then constant coefficient equation

ay ′′ + by ′ + cy =Meαx

has a particular solution yp = Aeαx (A = constant) if and only if eαx isn’t a
solution of the complementary equation.

If ω is a constant, differentiating a linear combination of cosωx and sinωx with respect to x
yields another linear combination of cosωx and sinωx. In Exercises 24–29 use this to find a
particular solution of the equation. Then find the general solution and, where indicated, solve the
initial value problem and graph the solution.

24. y ′′ − 8y ′ + 16y = 23 cos x− 7 sin x

25. y ′′ + y ′ = −8 cos 2x+ 6 sin 2x

26. y ′′ − 2y ′ + 3y = −6 cos 3x+ 6 sin 3x

27. y ′′ + 6y ′ + 13y = 18 cos x+ 6 sin x

28. y ′′ + 7y ′ + 12y = −2 cos 2x+ 36 sin 2x, y(0) = −3, y ′(0) = 3
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29. y ′′ − 6y ′ + 9y = 18 cos 3x+ 18 sin 3x, y(0) = 2, y ′(0) = 2

30. Find the general solution of

y ′′ +ω2
0y =M cosωx+N sinωx,

whereM and N are constants andω andω0 are distinct positive numbers.

31. Show that the method suggested for finding a particular solution in Exercises ??-??
will not yield a particular solution of

y ′′ + y = cos x+ sin x; (A)

that is, (A) does not have a particular solution of the form yp = A cos x+ B sin x.

32. Prove: If M, N are constants (not both zero) and ω > 0, the constant coefficient
equation

ay ′′ + by ′ + cy =M cosωx+N sinωx (A)

has a particular solution that is a linear combination of cosωx and sinωx if and
only if the left side of (A) is not of the form a(y ′′+ω2y), so that cosωx and sinωx
are solutions of the complementary equation.

In Exercises 33–38 refer to the cited exercises and use the principal of superposition to find a
particular solution. Then find the general solution.

33. y ′′ + 5y ′ − 6y = 22+ 18x− 18x2 + 6e3x (See Exercises 1 and 16.)

34. y ′′ − 4y ′ + 5y = 1+ 5x+ e2x (See Exercises 2 and 17.)

35. y ′′ + 8y ′ + 7y = −8− x+ 24x2 + 7x3 + 10e−2x (See Exercises 3 and 18.)

36. y ′′ − 4y ′ + 4y = 2+ 8x− 4x2 + ex (See Exercises 4 and 19.)

37. y ′′ + 2y ′ + 10y = 4+ 26x+ 6x2 + 10x3 + ex/2 (See Exercises 5 and 20.)

38. y ′′ + 6y ′ + 10y = 22+ 20x+ e−3x (See Exercises 6 and 21.)

3.4 THE METHOD OF UNDETERMINED COEFFICIENTS I

In this section we consider the constant coefficient equation

ay ′′ + by ′ + cy = eαxG(x), (3.4.1)

where α is a constant and G is a polynomial.
From Theorem 3.3.2, the general solution of (3.4.1) is y = yp + c1y1 + c2y2, where

yp is a particular solution of (3.4.1) and {y1,y2} is a fundamental set of solutions of the
complementary equation

ay ′′ + by ′ + cy = 0.

In Section 3.2 we showed how to find {y1,y2}. In this section we will show how to find
yp. The procedure that we will use is called the method of undetermined coefficients.

Our first example is similar to Exercises 16–21 from Section 3.3.
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Example 3.4.1 Find a particular solution of

y ′′ − 7y ′ + 12y = 4e2x. (3.4.2)

Then find the general solution.

Solution Substituting yp = Ae2x for y in (3.4.2) will produce a constant multiple of
Ae2x on the left side of (3.4.2), so it may be possible to choose A so that yp is a solution
of (3.4.2). To try this, let yp = Ae2x so that

y ′′p − 7y ′p + 12yp = 4Ae2x − 14Ae2x + 12Ae2x.

Algebraic simplification of (3.4.2) then yields 2Ae2x = 4e2x, so we can choose A = 2 to
make the equation true. Therefore yp = 2e2x is a particular solution of (3.4.2). To find the
general solution, we note that the characteristic polynomial p(r) of the complementary
equation

y ′′ − 7y ′ + 12y = 0 (3.4.3)

is r2 − 7r + 12 = (r − 3)(r − 4), so {e3x, e4x} is a fundamental set of solutions of (3.4.3).
Therefore the general solution of (3.4.2) is

y = 2e2x + c1e3x + c2e4x.

Example 3.4.2 Find a particular solution of

y ′′ − 7y ′ + 12y = 5e4x. (3.4.4)

Then find the general solution.

Solution Fresh from our success in finding a particular solution of (3.4.2) — where we
chose yp = Ae2x because the right side of (3.4.2) is a constant multiple of e2x — it may
seem reasonable to try yp = Ae4x as a particular solution of (3.4.4). However, this will
not work, since we saw in Example 3.4.1 that e4x is a solution of the complementary
equation (3.4.3), so substituting yp = Ae4x into the left side of (3.4.4) produces zero on
the left, no matter how we choose A. To discover a suitable form for yp, we use the same
approach that we used in Section 3.2 to find a second solution of

ay ′′ + by ′ + cy = 0

in the case where the characteristic equation has a repeated real root: we look for
solutions of (3.4.4) in the form y = ue4x, where u is a function to be determined.
Substituting

y = ue4x, y ′ = u ′e4x + 4ue4x, and y ′′ = u ′′e4x + 8u ′e4x + 16ue4x (3.4.5)
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into (3.4.4) and then multiplying by the reciprocal of the common factor e4x yields

(u ′′ + 8u ′ + 16u) − 7(u ′ + 4u) + 12u = 5,

which reduces to
u ′′ + u ′ = 5.

By inspection we see that up = 5x is a particular solution of this equation, so yp = 5xe4x

is a particular solution of (3.4.4). Therefore

y = 5xe4x + c1e3x + c2e4x

is the general solution.

Example 3.4.3 Find a particular solution of

y ′′ − 8y ′ + 16y = 2e4x. (3.4.6)

Solution Since the characteristic polynomial p(r) of the complementary equation

y ′′ − 8y ′ + 16y = 0 (3.4.7)

is r2 − 8r+ 16 = (r− 4)2, both y1 = e4x and y2 = xe4x are solutions of (3.4.7). Therefore
(3.4.6) cannot have a particular solution of the form yp = Ae4x or yp = Axe4x. As in
Example 3.4.2, we look for solutions of (3.4.6) in the form y = ue4x, where u is a function
to be determined. Substituting from (3.4.5) into (3.4.6) and then multiplying by the
reciprocal of the common factor e4x yields

(u ′′ + 8u ′ + 16u) − 8(u ′ + 4u) + 16u = 2,

which reduces to
u ′′ = 2.

Integrating twice and taking the constants of integration to be zero shows that up = x2

is a particular solution of this equation, so yp = x2e4x is a particular solution of (3.4.4).
Therefore

y = e4x(x2 + c1 + c2x)

is the general solution.
The preceding examples illustrate the following facts concerning the form of a particu-

lar solution yp of a constant coefficent equation

ay ′′ + by ′ + cy = keαx,

where k is a nonzero constant:
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(a) If eαx is not a solution of the complementary equation

ay ′′ + by ′ + cy = 0, (3.4.8)

then yp = Aeαx, where A is a constant. (See Example 3.4.1).

(b) If eαx is a solution of (3.4.8) but xeαx is not, then yp = Axeαx, whereA is a constant.
(See Example 3.4.2.)

(c) If both eαx and xeαx are solutions of (3.4.8), then yp = Ax2eαx, where A is a
constant. (See Example 3.4.3.)

In all three cases you can just substitute the appropriate form for yp and its derivatives
directly into

ay ′′p + by ′p + cyp = keαx,

and solve for the constant A, as we did in Example 3.4.1. However, if the equation is

ay ′′ + by ′ + cy = keαxG(x),

where G is a polynomial of degree greater than zero, we recommend that you use the
substitution y = ueαx as we did in Examples 3.4.2 and 3.4.3. The equation for u will
turn out to be

au ′′ + p ′(α)u ′ + p(α)u = G(x), (3.4.9)

where p(r) = ar2+br+c is the characteristic polynomial of the complementary equation
and p ′(r) = 2ar+ b; however, you should not memorize this since it is easy to derive
the equation for u in any particular case. Note, however, that if eαx is a solution of the
complementary equation then p(α) = 0, so (3.4.9) reduces to

au ′′ + p ′(α)u ′ = G(x),

while if both eαx and xeαx are solutions of the complementary equation then p(r) =
a(r − α)2 and p ′(r) = 2a(r − α), so both p(α) and p ′(α) are zero in which case (3.4.9)
reduces to

au ′′ = G(x).

Example 3.4.4 Find a particular solution of

y ′′ − 3y ′ + 2y = e3x(−1+ 2x+ x2). (3.4.10)

Solution Substituting

y = ue3x, y ′ = u ′e3x + 3ue3x, and y ′′ = u ′′e3x + 6u ′e3x + 9ue3x

into (3.4.10) and then multiplying by the reciprocal of the common factor e3x yields

(u ′′ + 6u ′ + 9u) − 3(u ′ + 3u) + 2u = −1+ 2x+ x2,
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which reduces to
u ′′ + 3u ′ + 2u = −1+ 2x+ x2. (3.4.11)

As in Example 2, in order to guess a form for a particular solution of (3.4.11), we note
that substituting a second degree polynomial up = A+ Bx+Cx2 for u in the left side of
(3.4.11) produces another second degree polynomial with coefficients that depend upon
A, B, and C; thus,

if up = A+ Bx+ Cx2 then u ′p = B+ 2Cx and u ′′p = 2C.

If up is to satisfy (3.4.11), we must have

u ′′p + 3u ′p + 2up = 2C+ 3(B+ 2Cx) + 2(A+ Bx+ Cx2)

= (2C+ 3B+ 2A) + (6C+ 2B)x+ 2Cx2

= −1+ 2x+ x2.

Equating coefficients of like powers of x on the two sides of the last equality yields

2C = 1
2B+ 6C = 2

2A+ 3B+ 2C = −1.

Solving these equations for C, B, and A (in that order) yields C = 1/2,B = −1/2, and
A = −1/4. Therefore

up = −
1
4
(1+ 2x− 2x2)

is a particular solution of (3.4.11), and

yp = upe
3x = −

e3x

4
(1+ 2x− 2x2)

is a particular solution of (3.4.10).

Example 3.4.5 Find a particular solution of

y ′′ − 4y ′ + 3y = e3x(6+ 8x+ 12x2). (3.4.12)

Solution Substituting

y = ue3x, y ′ = u ′e3x + 3ue3x, and y ′′ = u ′′e3x + 6u ′e3x + 9ue3x

into (3.4.12) and then multiplying by the reciprocal of the common factor e3x yields

(u ′′ + 6u ′ + 9u) − 4(u ′ + 3u) + 3u = 6+ 8x+ 12x2,

which reduces to
u ′′ + 2u ′ = 6+ 8x+ 12x2. (3.4.13)
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There is no u term in this equation, since e3x is a solution of the complementary equation
for (3.4.12). Therefore (3.4.13) cannot have a particular solution of the form up =
A+ Bx+ Cx2 that we used successfully in Example 3.4.4, since with this choice of up,

u ′′p + 2u ′p = 2C+ (B+ 2Cx)

cannot contain the last term (12x2) on the right side of (3.4.13). Instead, let us try
up = Ax+ Bx2 + Cx3 on the grounds that

u ′p = A+ 2Bx+ 3Cx2 and u ′′p = 2B+ 6Cx

together contain all the powers of x that appear on the right side of (3.4.13).
Substituting these expressions in place of u ′ and u ′′ in the left side of (3.4.13) yields

(2B+ 6Cx) + 2(A+ 2Bx+ 3Cx2) = (2B+ 2A) + (6C+ 4B)x+ 6Cx2.

Comparing coefficients of like powers of x on the two sides of (3.4.13) shows that up is a
particular solution if

6C = 12
4B+ 6C = 8

2A+ 2B = 6.

Solving these equations successively yields C = 2, B = −1, and A = 4. Therefore

up = x(4− x+ 2x2)

is a particular solution of (3.4.13), and

yp = upe
3x = xe3x(4− x+ 2x2)

is a particular solution of (3.4.12).

Example 3.4.6 Find a particular solution of

4y ′′ + 4y ′ + y = e−x/2(−8+ 48x+ 144x2). (3.4.14)

Solution Substituting

y = ue−x/2, y ′ = u ′e−x/2 −
1
2
ue−x/2, and y ′′ = u ′′e−x/2 − u ′e−x/2 +

1
4
ue−x/2

into (3.4.14) and then multiplying by the reciprocal of the common factor e−x/2 yields

4
(
u ′′ − u ′ +

u

4

)
+ 4

(
u ′ −

u

2

)
+ u = −8+ 48x+ 144x2,

which reduces to
u ′′ = −2+ 12x+ 36x2, (3.4.15)
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which does not contain u or u ′ because e−x/2 and xe−x/2 are both solutions of the
complementary equation. To obtain a particular solution of (3.4.15) we integrate twice,
taking the constant of integration to be zero each time; thus,

u ′p = −2x+ 6x2 + 12x3 and up = −x2 + 2x3 + 3x4.

Therefore, yp is
upe

−x/2 = x2e−x/2(−1+ 2x+ 3x2)

and is a particular solution of (3.4.14).

Summary

The preceding examples illustrate the following facts concerning particular solutions of
a constant coefficent equation of the form

ay ′′ + by ′ + cy = eαxG(x),

where G is a polynomial:
(a) If eαx is not a solution of the complementary equation

ay ′′ + by ′ + cy = 0, (3.4.16)

then yp = eαxQ(x), where Q is a polynomial of the same degree as G. (See
Example 3.4.4).

(b) If eαx is a solution of (3.4.16) but xeαx is not, then yp = xeαxQ(x), where Q is a
polynomial of the same degree as G. (See Example 3.4.5.)

(c) If both eαx and xeαx are solutions of (3.4.16), then yp = x2eαxQ(x), where Q is a
polynomial of the same degree as G. (See Example 3.4.6.)

In all three cases, you can just substitute the appropriate form for yp and its derivatives
directly into

ay ′′p + by ′p + cyp = eαxG(x),

and solve for the coefficients of the polynomial Q. However, if you try this you will see
that the computations are more tedious than those that you encounter by making the
substitution y = ueαx and finding a particular solution of the resulting equation for u.
In Case (a) the equation for u will be of the form

au ′′ + p ′(α)u ′ + p(α)u = G(x),

with a particular solution of the form up = Q(x), a polynomial of the same degree as G,
whose coefficients can be found by the method used in Example 3.4.4. In Case (b) the
equation for u will be of the form

au ′′ + p ′(α)u ′ = G(x)
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(no u term on the left), with a particular solution of the form up = xQ(x), where Q is a
polynomial of the same degree as G whose coefficents can be found by the method used
in Example 3.4.5. In Case (c) the equation for u will be of the form

au ′′ = G(x)

with a particular solution of the form up = x2Q(x) that can be obtained by integrating
G(x)/a twice and taking the constants of integration to be zero, as in Example 3.4.6.

Using the Principle of Superposition

The next example shows how to combine the method of undetermined coefficients and
Theorem 3.3.3, the principle of superposition.

Example 3.4.7 Find a particular solution of

y ′′ − 7y ′ + 12y = 4e2x + 5e4x. (3.4.17)

Solution In Example 3.4.1 we found that yp1 = 2e2x is a particular solution of

y ′′ − 7y ′ + 12y = 4e2x,

and in Example 3.4.2 we found that yp2 = 5xe4x is a particular solution of

y ′′ − 7y ′ + 12y = 5e4x.

Therefore the principle of superposition implies that yp = 2e2x + 5xe4x is a particular
solution of (3.4.17).

3.4 Exercises

In Exercises 1–14 find a particular solution.

1. y ′′ − 3y ′ + 2y = e3x(1+ x) 2. y ′′ − 6y ′ + 5y = e−3x(35− 8x)

3. y ′′ − 2y ′ − 3y = ex(−8+ 3x) 4. y ′′+ 2y ′+y = e2x(−7− 15x+ 9x2)

5. y ′′ + 4y = e−x(7− 4x+ 5x2) 6. y ′′ − y ′ − 2y = ex(9+ 2x− 4x2)

7. y ′′ − 4y ′ − 5y = −6xe−x 8. y ′′ − 3y ′ + 2y = ex(3− 4x)

9. y ′′ + y ′ − 12y = e3x(−6+ 7x)10. 2y ′′ − 3y ′ − 2y = e2x(−6+ 10x)

11. y ′′ + 2y ′ + y = e−x(2+ 3x) 12. y ′′ − 2y ′ + y = ex(1− 6x)
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13. y ′′ − 4y ′ + 4y = e2x(1− 3x+ 6x2)

14. 9y ′′ + 6y ′ + y = e−x/3(2− 4x+ 4x2)

In Exercises 15–19 find the general solution.

15. y ′′ − 3y ′ + 2y = e3x(1+ x) 16. y ′′ − 6y ′ + 8y = ex(11− 6x)

17. y ′′ + 6y ′ + 9y = e2x(3− 5x) 18. y ′′ + 2y ′ − 3y = −16xex

19. y ′′ − 2y ′ + y = ex(2− 12x)

In Exercises 20–23 solve the initial value problem and plot the solution.

20. y ′′ − 4y ′ − 5y = 9e2x(1+ x), y(0) = 0, y ′(0) = −10

21. y ′′ + 3y ′ − 4y = e2x(7+ 6x), y(0) = 2, y ′(0) = 8

22. y ′′ + 4y ′ + 3y = −e−x(2+ 8x), y(0) = 1, y ′(0) = 2

23. y ′′ − 3y ′ − 10y = 7e−2x, y(0) = 1, y ′(0) = −17

In Exercises 24–29 use the principle of superposition to find a particular solution.

24. y ′′ + y ′ + y = xex + e−x(1+ 2x)

25. y ′′ − 7y ′ + 12y = −ex(17− 42x) − e3x

26. y ′′ − 8y ′ + 16y = 6xe4x + 2+ 16x+ 16x2

27. y ′′ − 3y ′ + 2y = −e2x(3+ 4x) − ex

28. y ′′ − 2y ′ + 2y = ex(1+ x) + e−x(2− 8x+ 5x2)

29. y ′′ + y = e−x(2− 4x+ 2x2) + e3x(8− 12x− 10x2)

Exercises 30–35 treat the equations considered in Examples 3.4.1–3.4.6. Substitute the suggested
form of yp into the equation and equate the resulting coefficients of like functions on the two
sides of the resulting equation to derive a set of simultaneous equations for the coefficients in
yp. Then solve for the coefficients to obtain yp. Compare the work you’ve done with the work
required to obtain the same results in Examples 3.4.1–3.4.6.

30. Compare with Example 3.4.1:

y ′′ − 7y ′ + 12y = 4e2x; yp = Ae2x

31. Compare with Example 3.4.2:

y ′′ − 7y ′ + 12y = 5e4x; yp = Axe4x

32. Compare with Example 3.4.3.

y ′′ − 8y ′ + 16y = 2e4x; yp = Ax2e4x
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33. Compare with Example 3.4.4:

y ′′ − 3y ′ + 2y = e3x(−1+ 2x+ x2), yp = e3x(A+ Bx+ Cx2)

34. Compare with Example 3.4.5:

y ′′ − 4y ′ + 3y = e3x(6+ 8x+ 12x2), yp = e3x(Ax+ Bx2 + Cx3)

35. Compare with Example 3.4.6:

4y ′′ + 4y ′ + y = e−x/2(−8+ 48x+ 144x2), yp = e−x/2(Ax2 + Bx3 + Cx4)

36. Write y = ueαx to find the general solution.

(a) y ′′ + 2y ′ + y =
e−x√
x

(b) y ′′ + 6y ′ + 9y = e−3x ln x

(c) y ′′ − 4y ′ + 4y =
e2x

1+ x
(d) 4y ′′+4y ′+y = 4e−x/2

(
1
x
+ x

)

3.5 THE METHOD OF UNDETERMINED COEFFICIENTS II

In this section we consider the constant coefficient equation

ay ′′ + by ′ + cy = eλx (P(x) cosωx+Q(x) sinωx) (3.5.1)

where λ andω are real numbers,ω 6= 0, and P and Q are polynomials. The function f
on the right is called a forcing function, since in physical applications it is often related to
a force acting on some system modeled by the differential equation. We want to find a
particular solution of (3.5.1). As in Section 3.4, the procedure that we will use is called
the method of undetermined coefficients.

Forcing Functions Without Exponential Factors

We begin with the case where λ = 0 in (3.5.1); that is, we want to find a particular
solution of

ay ′′ + by ′ + cy = P(x) cosωx+Q(x) sinωx. (3.5.2)

Differentiating xr cosωx and xr sinωx yields

d

dx
xr cosωx = −ωxr sinωx+ rxr−1 cosωx

and d

dx
xr sinωx = ωxr cosωx+ rxr−1 sinωx.

This implies that if
yp = A(x) cosωx+ B(x) sinωx
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where A and B are polynomials, then

ay ′′p + by ′p + cyp = F(x) cosωx+G(x) sinωx,

where F and G are polynomials with coefficients that can be expressed in terms of the
coefficients of A and B. This suggests that we try to choose A and B so that F = P and
G = Q, respectively. Then yp will be a particular solution of (3.5.2). The next theorem
tells us how to choose the proper form for yp. We omit the proof.

Theorem 3.5.1 Suppose ω is a positive number and P and Q are polynomials. Let k be the
larger of the degrees of P and Q. Then the equation

ay ′′ + by ′ + cy = P(x) cosωx+Q(x) sinωx

has a particular solution
yp = A(x) cosωx+ B(x) sinωx, (3.5.3)

where

A(x) = A0 +A1x+ · · ·+Akxk and B(x) = B0 + B1x+ · · ·+ Bkxk,

provided that cosωx and sinωx are not solutions of the complementary equation. In the case
where cosωx and sinωx are solutions of the complementary equation, then there exists a
particular solution of the form (3.5.3), where

A(x) = A0x+A1x
2 + · · ·+Akxk+1 and B(x) = B0x+ B1x

2 + · · ·+ Bkxk+1.

Example 3.5.1 Find a particular solution of

y ′′ − 2y ′ + y = 5 cos 2x+ 10 sin 2x. (3.5.4)

Solution In (3.5.4) the coefficients of cos 2x and sin 2x are both zero degree polynomials
(constants). Therefore Theorem 3.5.1 implies that (3.5.4) has a particular solution

yp = A cos 2x+ B sin 2x.

Since
y ′p = −2A sin 2x+ 2B cos 2x and y ′′p = −4(A cos 2x+ B sin 2x),

replacing y by yp in (3.5.4) yields

y ′′p − 2y ′p + yp = −4(A cos 2x+ B sin 2x) − 4(−A sin 2x+ B cos 2x)
+(A cos 2x+ B sin 2x)

= (−3A− 4B) cos 2x+ (4A− 3B) sin 2x.
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Equating the coefficients of cos 2x and sin 2x here with the corresponding coefficients on
the right side of (3.5.4) shows that yp is a solution of (3.5.4) if

−3A− 4B = 5
4A− 3B = 10.

Solving these equations yields A = 1, B = −2. Therefore

yp = cos 2x− 2 sin 2x

is a particular solution of (3.5.4).

Example 3.5.2 Find a particular solution of

y ′′ + 4y = 8 cos 2x+ 12 sin 2x. (3.5.5)

Solution The procedure used in Example 3.5.1 does not work here. To see why, notice
that substituting yp = A cos 2x+ B sin 2x for y in (3.5.5) yields

y ′′p + 4yp = −4(A cos 2x+ B sin 2x) + 4(A cos 2x+ B sin 2x),

which reduces to zero for any choice of A and B. This is due to the fact that both
cos 2x and sin 2x are solutions of the complementary equation for (3.5.5). For example if
y = cos 2x, then

y ′′ + 4y = −4 cos 2x+ 4 cos 2x,

which reduces to zero. (You should verify that sin 2x is also a solution.) We should
therefore try a particular solution of the form

yp = x(A cos 2x+ B sin 2x). (3.5.6)

Then

y ′p = A cos 2x+ B sin 2x+ 2x(−A sin 2x+ B cos 2x)
and y ′′p = −4A sin 2x+ 4B cos 2x− 4x(A cos 2x+ B sin 2x)

= −4A sin 2x+ 4B cos 2x− 4yp,

so
y ′′p + 4yp = −4A sin 2x+ 4B cos 2x.

Therefore yp is a solution of (3.5.5) if

−4A sin 2x+ 4B cos 2x = 8 cos 2x+ 12 sin 2x,

which holds if A = −3 and B = 2. Therefore

yp = −x(3 cos 2x− 2 sin 2x)

is a particular solution of (3.5.5).
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Example 3.5.3 Find a particular solution of

y ′′ + 3y ′ + 2y = (16+ 20x) cos x+ 10 sin x. (3.5.7)

Solution The coefficients of cos x and sin x in (3.5.7) are polynomials of degree one and
zero, respectively. Therefore Theorem 3.5.1 tells us to look for a particular solution of
(3.5.7) of the form

yp = (A0 +A1x) cos x+ (B0 + B1x) sin x. (3.5.8)

Then
y ′p = (A1 + B0 + B1x) cos x+ (B1 −A0 −A1x) sin x (3.5.9)

and
y ′′p = (2B1 −A0 −A1x) cos x− (2A1 + B0 + B1x) sin x, (3.5.10)

so

y ′′p + 3y ′p + 2yp = [A0 + 3A1 + 3B0 + 2B1 + (A1 + 3B1)x] cos x
+ [B0 + 3B1 − 3A0 − 2A1 + (B1 − 3A1)x] sin x.

(3.5.11)

(You should verify this.) Comparing the coefficients of x cos x, x sin x, cos x, and sin x
here with the corresponding coefficients in (3.5.7) shows that yp is a solution of (3.5.7) if

A1 + 3B1 = 20
−3A1 + B1 = 0

A0 + 3B0 + 3A1 + 2B1 = 16
−3A0 + B0 − 2A1 + 3B1 = 10.

Solving the first two equations yields A1 = 2, B1 = 6. Rearranging terms in the last two
equations yields

A0 + 3B0 = 16− 3A1 − 2B1

−3A0 + B0 = 10+ 2A1 − 3B1,

so that substituting the known values for A1 and B1 gives

A0 + 3B0 = −2
−3A0 + B0 = −4.

Solving this system of two equations yields A0 = 1, B0 = −1. Substituting A0 = 1,
A1 = 2, B0 = −1, B1 = 6 into (3.5.8) shows that

yp = (1+ 2x) cos x− (1− 6x) sin x

is a particular solution of (3.5.7).

A Useful Observation

In (3.5.9), (3.5.10), and (3.5.11) the polynomials multiplying sin x can be obtained by
replacing A0,A1,B0, and B1 by B0, B1, −A0, and −A1, respectively, in the polynomials
mutiplying cos x. An analogous result applies in general, as follows.
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Theorem 3.5.2 If
yp = A(x) cosωx+ B(x) sinωx,

where A(x) and B(x) are polynomials with coefficients A0 . . . , Ak and B0, . . . , Bk, then the
polynomials multiplying sinωx in

y ′p, y ′′p, and ay ′′p + by ′p + cyp

can be obtained by replacing A0, . . . , Ak by B0, . . . , Bk and B0, . . . , Bk by −A0, . . . , −Ak in
the corresponding polynomials multiplying cosωx.

We will not use this theorem in our examples, but we recommend that you use it to
check your manipulations when you work the exercises.

Example 3.5.4 Find a particular solution of

y ′′ + y = (8− 4x) cos x− (8+ 8x) sin x. (3.5.12)

Solution According to Theorem 3.5.1, we should look for a particular solution of the
form

yp = (A0x+A1x
2) cos x+ (B0x+ B1x

2) sin x, (3.5.13)

since cos x and sin x are solutions of the complementary equation. However, let us try

yp = (A0 +A1x) cos x+ (B0 + B1x) sin x (3.5.14)

first, so you can see why it does not work. From (3.5.10),

y ′′p = (2B1 −A0 −A1x) cos x− (2A1 + B0 + B1x) sin x,

which together with (3.5.14) implies that

y ′′p + yp = 2B1 cos x− 2A1 sin x.

Since the right side of this equation does not contain x cos x or x sin x, (3.5.14) canot
satisfy (3.5.12) no matter how we choose A0, A1, B0, and B1.

Now let yp be as in (3.5.13). Then

y ′p =
[
A0 + (2A1 + B0)x+ B1x

2] cos x
+
[
B0 + (2B1 −A0)x−A1x

2] sin x
and y ′′p =

[
2A1 + 2B0 − (A0 − 4B1)x−A1x

2] cos x
+
[
2B1 − 2A0 − (B0 + 4A1)x− B1x

2] sin x,
so that

y ′′p + yp = (2A1 + 2B0 + 4B1x) cos x+ (2B1 − 2A0 − 4A1x) sin x.
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Comparing the coefficients of cos x and sin x here with the corresponding coefficients in
(3.5.12) shows that yp is a solution of (3.5.12) if

4B1 = −4
−4A1 = −8

2B0 + 2A1 = 8
−2A0 + 2B1 = −8.

The solution of this system is A1 = 2, B1 = −1, A0 = 3, B0 = 2. Therefore

yp = x [(3+ 2x) cos x+ (2− x) sin x]

is a particular solution of (3.5.12).

Forcing Functions with Exponential Factors

To find a particular solution of

ay ′′ + by ′ + cy = eλx (P(x) cosωx+Q(x) sinωx) (3.5.15)

when λ 6= 0, we recall from Section 3.4 that substituting y = ueλx into (3.5.15) will
produce a constant coefficient equation for u with the forcing function P(x) cosωx +
Q(x) sinωx. We can find a particular solution up of this equation by the procedure that
we used in Examples 3.5.1–3.5.4. Then yp = upe

λx is a particular solution of (3.5.15).

Example 3.5.5 Find a particular solution of

y ′′ − 3y ′ + 2y = e−2x [2 cos 3x− (34− 150x) sin 3x] . (3.5.16)

Solution Let y = ue−2x. Then

y ′′ − 3y ′ + 2y = e−2x [(u ′′ − 4u ′ + 4u) − 3(u ′ − 2u) + 2u
]

= e−2x(u ′′ − 7u ′ + 12u.

Comparing this to (3.5.16) reveals that we need to solve the equation

u ′′ − 7u ′ + 12u = 2 cos 3x− (34− 150x) sin 3x. (3.5.17)

Since cos 3x and sin 3x are not solutions of the complementary equation

u ′′ − 7u ′ + 12u = 0,

Theorem 3.5.1 tells us to look for a particular solution of (3.5.17) of the form

up = (A0 +A1x) cos 3x+ (B0 + B1x) sin 3x. (3.5.18)



Section 3.5 The Method of Undetermined Coefficients II 143

In this case,

u ′p = (A1 + 3B0 + 3B1x) cos 3x+ (B1 − 3A0 − 3A1x) sin 3x
and u ′′p = (−9A0 + 6B1 − 9A1x) cos 3x− (9B0 + 6A1 + 9B1x) sin 3x,

so that

u ′′p − 7u ′p + 12up = [3A0 − 21B0 − 7A1 + 6B1 + (3A1 − 21B1)x] cos 3x
+ [21A0 + 3B0 − 6A1 − 7B1 + (21A1 + 3B1)x] sin 3x.

Comparing the coefficients of x cos 3x, x sin 3x, cos 3x, and sin 3x here with the corre-
sponding coefficients on the right side of (3.5.17) shows that up is a solution of (3.5.17)
if

3A1 − 21B1 = 0
21A1 + 3B1 = 150

3A0 − 21B0 − 7A1 + 6B1 = 2
21A0 + 3B0 − 6A1 − 7B1 = −34.

(3.5.19)

Solving the first two equations yields A1 = 7, B1 = 1. Substituting these values into the
last two equations of (3.5.19) and rearranging terms gives

3A0 − 21B0 = 45
21A0 + 3B0 = 15.

Solving this system yields A0 = 1, B0 = −2. Substituting A0 = 1, A1 = 7, B0 = −2, and
B1 = 1 into (??) shows that

up = (1+ 7x) cos 3x− (2− x) sin 3x

is a particular solution of (3.5.17). Therefore

yp = e−2x [(1+ 7x) cos 3x− (2− x) sin 3x]

is a particular solution of (3.5.16).

Example 3.5.6 Find a particular solution of

y ′′ + 2y ′ + 5y = e−x [(6− 16x) cos 2x− (8+ 8x) sin 2x] . (3.5.20)

Solution Let y = ue−x. Then

y ′′ + 2y ′ + 5y = e−x
[
(u ′′ − 2u ′ + u) + 2(u ′ − u) + 5u

]
= e−x(u ′′ + 4u).

Comparing this to (3.5.20) reveals that we need to solve the equation

u ′′ + 4u = (6− 16x) cos 2x− (8+ 8x) sin 2x. (3.5.21)
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Notice that (cos 2x) ′′ = −4 cos 2x and (sin 2x) ′′ = −4 sin 2x so that both satisfy the
equation u ′′ + 4u = 0. Since cos 2x and sin 2x are solutions of

u ′′ + 4u = 0,

they must also be solutions of the complementary equation y ′′ + 2y ′ + 5y = 0 (because
e−x is never zero). Therefore, Theorem 3.5.1 tells us to look for a particular solution of
(3.5.21) of the form

up = (A0x+A1x
2) cos 2x+ (B0x+ B1x

2) sin 2x.

In this case,

u ′p =
[
A0 + (2A1 + 2B0)x+ 2B1x

2] cos 2x
+
[
B0 + (2B1 − 2A0)x− 2A1x

2] sin 2x
and u ′′p =

[
2A1 + 4B0 − (4A0 − 8B1)x− 4A1x

2] cos 2x
+
[
2B1 − 4A0 − (4B0 + 8A1)x− 4B1x

2] sin 2x,
so that

u ′′p + 4up = (2A1 + 4B0 + 8B1x) cos 2x+ (2B1 − 4A0 − 8A1x) sin 2x.

Equating the coefficients of x cos 2x, x sin 2x, cos 2x, and sin 2x here with the correspond-
ing coefficients on the right side of (3.5.21) shows that up is a solution of (3.5.21) if

8B1 = −16
−8A1 = − 8

4B0 + 2A1 = 6
−4A0 + 2B1 = −8.

(3.5.22)

The solution of this system is A1 = 1, B1 = −2, B0 = 1, A0 = 1. Therefore

up = x[(1+ x) cos 2x+ (1− 2x) sin 2x]

is a particular solution of (3.5.21), and

yp = xe−x [(1+ x) cos 2x+ (1− 2x) sin 2x]

is a particular solution of (3.5.20).
You can also find a particular solution of (3.5.20) by substituting

yp = xe−x [(A0 +A1x) cos 2x+ (B0 + B1x) sin 2x]

for y in (3.5.20) and equating the coefficients of xe−x cos 2x, xe−x sin 2x, e−x cos 2x, and
e−x sin 2x in the resulting expression for

y ′′p + 2y ′p + 5yp
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with the corresponding coefficients on the right side of (3.5.20). This leads to the same
system (3.5.22) of equations for A0, A1, B0, and B1 that we obtained in Example 3.5.6.
However, if you try this approach you will see that deriving (3.5.22) this way is much
more tedious than the way we did it in Example 3.5.6.

3.5 Exercises

In Exercises 1–17 find a particular solution.

1. y ′′ + 3y ′ + 2y = 7 cos x− sin x

2. y ′′ + 3y ′ + y = (2− 6x) cos x− 9 sin x

3. y ′′ + 2y ′ + y = ex(6 cos x+ 17 sin x)

4. y ′′ + 3y ′ − 2y = −e2x(5 cos 2x+ 9 sin 2x)

5. y ′′ − y ′ + y = ex(2+ x) sin x

6. y ′′ + 3y ′ − 2y = e−2x [(4+ 20x) cos 3x+ (26− 32x) sin 3x]

7. y ′′ + 4y = −12 cos 2x− 4 sin 2x

8. y ′′ + y = (−4+ 8x) cos x+ (8− 4x) sin x

9. 4y ′′ + y = −4 cos x/2− 8x sin x/2

10. y ′′ + 2y ′ + 2y = e−x(8 cos x− 6 sin x)

11. y ′′ − 2y ′ + 5y = ex [(6+ 8x) cos 2x+ (6− 8x) sin 2x]

12. y ′′ + 2y ′ + y = 8x2 cos x− 4x sin x

13. y ′′ + 3y ′ + 2y = (12+ 20x+ 10x2) cos x+ 8x sin x

14. y ′′ + 3y ′ + 2y = (1− x− 4x2) cos 2x− (1+ 7x+ 2x2) sin 2x

15. y ′′ − 5y ′ + 6y = −ex
[
(4+ 6x− x2) cos x− (2− 4x+ 3x2) sin x

]
16. y ′′ − 2y ′ + y = −ex

[
(3+ 4x− x2) cos x+ (3− 4x− x2) sin x

]
17. y ′′ − 2y ′ + 2y = ex

[
(2− 2x− 6x2) cos x+ (2− 10x+ 6x2) sin x

]
In Exercises 18–21 find a particular solution and graph it.

18. y ′′ + 2y ′ + y = e−x [(5− 2x) cos x− (3+ 3x) sin x]

19. y ′′ + 9y = −6 cos 3x− 12 sin 3x

20. y ′′ + 3y ′ + 2y = (1− x− 4x2) cos 2x− (1+ 7x+ 2x2) sin 2x

21. y ′′ + 4y ′ + 3y = e−x
[
(2+ x+ x2) cos x+ (5+ 4x+ 2x2) sin x

]
In Exercises 22–26 solve the initial value problem.

22. y ′′ − 7y ′ + 6y = −ex(17 cos x− 7 sin x), y(0) = 4, y ′(0) = 2

23. y ′′ − 2y ′ + 2y = −ex(6 cos x+ 4 sin x), y(0) = 1, y ′(0) = 4
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24. y ′′ + 6y ′ + 10y = −40ex sin x, y(0) = 2, y ′(0) = −3

25. y ′′ − 6y ′ + 10y = −e3x(6 cos x+ 4 sin x), y(0) = 2, y ′(0) = 7

26. y ′′ − 3y ′ + 2y = e3x [21 cos x− (11+ 10x) sin x] , y(0) = 0, y ′(0) = 6

In Exercises 27–32 use the principle of superposition to find a particular solution. Where
indicated, solve the initial value problem.

27. y ′′ − 2y ′ − 3y = 4e3x + ex(cos x− 2 sin x)

28. y ′′ + y = 4 cos x− 2 sin x+ xex + e−x

29. y ′′ − 3y ′ + 2y = xex + 2e2x + sin x

30. y ′′ − 2y ′ + 2y = 4xex cos x+ xe−x + 1+ x2

31. y ′′ − 4y ′ + 4y = e2x(1+ x) + e2x(cos x− sin x) + 3e3x + 1+ x

32. y ′′ − 4y ′ + 4y = 6e2x + 25 sin x, y(0) = 5, y ′(0) = 3

In Exercises 33–35 solve the initial value problem and graph the solution.

33. y ′′ + 4y = −e−2x [(4− 7x) cos x+ (2− 4x) sin x] , y(0) = 3, y ′(0) = 1

34. y ′′ + 4y ′ + 4y = 2 cos 2x+ 3 sin 2x+ e−x, y(0) = −1, y ′(0) = 2

35. y ′′ + 4y = ex(11+ 15x) + 8 cos 2x− 12 sin 2x, y(0) = 3, y ′(0) = 5

3.6 REDUCTION OF ORDER

In this section we give a method for finding the general solution of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F(x) (3.6.1)

if we know a nontrivial solution y1 of the complementary equation

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0. (3.6.2)

The method is called reduction of order because it reduces the task of solving (3.6.1) to
solving a first order equation. Unlike the method of undetermined coefficients, it does
not require P2, P1, and P0 to be constants, or F to be of any special form.

By now you should not be surprised that we look for solutions of (3.6.1) in the form

y = uy1 (3.6.3)

where u is to be determined so that y satisfies (3.6.1). Substituting (3.6.3) and

y ′ = u ′y1 + uy
′
1

y ′′ = u ′′y1 + 2u ′y ′1 + uy
′′
1
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into (3.6.1) yields

P2(x)(u
′′y1 + 2u ′y ′1 + uy

′′
1 ) + P1(x)(u

′y1 + uy
′
1) + P0(x)uy1 = F(x).

Collecting the coefficients of u, u ′, and u ′′ yields

(P2y1)u
′′ + (2P2y

′
1 + P1y1)u

′ + (P2y
′′
1 + P1y

′
1 + P2y1)u = F. (3.6.4)

However, the coefficient of u is zero, since y1 satisfies (3.6.2). Therefore (3.6.4) reduces to

Q2(x)u
′′ +Q1(x)u

′ = F, (3.6.5)

with
Q2 = P2y1 and Q1 = 2P2y

′
1 + P1y1.

(It is not worthwhile to memorize the formulas for Q2 and Q1!) Since (3.6.5) is a linear
first order equation in u ′, we can solve it for u ′ by variation of parameters as we did
in the introductory chapter, integrate the solution to obtain u, and then obtain y from
(3.6.3).

Example 3.6.1

(a) Find the general solution of

xy ′′ − (2x+ 1)y ′ + (x+ 1)y = x2, (3.6.6)

given that y1 = ex is a solution of the complementary equation

xy ′′ − (2x+ 1)y ′ + (x+ 1)y = 0. (3.6.7)

(b) Using the results from part (a), find a fundamental set of solutions of (3.6.7).

Solution (a) If y = uex, then y ′ = u ′ex + uex and y ′′ = u ′′ex + 2u ′ex + uex, so

xy ′′ − (2x+ 1)y ′ + (x+ 1)y = x(u ′′ex + 2u ′ex + uex)
−(2x+ 1)(u ′ex + uex) + (x+ 1)uex

= (xu ′′ − u ′)ex.

Therefore y = uex is a solution of (3.6.6) if and only if

(xu ′′ − u ′)ex = x2,

which is a first order equation in u ′. We rewrite it as

u ′′ −
u ′

x
= xe−x. (3.6.8)
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To focus on how we apply variation of parameters to this equation, we temporarily write
z = u ′, so that (3.6.8) becomes

z ′ −
z

x
= xe−x. (3.6.9)

We leave it to you to show (by separation of variables) that z1 = x is a solution of the
complementary equation

z ′ −
z

x
= 0

for (3.6.9). By applying variation of parameters, we can now see that every solution of
(3.6.9) is of the form

z = vx where v ′x = xe−x, so v ′ = e−x and v = −e−x + C1.

Since u ′ = z = vx, u is a solution of (3.6.8) if and only if

u ′ = vx = −xe−x + C1x.

Integrating this yields

u = (x+ 1)e−x +
C1

2
x2 + C2.

Therefore the general solution of (3.6.6) is

y = uex = x+ 1+
C1

2
x2ex + C2e

x. (3.6.10)

(b) By letting C1 = C2 = 0 in (3.6.10), we see that yp1 = x+ 1 is a solution of (3.6.6). By
lettingC1 = 2 andC2 = 0, we see that yp2 = x+1+x2ex is also a solution of (3.6.6). Since
the difference of two solutions of (3.6.6) is a solution of (3.6.7), y2 = yp1 − yp2 = x2ex is
a solution of (3.6.7). Since y2/y1 is nonconstant and we already know that y1 = ex is a
solution of (3.6.6), Theorem 3.1.6 implies that {ex, x2ex} is a fundamental set of solutions
of (3.6.7).

Although (3.6.10) is a correct form for the general solution of (3.6.6), it is silly to leave
the arbitrary coefficient of x2ex as C1/2 where C1 is an arbitrary constant. Moreover, it
is sensible to make the subscripts of the coefficients of y1 = ex and y2 = x2ex consistent
with the subscripts of the functions themselves. Therefore we rewrite (3.6.10) as

y = x+ 1+ c1ex + c2x2ex

by simply renaming the arbitrary constants. We will also do this in the next two examples,
and in the answers to the exercises.

Example 3.6.2

(a) Find the general solution of

x2y ′′ + xy ′ − y = x2 + 1,
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given that y1 = x is a solution of the complementary equation

x2y ′′ + xy ′ − y = 0. (3.6.11)

Using this result, find a fundamental set of solutions of (3.6.11).

(b) Solve the initial value problem

x2y ′′ + xy ′ − y = x2 + 1, y(1) = 2, y ′(1) = −3. (3.6.12)

Solution (a) If y = ux, then y ′ = u ′x+ u and y ′′ = u ′′x+ 2u ′, so

x2y ′′ + xy ′ − y = x2(u ′′x+ 2u ′) + x(u ′x+ u) − ux
= x3u ′′ + 3x2u ′.

Therefore y = ux is a solution of (3.6.12) if and only if

x3u ′′ + 3x2u ′ = x2 + 1,

which is a first order equation in u ′. We rewrite it as

u ′′ +
3
x
u ′ =

1
x
+

1
x3 . (3.6.13)

To focus on how we apply variation of parameters to this equation, we temporarily write
z = u ′, so that (3.6.13) becomes

z ′ +
3
x
z =

1
x
+

1
x3 . (3.6.14)

We leave it to you to show by separation of variables that z1 = 1/x3 is a solution of the
complementary equation

z ′ +
3
x
z = 0

for (3.6.14). By variation of parameters, every solution of (3.6.14) is of the form

z =
v

x3 where
v ′

x3 =
1
x
+

1
x3 , so v ′ = x2 + 1 and v =

x3

3
+ x+ C1.

Since u ′ = z = v/x3, u is a solution of (3.6.14) if and only if

u ′ =
v

x3 =
1
3
+

1
x2 +

C1

x3 .

Integrating this yields

u =
x

3
−

1
x
−
C1

2x2 + C2.
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Therefore the general solution of (3.6.12) is

y = ux =
x2

3
− 1−

C1

2x
+ C2x. (3.6.15)

Reasoning as in the solution of Example 3.6.1(a), we conclude that y1 = x and y2 = 1/x
form a fundamental set of solutions for (3.6.11).

As before, we rename the constants in (3.6.15) and rewrite it as

y =
x2

3
− 1+ c1x+

c2

x
. (3.6.16)

(b) Differentiating (3.6.16) yields

y ′ =
2x
3

+ c1 −
c2

x2 . (3.6.17)

Setting x = 1 in (3.6.16) and (3.6.17) and imposing the initial conditions y(1) = 2 and
y ′(1) = −3 yields

c1 + c2 =
8
3

c1 − c2 = −
11
3
.

Solving these equations yields c1 = −1/2, c2 = 19/6. Therefore the solution of (3.6.12) is

y =
x2

3
− 1−

x

2
+

19
6x

.

As expected, using reduction of order to find the general solution of a homogeneous
linear second order equation leads to a homogeneous linear first order equation in u ′

that can be solved by separation of variables. The next example illustrates this.

Example 3.6.3 Find the general solution and a fundamental set of solutions of

x2y ′′ − 3xy ′ + 3y = 0, (3.6.18)

given that y1 = x is a solution.

Solution If y = ux then y ′ = u ′x+ u and y ′′ = u ′′x+ 2u ′, so

x2y ′′ − 3xy ′ + 3y = x2(u ′′x+ 2u ′) − 3x(u ′x+ u) + 3ux
= x3u ′′ − x2u ′.

Therefore y = ux is a solution of (3.6.18) if and only if

x3u ′′ − x2u ′ = 0.
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Separating the variables u ′ and x yields

u ′′

u ′
=

1
x
,

so
ln |u ′| = ln |x|+ k, or, equivalently, u ′ = C1x.

Therefore
u =

C1

2
x2 + C2,

so the general solution of (3.6.18) is

y = ux =
C1

2
x3 + C2x,

which we rewrite as
y = c1x+ c2x

3.

Therefore {x, x3} is a fundamental set of solutions of (3.6.18).

3.6 Exercises

In Exercises 1–17 find the general solution, given that y1 satisfies the complementary
equation. Then use the result to find a fundamental set of solutions of the complementary
equation.

1. (2x+ 1)y ′′ − 2y ′ − (2x+ 3)y = (2x+ 1)2; y1 = e−x

2. x2y ′′ + xy ′ − y =
4
x2 ; y1 = x

3. x2y ′′ − xy ′ + y = x; y1 = x

4. y ′′ − 3y ′ + 2y =
1

1+ e−x
; y1 = e2x

5. y ′′ − 2y ′ + y = 7x3/2ex; y1 = ex

6. 4x2y ′′ + (4x− 8x2)y ′ + (4x2 − 4x− 1)y = 4x1/2ex(1+ 4x); y1 = x1/2ex

7. y ′′ − 2y ′ + 2y = ex sec x; y1 = ex cos x

8. y ′′ + 4xy ′ + (4x2 + 2)y = 8e−x(x+2); y1 = e−x
2

9. x2y ′′ + xy ′ − 4y = −6x− 4; y1 = x2

10. x2y ′′ + 2x(x− 1)y ′ + (x2 − 2x+ 2)y = x3e2x; y1 = xe−x

11. x2y ′′ − x(2x− 1)y ′ + (x2 − x− 1)y = x2ex; y1 = xex

12. (1− 2x)y ′′ + 2y ′ + (2x− 3)y = (1− 4x+ 4x2)ex; y1 = ex

13. x2y ′′ − 3xy ′ + 4y = 4x4; y1 = x2

14. 2xy ′′ + (4x+ 1)y ′ + (2x+ 1)y = 3x1/2e−x; y1 = e−x
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15. xy ′′ − (2x+ 1)y ′ + (x+ 1)y = −ex; y1 = ex

16. 4x2y ′′ − 4x(x+ 1)y ′ + (2x+ 3)y = 4x5/2e2x; y1 = x1/2

17. x2y ′′ − 5xy ′ + 8y = 4x2; y1 = x2

In Exercises 18–30 find a fundamental set of solutions, given that y1 is a solution.

18. xy ′′ + (2− 2x)y ′ + (x− 2)y = 0; y1 = ex

19. x2y ′′ − 4xy ′ + 6y = 0; y1 = x2

20. x2(ln |x|)2y ′′ − (2x ln |x|)y ′ + (2+ ln |x|)y = 0; y1 = ln |x|

21. 4xy ′′ + 2y ′ + y = 0; y1 = sin
√
x

22. xy ′′ − (2x+ 2)y ′ + (x+ 2)y = 0; y1 = ex

23. x2y ′′ − (2a− 1)xy ′ + a2y = 0; y1 = xa

24. x2y ′′ − 2xy ′ + (x2 + 2)y = 0; y1 = x sin x

25. xy ′′ − (4x+ 1)y ′ + (4x+ 2)y = 0; y1 = e2x

26. 4x2(sin x)y ′′ − 4x(x cos x+ sin x)y ′ + (2x cos x+ 3 sin x)y = 0; y1 = x1/2

27. 4x2y ′′ − 4xy ′ + (3− 16x2)y = 0; y1 = x1/2e2x

28. (2x+ 1)xy ′′ − 2(2x2 − 1)y ′ − 4(x+ 1)y = 0; y1 = 1/x

29. (x2 − 2x)y ′′ + (2− x2)y ′ + (2x− 2)y = 0; y1 = ex

30. xy ′′ − (4x+ 1)y ′ + (4x+ 2)y = 0; y1 = e2x

In Exercises 31–33 solve the initial value problem, given that y1 satisfies the complementary
equation.

31. x2y ′′ − 3xy ′ + 4y = 4x4, y(−1) = 7, y ′(−1) = −8; y1 = x2

32. (3x− 1)y ′′ − (3x+ 2)y ′ − (6x− 8)y = 0, y(0) = 2, y ′(0) = 3; y1 = e2x

33. (x+ 1)2y ′′ − 2(x+ 1)y ′ − (x2 + 2x− 1)y = (x+ 1)3ex, y(0) = 1, y ′(0) = −1;

y1 = (x+ 1)ex

In Exercises 34 and 35 solve the initial value problem and graph the solution, given that y1
satisfies the complementary equation.

34. x2y ′′ + 2xy ′ − 2y = x2, y(1) =
5
4
, y ′(1) =

3
2
; y1 = x

35. (x2 − 4)y ′′ + 4xy ′ + 2y = x+ 2, y(0) = −
1
3
, y ′(0) = −1; y1 =

1
x− 2

3.7 VARIATION OF PARAMETERS
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In this section we give a method called variation of parameters for finding a particular
solution of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = F(x) (3.7.1)

if we know a fundamental set {y1,y2} of solutions of the complementary equation

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0. (3.7.2)

Having found a particular solution yp by this method, we can write the general solution
of (3.7.1) as

y = yp + c1y1 + c2y2.

Since we need only one nontrivial solution of (3.7.2) to find the general solution of
(3.7.1) by reduction of order, it is natural to ask why we are interested in variation of
parameters, which requires two linearly independent solutions of (3.7.2) to achieve the
same goal. Here are two answers:

• If we already know two linearly independent solutions of (3.7.2), then variation of
parameters will probably be simpler than reduction of order.

• Variation of parameters generalizes naturally to a method for finding particular
solutions of linear systems of equations (which we will study later), while reduction
of order does not.

We will now derive the method. As usual, we consider solutions of (3.7.1) and (3.7.2)
on an interval (a,b) where P2, P1, P0, and F are continuous and P2 has no zeros. Suppose
that {y1,y2} is a fundamental set of solutions of the complementary equation (3.7.2). We
look for a particular solution of (3.7.1) in the form

yp = u1y1 + u2y2 (3.7.3)

where u1 and u2 are functions to be determined so that yp satisfies (3.7.1). You may not
think this is a good idea, since there are now two unknown functions to be determined,
rather than one. However, since u1 and u2 have to satisfy only one condition (that yp
is a solution of (3.7.1)), we can impose a second condition that produces a convenient
simplification, as follows.

Differentiating (3.7.3) yields

y ′p = u1y
′
1 + u2y

′
2 + u

′
1y1 + u

′
2y2. (3.7.4)

As our second condition on u1 and u2 we require that

u ′1y1 + u
′
2y2 = 0. (3.7.5)

Then (3.7.4) becomes
y ′p = u1y

′
1 + u2y

′
2; (3.7.6)
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that is, (3.7.5) permits us to differentiate yp (once!) as if u1 and u2 are constants. Differ-
entiating (3.7.4) yields

y ′′p = u1y
′′
1 + u2y

′′
2 + u ′1y

′
1 + u

′
2y
′
2. (3.7.7)

(There are no terms involving u ′′1 and u ′′2 here, as there would be if we had not required
(3.7.5).) Substituting (3.7.3), (3.7.6), and (3.7.7) into (3.7.1) and collecting the coefficients
of u1 and u2 yields

u1(P2y
′′
1 + P1y

′
1 + P0y1) + u2(P2y

′′
2 + P1y

′
2 + P0y2) + P2(u

′
1y
′
1 + u

′
2y
′
2) = F.

As in the derivation of the method of reduction of order, the coefficients of u1 and u2
here are both zero because y1 and y2 satisfy the complementary equation. Hence, we
can rewrite the last equation as

P2(u
′
1y
′
1 + u

′
2y
′
2) = F. (3.7.8)

Therefore yp in (3.7.3) satisfies (3.7.1) if

u ′1y1 + u
′
2y2 = 0

u ′1y
′
1 + u

′
2y
′
2 =

F

P2
, (3.7.9)

where the first equation is the same as (3.7.5) and the second is from (3.7.8).
We will now show that you can always solve (3.7.9) for u ′1 and u ′2. (The method that

we use here will always work, but simpler methods usually work when you are dealing
with specific equations.) To obtain u ′1, multiply the first equation in (3.7.9) by y ′2 and the
second equation by y2. This yields

u ′1y1y
′
2 + u

′
2y2y

′
2 = 0

u ′1y
′
1y2 + u

′
2y
′
2y2 =

Fy2

P2
.

Subtracting the second equation from the first yields

u ′1(y1y
′
2 − y

′
1y2) = −

Fy2

P2
. (3.7.10)

Since {y1,y2} is a fundamental set of solutions of (3.7.2) on (a,b), Theorem 3.1.6 implies
that the Wronskian y1y

′
2 − y

′
1y2 has no zeros on (a,b). Therefore we can solve (3.7.10)

for u ′1, to obtain

u ′1 = −
Fy2

P2(y1y
′
2 − y

′
1y2)

. (3.7.11)

We leave it to you to start from (3.7.9) and show by a similar argument that

u ′2 =
Fy1

P2(y1y
′
2 − y

′
1y2)

. (3.7.12)
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We can now obtain u1 and u2 by integrating u ′1 and u ′2. The constants of integration
can be taken to be zero, since any choice of u1 and u2 in (3.7.3) will suffice.

You should not memorize (3.7.11) and (3.7.12). On the other hand, you do not want to
derive the whole procedure for every specific problem. We recommend a compromise:
(a) Write

yp = u1y1 + u2y2 (3.7.13)

to remind yourself of what you are doing.

(b) Write the system
u ′1y1 + u

′
2y2 = 0

u ′1y
′
1 + u

′
2y
′
2 =

F

P2

(3.7.14)

for the specific problem you are trying to solve.

(c) Solve (3.7.14) for u ′1 and u ′2 by any convenient method.

(d) Obtain u1 and u2 by integrating u ′1 and u ′2, taking the constants of integration to be
zero.

(e) Substitute u1 and u2 into (3.7.13) to obtain yp.

Example 3.7.1 Find a particular solution yp of

x2y ′′ − 2xy ′ + 2y = x9/2, (3.7.15)

given that y1 = x and y2 = x2 are solutions of the complementary equation

x2y ′′ − 2xy ′ + 2y = 0.

Then find the general solution of (3.7.15).

Solution We set
yp = u1x+ u2x

2,

where

u ′1x+ u ′2x
2 = 0

u ′1 + 2u ′2x =
x9/2

x2 .

From the first equation, u ′1 = −u ′2x. Substituting this into the second equation yields
u ′2x = x

5/2, so u ′2 = x3/2 and therefore u ′1 = −u ′2x = −x5/2. Integrating and taking the
constants of integration to be zero yields

u1 = −
2
7
x7/2 and u2 =

2
5
x5/2.
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Therefore yp = u1x+ u2x
2 yields

−
2
7
x7/2x+

2
5
x5/2x2 =

4
35
x9/2,

and the general solution of (3.7.15) is

y =
4
35
x9/2 + c1x+ c2x

2.

Example 3.7.2 Find a particular solution yp of

(x− 1)y ′′ − xy ′ + y = (x− 1)2, (3.7.16)

given that y1 = x and y2 = ex are solutions of the complementary equation

(x− 1)y ′′ − xy ′ + y = 0.

Then find the general solution of (3.7.16).

Solution We set
yp = u1x+ u2e

x,

where

u ′1x+ u
′
2e
x = 0

u ′1 + u ′2e
x =

(x− 1)2

x− 1
= x− 1.

Subtracting the first equation from the second yields −u ′1(x − 1) = x − 1, so u ′1 = −1.
From this and the first equation, u ′2 = xe−x. Integrating and taking the constants of
integration to be zero yields

u1 = −x and u2 = −(x+ 1)e−x.

Therefore yp = u1x+ u2e
x yields

(−x)x+ (−(x+ 1)e−x)ex = −x2 − x− 1,

so the general solution y = yp + c1x+ c2e
x of (3.7.16) is

− x2 − x− 1+ c1x+ c2ex = −x2 − 1+ (c1 − 1)x+ c2ex. (3.7.17)

However, since c1 is an arbitrary constant, so is c1 − 1; therefore, we improve the
appearance of this result by renaming the constant and writing the general solution as

y = −x2 − 1+ c1x+ c2ex. (3.7.18)



Section 3.7 Variation of Parameters 157

There is nothing wrong with leaving the general solution of (3.7.16) in the form
(3.7.17); however, we think You will agree that (3.7.18) is preferable. We can also view
the transition from (3.7.17) to (3.7.18) differently. In this example the particular solution
yp = −x2 − x− 1 contained the term −x, which satisfies the complementary equation.
We can drop this term and redefine yp = −x2−1, since −x2−x−1 is a solution of (3.7.16)
and x is a solution of the complementary equation; hence, −x2 − 1 = (−x2 − x− 1) + x is
also a solution of (3.7.16). In general, it is always legitimate to drop linear combinations
of {y1,y2} from particular solutions obtained by variation of parameters. We will do
this in the following examples and in the answers to exercises that ask for a particular
solution. Therefore, do not be concerned if your answer to such an exercise differs from
ours only by a solution of the complementary equation.

Example 3.7.3 Find a particular solution of

y ′′ + 3y ′ + 2y =
1

1+ ex
. (3.7.19)

Then find the general solution.

Solution
The characteristic polynomial p(r) of the complementary equation

y ′′ + 3y ′ + 2y = 0 (3.7.20)

is r2 + 3r + 2 = (r + 1)(r + 2), so y1 = e−x and y2 = e−2x form a fundamental set of
solutions of (3.7.20). We look for a particular solution of (3.7.19) in the form

yp = u1e
−x + u2e

−2x,

where

u ′1e
−x + u ′2e

−2x = 0

−u ′1e
−x − 2u ′2e

−2x =
1

1+ ex
.

Adding the two equations in the system yields an equation in x for u ′2:

−u ′2e
−2x =

1
1+ ex

, so u ′2 = −
e2x

1+ ex
.

From the first equation in the system, we find an expression for u ′1 and then substitute
u ′2(x):

−u ′2e
−x =

ex

1+ ex
.

Finally, to solve for u1, integrate by means of the substitution v = ex and take the
constant of integration to be zero so that∫

ex

1+ ex
dx =

∫
dv

1+ v
.
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Replacing v with ex gives u1 = ln(1+ ex).
The expression for u2 can be transformed with the same substitution of v = ex:

−

∫
e2x

1+ ex
dx = −

∫
v

1+ v
dv.

(Notice that e2x = exex.) Next, use long division to rewrite the improper integral as∫ [
1

1+ v
− 1
]
dv.

Finally, we integrate (using zero as the constant of integration) and replace vwith ex to
find that u2 is

ln(1+ v) − v = ln(1+ ex) − ex.

Therefore

yp = u1e
−x + u2e

−2x

= [ln(1+ ex)]e−x + [ln(1+ ex) − ex] e−2x,

so
yp =

(
e−x + e−2x) ln(1+ ex) − e−x.

Since the last term on the right satisfies the complementary equation, we drop it and
redefine

yp =
(
e−x + e−2x) ln(1+ ex).

The general solution y of (3.7.19) is

yp + c1e
−x + c2e

−2x =
(
e−x + e−2x) ln(1+ ex) + c1e−x + c2e−2x.

Example 3.7.4 Solve the initial value problem

(x2 − 1)y ′′ + 4xy ′ + 2y =
2

x+ 1
, y(0) = −1, y ′(0) = −5, (3.7.21)

given that

y1 =
1

x− 1
and y2 =

1
x+ 1

are solutions of the complementary equation

(x2 − 1)y ′′ + 4xy ′ + 2y = 0.
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Solution We first use variation of parameters to find a particular solution of

(x2 − 1)y ′′ + 4xy ′ + 2y =
2

x+ 1

on (−1, 1) in the form
yp =

u1

x− 1
+

u2

x+ 1
,

where

u ′1
x− 1

+
u ′2

x+ 1
= 0 (3.7.22)

−
u ′1

(x− 1)2
−

u ′2
(x+ 1)2

=
2

(x+ 1)(x2 − 1)
.

Multiplying the first equation by 1/(x− 1) and adding the result to the second equation
yields [

1
x2 − 1

−
1

(x+ 1)2

]
u ′2 =

2
(x+ 1)(x2 − 1)

. (3.7.23)

Now we use algebra to rewrite the rational expression in x on the left side of (3.7.23) as

(x+ 1) − (x− 1)
(x+ 1)(x2 − 1)

=
2

(x+ 1)(x2 − 1)
,

which implies that u ′2 = 1. Therefore,

u2 =

∫
dx = x.

From the first equation of the system (3.7.22), u ′1 has the form

−
x− 1
x+ 1

u ′2 = −
x− 1
x+ 1

,

since we have shown that u ′2 = 1. Now apply some clever algebra to rewrite the rational
expression before integrating:

−

∫
x+ 1− 2
x+ 1

dx =

∫ [
2

x+ 1
− 1
]
dx

Finally, integrate (taking the constants of integration to be zero) To see that

u1 = 2 ln(x+ 1) − x.

Therefore, the particular solution we seek is

u1

x− 1
+

u2

x+ 1
= [2 ln(x+ 1) − x]

1
x− 1

+ x
1

x+ 1
.
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We can use algebra to rewrite the solution as

2 ln(x+ 1)
x− 1

+ x

[
1

x+ 1
−

1
x− 1

]
=

2 ln(x+ 1)
x− 1

−
2x

(x+ 1)(x− 1)
,

which allows us to see that

2x
(x+ 1)(x− 1)

=

[
1

x+ 1
+

1
x− 1

]
is a solution of the complementary equation. Therefore we use the particular solution

yp =
2 ln(x+ 1)
x− 1

in the general solution of (3.7.24) to get

y =
2 ln(x+ 1)
x− 1

+
c1

x− 1
+

c2

x+ 1
. (3.7.24)

Differentiating this yields

y ′ =
2

x2 − 1
−

2 ln(x+ 1)
(x− 1)2

−
c1

(x− 1)2
−

c2

(x+ 1)2
.

Setting x = 0 in the last two equations and imposing the initial conditions y(0) = −1
and y ′(0) = −5 yields the system

−c1 + c2 = −1
−2− c1 − c2 = −5.

The solution of this system is c1 = 2, c2 = 1. Substituting these into (3.7.24) yields

y =
2 ln(x+ 1)
x− 1

+
2

x− 1
+

1
x+ 1

=
2 ln(x+ 1)
x− 1

+
3x+ 1
x2 − 1

as the solution of (3.7.21). Figure 3.1 is a graph of the solution.

Comparison of Methods

We have now considered three methods for solving nonhomogeneous linear equations:
undetermined coefficients, reduction of order, and variation of parameters. It is natural to
ask which method is best for a given problem. The method of undetermined coefficients
should be used for constant coefficient equations with forcing functions that are linear
combinations of polynomials multiplied by functions of the form eαx, eλx cosωx, or
eλx sinωx. Although the other two methods can be used to solve such problems, they
will be more difficult except in the most trivial cases, because of the integrations involved.
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−1 1

−40
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x
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y = 2 ln(x+1)

x−1
+ 3x+1

x2 −1

Figure 3.1 y =
2 ln(x+ 1)
x− 1

+
3x+ 1
x2 − 1

If the equation is not a constant coefficient equation or the forcing function is not of
the form just specified, the method of undetermined coefficients does not apply and
the choice is necessarily between the other two methods. The case could be made that
reduction of order is better because it requires only one solution of the complementary
equation while variation of parameters requires two. However, variation of parameters
will probably be easier if you already know a fundamental set of solutions of the
complementary equation.

3.7 Exercises

In Exercises 1–6 use variation of parameters to find a particular solution.

1. y ′′ + 9y = tan 3x 2. y ′′ + 4y = sin 2x sec2 2x

3. y ′′ − 3y ′ + 2y =
4

1+ e−x
4. y ′′ − 2y ′ + 2y = 3ex sec x

5. y ′′ − 2y ′ + y = 14x3/2ex 6. y ′′ − y =
4e−x

1− e−2x
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In Exercises 7–29 use variation of parameters to find a particular solution, given the solutions
y1, y2 of the complementary equation.

7. x2y ′′ + xy ′ − y = 2x2 + 2; y1 = x, y2 =
1
x

8. xy ′′ + (2− 2x)y ′ + (x− 2)y = e2x; y1 = ex, y2 =
ex

x

9. 4x2y ′′ + (4x− 8x2)y ′ + (4x2 − 4x− 1)y = 4x1/2ex, x > 0;
y1 = x1/2ex, y2 = x−1/2ex

10. y ′′ + 4xy ′ + (4x2 + 2)y = 4e−x(x+2); y1 = e−x
2 , y2 = xe−x

2

11. x2y ′′ − 4xy ′ + 6y = x5/2, x > 0; y1 = x2, y2 = x3

12. x2y ′′ − 3xy ′ + 3y = 2x4 sin x; y1 = x, y2 = x3

13. (2x+ 1)y ′′ − 2y ′ − (2x+ 3)y = (2x+ 1)2e−x; y1 = e−x, y2 = xex

14. 4xy ′′ + 2y ′ + y = sin
√
x; y1 = cos

√
x, y2 = sin

√
x

15. xy ′′ − (2x+ 2)y ′ + (x+ 2)y = 6x3ex; y1 = ex, y2 = x3ex

16. x2y ′′ − (2a− 1)xy ′ + a2y = xa+1; y1 = xa, y2 = xa ln x

17. x2y ′′ − 2xy ′ + (x2 + 2)y = x3 cos x; y1 = x cos x, y2 = x sin x

18. xy ′′ − y ′ − 4x3y = 8x5; y1 = ex
2 , y2 = e−x

2

19. (sin x)y ′′+(2 sin x−cos x)y ′+(sin x−cos x)y = e−x; y1 = e−x, y2 = e−x cos x

20. 4x2y ′′ − 4xy ′ + (3− 16x2)y = 8x5/2; y1 =
√
xe2x, y2 =

√
xe−2x

21. 4x2y ′′ − 4xy ′ + (4x2 + 3)y = x7/2; y1 =
√
x sin x, y2 =

√
x cos x

22. x2y ′′ − 2xy ′ − (x2 − 2)y = 3x4; y1 = xex, y2 = xe−x

23. x2y ′′ − 2x(x+ 1)y ′ + (x2 + 2x+ 2)y = x3ex; y1 = xex, y2 = x2ex

24. x2y ′′ − xy ′ − 3y = x3/2; y1 = 1/x, y2 = x3

25. x2y ′′ − x(x+ 4)y ′ + 2(x+ 3)y = x4ex; y1 = x2, y2 = x2ex

26. x2y ′′ − 2x(x+ 2)y ′ + (x2 + 4x+ 6)y = 2xex; y1 = x2ex, y2 = x3ex

27. x2y ′′ − 4xy ′ + (x2 + 6)y = x4; y1 = x2 cos x, y2 = x2 sin x

28. (x− 1)y ′′ − xy ′ + y = 2(x− 1)2ex; y1 = x, y2 = ex

29. 4x2y ′′ − 4x(x+ 1)y ′ + (2x+ 3)y = x5/2ex; y1 =
√
x, y2 =

√
xex

In Exercises 30–32 use variation of parameters to solve the initial value problem, given y1,y2
are solutions of the complementary equation.

30. (3x− 1)y ′′ − (3x+ 2)y ′ − (6x− 8)y = (3x− 1)2e2x, y(0) = 1, y ′(0) = 2;

y1 = e2x, y2 = xe−x

31. (x− 1)2y ′′ − 2(x− 1)y ′ + 2y = (x− 1)2, y(0) = 3, y ′(0) = −6;

y1 = x− 1, y2 = x2 − 1



Section 3.8 Applications to Springs 163

Figure 3.1 (a) y > 0 (b) y = 0, (c) y < 0
Figure 3.2 A spring – mass system with

damping

32. (x− 1)2y ′′ − (x2 − 1)y ′ + (x+ 1)y = (x− 1)3ex, y(0) = 4, y ′(0) = −6;

y1 = (x− 1)ex, y2 = x− 1

In Exercises 33–35 use variation of parameters to solve the initial value problem and graph the
solution, given that y1,y2 are solutions of the complementary equation.

33. (x2 − 1)y ′′ + 4xy ′ + 2y = 2x, y(0) = 0, y ′(0) = −2; y1 =
1

x− 1
, y2 =

1
x+ 1

34. x2y ′′ + 2xy ′ − 2y = −2x2, y(1) = 1, y ′(1) = −1; y1 = x, y2 =
1
x2

35. (x+ 1)(2x+ 3)y ′′ + 2(x+ 2)y ′ − 2y = (2x+ 3)2, y(0) = 0, y ′(0) = 0;

y1 = x+ 2, y2 =
1

x+ 1

3.8 APPLICATIONS TO SPRINGS

We consider the motion of an object of massm, suspended from a spring of negligible
mass. We say that the spring–mass system is in equilibrium when the object is at rest and
the forces acting on it sum to zero. The position of the object in this case is the equilibrium
position. We define y to be the displacement of the object from its equilibrium position
(Figure 3.1), measured positive upward.

Our model accounts for several kinds of forces acting on the object:

• The force due to gravity is represented by −mg. This force is also known as weight.

• Another force Fs is exerted by the spring resisting change in its length. The natural
length of the spring is its length with no mass attached. We assume that the spring
obeys Hooke’s law: If the length of the spring is changed by an amount ∆L from
its natural length, then the spring exerts a force Fs = k∆L, where k is a positive
number called the spring constant. If the spring is stretched, then ∆L > 0 and
Fs > 0, so the spring force is upward; if the spring is compressed, then ∆L < 0 and
Fs < 0, so the spring force is downward.

• In some models, there may be a damping force Fd = −cy ′ that resists the motion
with a force proportional to the velocity of the object. It may be due to air resistance
or friction in the spring. However, a convenient way to visualize a damping force
is to assume that the object is rigidly attached to a piston with negligible mass
immersed in a cylinder filled with a viscous liquid (Figure 3.2). As the piston
moves, the liquid exerts a damping force. We say that the motion is undamped if
c = 0, or damped if c > 0.
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• In some models, there may be an external force F, other than the force due to
gravity, that may vary with t, but is independent of displacement and velocity. We
say that the motion is free if F ≡ 0, or forced if F 6≡ 0.

From Newton’s second law of motion, whenever the net force acting on an object is
not zero, the net force must be proportional to its acceleration. Thus, in our model, my ′′

must equal the sum of the forces acting on the object. More precisely,

my ′′ = −mg+ Fs − cy
′ + F. (3.8.1)

We now relate Fs to y. In the absence of external forces, the object stretches the spring by
an amount ∆λ to assume its equilibrium position. Since the sum of the forces acting on
an object in equilibrium is zero, Hooke’s Law implies thatmg = k∆λ. However, if the
object is displaced y units from its equilibrium position, the total change in the length of
the spring becomes ∆L = ∆λ− y, and Hooke’s law now implies that

Fs = k∆L = k∆λ− ky.

Substituting this into (3.8.1) yields

my ′′ = −mg+ k∆L− ky− cy ′ + F.

Sincemg = k∆λ this can be written as

my ′′ + cy ′ + ky = F. (3.8.2)

We call this the equation of motion.

Simple Harmonic Motion

We first consider spring–mass systems without damping where the motion is also free;
that is, both c = 0 and F=0. We begin with an initial value problem.

Example 3.8.1 An object stretches a spring 6 inches in equilibrium.
(a) Set up the equation of motion and find its general solution.

(b) Find the displacement of the object for t > 0 if it’s initially displaced 18 inches above
equilibrium and given a downward velocity of 3 ft/s.

Solution (a) Setting c = 0 and F = 0 in (3.8.2) yields the equation of motion

my ′′ + ky = 0,

which we rewrite as
y ′′ +

k

m
y = 0. (3.8.3)

Although we would need the weight of the object to obtain k from the equationmg =
k∆λwe can determine the coefficient k/m using ∆λ because we know the acceleration
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Figure 3.3 y =
3
2
cos 8t−

3
8
sin 8t

due to gravity. Consistent with the units used in the problem statement, we take g = 32
ft/s2. Although ∆λ is stated in inches, we must convert it to feet to be consistent with
this choice of g; that is, ∆λ = 1/2 ft. Using k/m = g/∆λ, we see that

k

m
=

32
1/2

= 64

and (3.8.3) becomes
y ′′ + 64y = 0. (3.8.4)

The characteristic equation of (3.8.4) is

r2 + 64 = 0,

which has the zeros r = ±8i. Therefore the general solution of (3.8.4) is

y = c1 cos 8t+ c2 sin 8t. (3.8.5)

(b)The initial upward displacement of 18 inches is positive and must be expressed in
feet. The initial downward velocity is negative; thus,

y(0) =
3
2

and y ′(0) = −3.

Differentiating (3.8.5) yields

y ′ = −8c1 sin 8t+ 8c2 cos 8t. (3.8.6)

Setting t = 0 in (3.8.5) and (3.8.6) and imposing the initial conditions shows that c1 = 3/2
and c2 = −3/8. Therefore

y =
3
2
cos 8t−

3
8
sin 8t,

where y is in feet (Figure 3.3).
We now consider the equation

my ′′ + ky = 0

where m and k are arbitrary positive numbers. Dividing through by m and defining
ω0 =

√
k/m yields

y ′′ +ω2
0y = 0.

The general solution of this equation is

y = c1 cosω0t+ c2 sinω0t. (3.8.7)

We can rewrite this in a more useful form by defining

R =
√
c21 + c

2
2, (3.8.8)
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Figure 3.4 R =
√
c21 + c

2
2; c1 = R cosφ; c2 = R sinφ

and
c1 = R cosφ and c2 = R sinφ. (3.8.9)

Substituting from (3.8.9) into (3.8.7) and applying the identity

cosω0t cosφ+ sinω0t sinφ = cos(ω0t− φ)

yields
y = R cos(ω0t− φ). (3.8.10)

From (3.8.8) and (3.8.9) we see that the R and φ can be interpreted as polar coordinates
of the point with rectangular coordinates (c1, c2) (Figure 3.4). Given c1 and c2, we can
compute R from (3.8.8) and find φ by noting that

tanφ =
c2

c1
.

There are infinitely many angles φ, differing by integer multiples of 2π, that satisfy this
equation. We will always choose φ so that −π 6 φ < π.

The motion described by (3.8.7) or (3.8.10) is simple harmonic motion. We see from either
of these equations that the motion is periodic, with period

T = 2π/ω0.

This is the time required for the object to complete one full cycle of oscillation (for
example, to move from its highest position to its lowest position and back to its highest
position). Since the highest and lowest positions of the object are y = R and y = −R,
we say that R is the amplitude of the oscillation. The angle φ in (3.8.10) is the phase angle,
measured in radians. Equation (3.8.10) is the amplitude–phase form of the displacement. If
t is in seconds thenω0 is in radians per second (rad/s); this is the frequency of the motion.
It is also called the natural frequency of the spring–mass system without damping.

Example 3.8.2 We found the displacement of the object in Example 3.8.1 to be

y =
3
2
cos 8t−

3
8
sin 8t.

Find the frequency, period, amplitude, and phase angle of the motion.

Solution The frequency is ω0 = 8 rad/s, and the period is T = 2π/ω0 = π/4 s. Since
c1 = 3/2 and c2 = −3/8, the amplitude is

R =
√
c21 + c

2
2 =

√(
3
2

)2

+

(
3
8

)2

=
3
8
√
17.
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The phase angle is determined by

tanφ =
−3

8
3
2
. (3.8.11)

Using a calculator, we find from (3.8.11) that

φ ≈ −.245 rad.

Since cosφ > 0 and sinφ < 0, the angle is in the fourth quadrant and that the calculated
value of the phase angle is correct.

Example 3.8.3 The natural length of a spring is 1 m. An object is attached to it and the
length of the spring increases to 102 cm when the object is in equilibrium. Then the
object is initially displaced downward 1 cm and given an upward velocity of 14 cm/s.
Find the displacement for t > 0. Also, find the natural frequency, period, amplitude,
and phase angle of the resulting motion. Express the answer in terms of centimeters.

Solution To use centimeters, we convert gravity to g = 980 cm/s2. Since ∆λ = 2 cm,
ω2

0 = g/∆λ = 490. Therefore

y ′′ + 490y = 0, y(0) = −1, y ′(0) = 14.

The general solution of the differential equation is

y = c1 cos 7
√
10t+ c2 sin 7

√
10t,

so
y ′ = 7

√
10
(
−c1 sin 7

√
10t+ c2 cos 7

√
10t
)
.

Substituting the initial conditions into the last two equations yields c1 = −1 and c2 =
2/
√
10. Hence,

y = − cos 7
√
10t+

2√
10

sin 7
√
10t.

The frequency is 7
√
10 rad/s, and the period is T = 2π/(7

√
10) s. The amplitude is

R =
√
c21 + c

2
2 =

√
(−1)2 +

(
2√
10

)2

=

√
7
5

cm.

The phase angle is determined by

tanφ =

2√
10

−1
.

Here it is important to notice that since cosφ < 0 and sinφ > 0, the phase angle is in the
second quadrant. This means that we must add π to the calculated value of the angle
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provided by the definition of the inverse tangent function. With the aid of a calculator,
we find that

φ ≈ 2.58 rad.

Undamped Forced Oscillation

In many mechanical problems a device is subjected to periodic external forces. For
example, soldiers marching in cadence on a bridge cause periodic disturbances in the
bridge, and the engines of a propeller–driven aircraft cause periodic disturbances in its
wings. In the absence of sufficient damping forces, such disturbances – even if small in
magnitude – can cause structural breakdown if they are at certain critical frequencies.
To illustrate, this we consider the motion of an object in a spring–mass system without
damping, subject to an external force

F(t) = F0 cosωt

where F0 is a constant. In this case the equation of motion (3.8.2) is

my ′′ + ky = F0 cosωt,

which we rewrite as
y ′′ +ω2

0y =
F0

m
cosωt (3.8.12)

withω0 =
√
k/m. We will see from the next two examples that the solutions of (3.8.12)

withω 6= ω0 behave very differently from the solutions withω = ω0.

Example 3.8.4 Solve the initial value problem

y ′′ +ω2
0y =

F0

m
cosωt, y(0) = 0, y ′(0) = 0, (3.8.13)

given thatω 6= ω0.

Solution We first obtain a particular solution of (3.8.12) by the method of undetermined
coefficients. Sinceω 6= ω0, cosωt is not a solution of the complementary equation

y ′′ +ω2
0y = 0.

Therefore (3.8.12) has a particular solution of the form

yp = A cosωt+ B sinωt.

Since
y ′′p = −ω2(A cosωt+ B sinωt),

y ′′p +ω2
0yp =

F0

m
cosωt
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if and only if

(ω2
0 −ω

2) (A cosωt+ B sinωt) =
F0

m
cosωt.

This holds if and only if

A =
F0

m(ω2
0 −ω

2)
and B = 0,

so
yp =

F0

m(ω2
0 −ω

2)
cosωt.

The general solution of (3.8.12) is

y =
F0

m(ω2
0 −ω

2)
cosωt+ c1 cosω0t+ c2 sinω0t, (3.8.14)

so
y ′ =

−ωF0
m(ω2

0 −ω
2)

sinωt+ω0(−c1 sinω0t+ c2 cosω0t).

The initial conditions y(0) = 0 and y ′(0) = 0 in (3.8.13) imply that

c1 = −
F0

m(ω2
0 −ω

2)
and c2 = 0.

Substituting these into (3.8.14) yields

y =
F0

m(ω2
0 −ω

2)
(cosωt− cosω0t). (3.8.15)

It is revealing to write this solution in a different form. We start with the trigonometric
identities

cos(α− β) = cosα cosβ+ sinα sinβ
cos(α+ β) = cosα cosβ− sinα sinβ.

Subtracting the second identity from the first yields

cos(α− β) − cos(α+ β) = 2 sinα sinβ (3.8.16)

Now let
α− β = ωt and α+ β = ω0t, (3.8.17)

so that

α =
(ω0 +ω)t

2
and β =

(ω0 −ω)t

2
. (3.8.18)
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Figure 3.5 Undamped oscillation with beats

Substituting (3.8.18) and (3.8.17) into (3.8.16) yields

cosωt− cosω0t = 2 sin
(ω0 −ω)t

2
sin

(ω0 +ω)t

2
,

and substituting this into (3.8.15) yields

y = R(t) sin
(ω0 +ω)t

2
, (3.8.19)

where

R(t) =
2F0

m(ω2
0 −ω

2)
sin

(ω0 −ω)t

2
. (3.8.20)

From (3.8.19) we can regard y as a sinusoidal variation with frequency (ω0+ω)/2 and
variable amplitude |R(t)|. In Figure 3.5 the dashed curve above the t axis is y = |R(t)|,
the dashed curve below the t axis is y = −|R(t)|, and the displacement y appears as an
oscillation bounded by them. The oscillation of y for t on an interval between successive
zeros of R(t) is called a beat.

You can see from (3.8.20) and (3.8.19) that

|y(t)| 6
2|F0|

m|ω2
0 −ω

2|
;

moreover, ifω+ω0 is sufficiently large compared withω−ω0, then |y| assumes values
close to (perhaps equal to) this upper bound during each beat. However, the oscillation
remains bounded for all t. (This assumes that the spring can withstand deflections of
this size and continue to obey Hooke’s law.) The next example shows that this is not the
case ifω = ω0.

Example 3.8.5 Find the general solution of

y ′′ +ω2
0y =

F0

m
cosω0t. (3.8.21)

Solution We first obtain a particular solution yp of (3.8.21). Since cosω0t is a solution
of the complementary equation, the form for yp is

yp = t(A cosω0t+ B sinω0t). (3.8.22)

Then
y ′p = A cosω0t+ B sinω0t+ω0t(−A sinω0t+ B cosω0t)

and

y ′′p = 2ω0(−A sinω0t+ B cosω0t) −ω
2
0t(A cosω0t+ B sinω0t). (3.8.23)
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Figure 3.6 Unbounded displacement due to resonance

From (3.8.23) and (3.8.22), we see that yp satisfies (3.8.21) if

−2Aω0 sinω0t+ 2Bω0 cosω0t =
F0

m
cosω0t;

that is, if

A = 0 and B =
F0

2mω0
.

Therefore
yp =

F0t

2mω0
sinω0t

is a particular solution of (3.8.21). The general solution of (3.8.21) is

y =
F0t

2mω0
sinω0t+ c1 cosω0t+ c2 sinω0t.

The graph of yp is shown in Figure 3.6, where it can be seen that yp oscillates between
the dashed lines

y =
F0t

2mω0
and y = −

F0t

2mω0

with increasing amplitude that approaches∞ as t→∞. Of course, this means that the
spring must eventually fail to obey Hooke’s law or break.

This phenomenon of unbounded displacements of a spring–mass system in response
to a periodic forcing function at its natural frequency is called resonance. More compli-
cated mechanical structures can also exhibit resonance–like phenomena. For example,
rhythmic oscillations of a suspension bridge by wind forces or of an airplane wing
by periodic vibrations of reciprocating engines can cause damage or even failure if
the frequencies of the disturbances are close to critical frequencies determined by the
parameters of the mechanical system in question.

Free Vibrations With Damping

We now consider the motion of an object in a spring–mass system with damping but
with unforced motion. In this case, the equation of motion is

my ′′ + cy ′ + ky = 0. (3.8.24)

Now suppose the object is displaced from equilibrium and given an initial velocity.
Intuition suggests that if the damping force is sufficiently weak, the resulting motion
will be oscillatory, as in the undamped case. On the other hand, if the damping force
is sufficiently strong, the object may just move slowly toward the equilibrium position
without ever reaching it. We will confirm these intuitive ideas mathematically. The
characteristic equation of (3.8.24) is

mr2 + cr+ k = 0.
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Figure 3.7 Underdamped motion

The roots of this equation are

r1 =
−c−

√
c2 − 4mk
2m

and r2 =
−c+

√
c2 − 4mk
2m

. (3.8.25)

We have seen that the form of the solution of (3.8.24) depends upon whether c2 − 4mk is
positive, negative, or zero. We now consider these three cases.

Underdamped Motion

We say the motion is underdamped if c <
√
4mk. In this case r1 and r2 in (3.8.25) are

complex conjugates, which we write as

r1 = −
c

2m
− iω1 and r2 = −

c

2m
+ iω1,

where

ω1 =

√
4mk− c2

2m
.

The general solution of (3.8.24) in this case is

y = e−ct/2m(c1 cosω1t+ c2 sinω1t).

By the method used to derive the amplitude–phase form of the displacement of an object
in simple harmonic motion, we can rewrite this equation as

y = Re−ct/2m cos(ω1t− φ), (3.8.26)

where
R =

√
c21 + c

2
2.

The factor Re−ct/2m in (3.8.26) is called the time–varying amplitude of the motion. A
typical graph of (3.8.26) is shown in Figure 3.7. As illustrated in that figure, the graph of
y oscillates between the dashed exponential curves y = ±Re−ct/2m.
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Overdamped Motion

We say the motion is overdamped if c >
√
4mk. In this case the zeros r1 and r2 of the

characteristic polynomial are real, with r1 < r2 < 0 (see (3.8.25)), and the general solution
of (3.8.24) is

y = c1e
r1t + c2e

r2t.

Again limt→∞ y(t) = 0 as in the underdamped case, but the motion is not oscillatory,
since y cannot equal zero for more than one value of t unless c1 = c2 = 0.

Critically Damped Motion

We say the motion is critically damped if c =
√
4mk. In this case r1 = r2 = −c/2m and

the general solution of (3.8.24) is

y = e−ct/2m(c1 + c2t).

Again limt→∞ y(t) = 0 and the motion is nonoscillatory, since y cannot equal zero for
more than one value of t unless c1 = c2 = 0.

Example 3.8.6 Suppose a 64 lb weight stretches a spring 6 inches in equilibrium and
experiences a damping force of c lb for each ft/sec of velocity.
(a) Write the equation of motion of the object and determine the value of c for which

the motion is critically damped.

(b) Find the displacement y for t > 0 if the motion is critically damped and the initial
conditions are y(0) = 1 and y ′(0) = 20.

(c) Find the displacement y for t > 0 if the motion is critically damped and the initial
conditions are y(0) = 1 and y ′(0) = −20.

Solution (a) Here m = 2 (since the force of weight is −mg = 64) and k = 64/.5 = 128
lb/ft. Therefore the equation of motion (3.8.24) becomes

2y ′′ + cy ′ + 128y = 0. (3.8.27)

The characteristic equation is
2r2 + cr+ 128 = 0,

which has roots

r =
−c±

√
c2 − 8 · 128
4

.

Therefore the damping is critical if

c =
√
8 · 128 = 32 lb–sec/ft.

(b) Setting c = 32 in (3.8.27) and cancelling the common factor 2 yields

y ′′ + 16y+ 64y = 0.



174 Chapter 3 Linear Higher Order Equations

Figure 3.8 (a) y = e−8t(1+ 28t) (b) y = e−8t(1− 12t)

The characteristic equation is

r2 + 16r+ 64y = (r+ 8)2 = 0.

Hence, the general solution is

y = e−8t(c1 + c2t). (3.8.28)

Differentiating this yields
y ′ = −8y+ c2e

−8t. (3.8.29)

Imposing the initial conditions y(0) = 1 and y ′(0) = 20 in the last two equations shows
that 1 = c1 and 20 = −8+ c2. Hence, the solution of the initial value problem is

y = e−8t(1+ 28t).

Therefore the object approaches equilibrium from above as t→∞. There’s no oscillation.
(c)Imposing the initial conditions y(0) = 1 and y ′(0) = −20 in (3.8.28) and (3.8.29)

yields 1 = c1 and −20 = −8+ c2. Hence, the solution of this initial value problem is

y = e−8t(1− 12t).

Therefore the object moves downward through equilibrium just once, and then ap-
proaches equilibrium from below as t→∞. Again, there is no oscillation. The solutions
of these two initial value problems are graphed in Figure 3.8.

Example 3.8.7 Find the displacement of the object in Example 3.8.6 if the damping
constant is c = 4 lb–sec/ft and the initial conditions are y(0) = 1.5 ft and y ′(0) = −3
ft/sec.

Solution With c = 4, the equation of motion (3.8.4) becomes

y ′′ + 2y ′ + 64y = 0 (3.8.30)

after cancelling the common factor 2. The characteristic equation

r2 + 2r+ 64 = 0

has complex conjugate roots

r =
−2±

√
4− 4 · 64
2

= −1± 3
√
7i.

Therefore the motion is underdamped and the general solution of (3.8.30) is

y = e−t(c1 cos 3
√
7t+ c2 sin 3

√
7t).



Section 3.8 Applications to Springs 175

Differentiating this yields

y ′ = −y+ 3
√
7e−t(−c1 sin 3

√
7t+ c2 cos 3

√
7t).

Imposing the initial conditions y(0) = 1.5 and y ′(0) = −3 in the last two equations
yields 1.5 = c1 and −3 = −1.5+ 3

√
7c2. Hence, the solution of the initial value problem

is

y = e−t
(
3
2
cos 3
√
7t−

1
2
√
7
sin 3
√
7t
)
. (3.8.31)

The amplitude of the function in parentheses is

R =

√(
3
2

)2

+

(
1

2
√
7

)2

=

√
9
4
+

1
4 · 7 =

√
64
4 · 7 =

4√
7
.

Therefore we can rewrite (3.8.31) as

y =
4√
7
e−t cos(3

√
7t− φ).

Example 3.8.8 Let the damping constant in Example 1 be c = 40 lb–sec/ft. Find the
displacement y for t > 0 if y(0) = 1 and y ′(0) = 1.

Solution With c = 40, the equation of motion (3.8.27) reduces to

y ′′ + 20y ′ + 64y = 0 (3.8.32)

after cancelling the common factor 2. The characteristic equation

r2 + 20r+ 64 = (r+ 16)(r+ 4) = 0

has the roots r1 = −4 and r2 = −16. Therefore the general solution of (3.8.32) is

y = c1e
−4t + c2e

−16t. (3.8.33)

Differentiating this yields
y ′ = −4e−4t − 16c2e−16t.

The last two equations and the initial conditions y(0) = 1 and y ′(0) = 1 imply that

c1 + c2 = 1
−4c1 − 16c2 = 1.

The solution of this system is c1 = 17/12, c2 = −5/12. Substituting these into (3.8.33)
yields

y =
17
12
e−4t −

5
12
e−16t
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as the solution of the given initial value problem.

3.8 Exercises

In Exercises 1–12, assume that there is no damping.

1. An object stretches a spring 4 inches in equilibrium. Find and graph its displace-
ment for t > 0 if it’s initially displaced 36 inches above equilibrium and given a
downward velocity of 2 ft/s.

2. An object stretches a string 1.2 inches in equilibrium. Find its displacement for
t > 0 if it’s initially displaced 3 inches below equilibrium and given a downward
velocity of 2 ft/s.

3. A spring with natural length .5 m has length 50.5 cm with a mass of 2 gm sus-
pended from it. The mass is initially displaced 1.5 cm below equilibrium and
released with zero velocity. Find its displacement for t > 0.

4. An object stretches a spring 6 inches in equilibrium. Find its displacement for
t > 0 if it’s initially displaced 3 inches above equilibrium and given a downward
velocity of 6 inches/s. Find the frequency, period, amplitude and phase angle of
the motion.

5. An object stretches a spring 5 cm in equilibrium. It is initially displaced 10 cm
above equilibrium and given an upward velocity of .25 m/s. Find and graph its
displacement for t > 0. Find the frequency, period, amplitude, and phase angle of
the motion.

6. A 10 kg mass stretches a spring 70 cm in equilibrium. Suppose a 2 kg mass is
attached to the spring, initially displaced 25 cm below equilibrium, and given an
upward velocity of 2 m/s. Find its displacement for t > 0. Find the frequency,
period, amplitude, and phase angle of the motion.

7. A weight stretches a spring 1.5 inches in equilibrium. The weight is initially
displaced 8 inches above equilibrium and given a downward velocity of 4 ft/s.
Find its displacement for t > 0.

8. A weight stretches a spring 6 inches in equilibrium. The weight is initially dis-
placed 6 inches above equilibrium and given a downward velocity of 3 ft/s. Find
its displacement for t > 0.

9. A 64 lb weight is attached to a spring with constant k = 8 lb/ft and subjected to
an external force F(t) = 2 sin t. The weight is initially displaced 6 inches above
equilibrium and given an upward velocity of 2 ft/s. Find its displacement for
t > 0.

10. A unit mass hangs in equilibrium from a spring with constant k = 1/16. Starting
at t = 0, a force F(t) = 3 sin t is applied to the mass. Find its displacement for
t > 0.
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11. A 4 lb weight stretches a spring 1 ft in equilibrium. An external force F(t) =
.25 sin 8t lb is applied to the weight, which is initially displaced 4 inches above
equilibrium and given a downward velocity of 1 ft/s. Find and graph its displace-
ment for t > 0.

12. A 2 lb weight stretches a spring 6 inches in equilibrium. An external force F(t) =
sin 8t lb is applied to the weight, which is released from rest 2 inches below
equilibrium. Find its displacement for t > 0.

13. A 64 lb object stretches a spring 4 ft in equilibrium. A damping force is exerted with
damping constant c = 8 lb-sec/ft. The object is initially displaced 18 inches above
equilibrium and given a downward velocity of 4 ft/sec. Find its displacement and
time–varying amplitude for t > 0.

14. A 16 lb weight is attached to a spring with natural length 5 ft. With the weight
attached, the spring measures 8.2 ft. The weight is initially displaced 3 ft below
equilibrium and given an upward velocity of 2 ft/sec. Find and graph its displace-
ment for t > 0 if the medium resists the motion with a force of one lb for each
ft/sec of velocity. Also, find its time–varying amplitude.

15. An 8 lb weight stretches a spring 1.5 inches. A damping force is exerted with
damping constant c=8 lb-sec/ft. The weight is initially displaced 3 inches above
equilibrium and given an upward velocity of 6 ft/sec. Find and graph its displace-
ment for t > 0.

16. A 96 lb weight stretches a spring 3.2 ft in equilibrium. A damping force is ex-
erted with damping constant c=18 lb-sec/ft. The weight is initially displaced 15
inches below equilibrium and given a downward velocity of 12 ft/sec. Find its
displacement for t > 0.

17. An 8 lb weight stretches a spring .32 ft. The weight is initially displaced 6 inches
above equilibrium and given an upward velocity of 4 ft/sec. Find its displacement
for t > 0 if the medium exerts a damping force of 1.5 lb for each ft/sec of velocity.

18. A 32 lb weight stretches a spring 2 ft in equilibrium. A damping force is exerted
with a constant c = 8 lb-sec/ft. The weight is initially displaced 8 inches below
equilibrium and released from rest. Find its displacement for t > 0.

19. A mass of 20 gm stretches a spring 5 cm. A damping force is exerted with a
constant 400 dyne sec/cm. Determine the displacement for t > 0 if the mass is
initially displaced 9 cm above equilibrium and released from rest.

20. A 64 lb weight is suspended from a spring with constant k = 25 lb/ft. It is
initially displaced 18 inches above equilibrium and released from rest. Find its
displacement for t > 0 if the medium resists the motion with 6 lb of force for each
ft/sec of velocity.

21. An 8 lb weight stretches a spring 2 inches. A damping force is exerted with a
constant c=4 lb-sec/ft. The weight is initially displaced 3 inches above equilibrium
and given a downward velocity of 4 ft/sec. Find its displacement for t > 0.
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22. A 2 lb weight stretches a spring .32 ft. The weight is initially displaced 4 inches
below equilibrium and given an upward velocity of 5 ft/sec. The medium provides
damping with constant c = 1/8 lb-sec/ft. Find and graph the displacement for
t > 0.





CHAPTER 4

SERIES SOLUTIONS OF SECOND ORDER EQUATIONS

IN THIS CHAPTER we study a class of second order differential equations that occur in
many applications but do not possess solutions in terms of elementary functions. The
equations considered in this chapter have variable coefficients that can be written in the
form

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0, (A)

where P2, P1, and P0 are polynomials with no common factor. We will see that if
P2(0) 6= 0, then solutions of (A) can be written as power series

y =

∞∑
n=0

anx
n

that converge in an open interval centered at x = 0. For most equations that occur
in applications, these polynomials are of degree two or less, so we will impose this
restriction throughout the chapter.

SECTION 4.1 reviews the properties of power series.

SECTIONS 4.2 AND 4.3 are devoted to finding power series solutions of (A) in the case
where P2(0) 6= 0. The situation is more complicated if P2(0) = 0; however, if P1 and P0
satisfy assumptions that apply to most equations of interest, then we are able to use a
modified series method to obtain solutions of (A).

SECTION 4.4 introduces the appropriate assumptions on P1 and P0 in the case where
P2(0) = 0, and deals with Cauchy–Euler equation

ax2y ′′ + bxy ′ + cy = 0,

where a, b, and c are constants. This is the simplest equation that satisfies these assump-
tions.

180
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4.1 REVIEW OF POWER SERIES

Many applications give rise to differential equations with solutions that cannot be
expressed in terms of elementary functions such as polynomials, rational functions,
exponential and logarithmic functions, and trigonometric functions. However, the
solutions of some of the most important of these equations can be expressed in terms of
power series. We will study such equations in this chapter. In this section we review
relevant properties of power series but will omit proofs, which can be found in any
standard calculus text.

Definition 4.1.1 An infinite series of the form
∞∑
n=0

an(x− x0)
n, (4.1.1)

where x0 and a0, a1, . . . , an, . . . are constants, is called a power series in x − x0. We say
that the power series (4.1.1) converges for a given x if the limit

lim
N→∞

N∑
n=0

an(x− x0)
n

exists; otherwise, we say that the power series diverges for the given x.

A power series in x− x0 must converge if x = x0, since the positive powers of x− x0
are all zero in this case. This may be the only value of x for which the power series
converges. However, the next theorem shows that if the power series converges for
some x 6= x0 then the set of all values of x for which it converges forms an interval.

Theorem 4.1.2 For any power series

∞∑
n=0

an(x− x0)
n,

exactly one of these three statements is true:
(i) The power series converges only for x = x0.

(ii) The power series converges for all values of x.

(iii) There’s a positive number R such that the power series converges if |x − x0| < R and
diverges if |x− x0| > R.

In case (iii) we say that R is the radius of convergence of the power series. For conve-
nience, we include the other two cases in this definition by defining R = 0 in case (i) and
R =∞ in case (ii). We define the open interval of convergence of

∑∞
n=0 an(x− x0)

n to be

(x0 − R, x0 + R) if 0 < R <∞, or (−∞,∞) if R =∞.
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If R is finite, no general statement can be made concerning convergence at the endpoints
x = x0 ± R of the open interval of convergence; the series may converge at one or both
points, or diverge at both.

Recall from calculus that a series of constants
∑∞
n=0 αn is said to converge absolutely if

the series of absolute values
∑∞
n=0 |αn| converges. It can be shown that a power series∑∞

n=0 an(x− x0)
n with a positive radius of convergence R converges absolutely in its

open interval of convergence; that is, the series

∞∑
n=0

|an||x− x0|
n

of absolute values converges if |x − x0| < R. However, if R < ∞, the series may fail to
converge absolutely at an endpoint x0 ± R, even if it converges there.

The next theorem provides a useful method for determining the radius of convergence
of a power series. It is derived in calculus by applying the ratio test to the corresponding
series of absolute values.

Theorem 4.1.3 Suppose there is an integer N such that an 6= 0 if n > N and

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L,
where 0 6 L 6 ∞. Then the radius of convergence of

∑∞
n=0 an(x − x0)

n is R = 1/L, which
should be interpreted to mean that R = 0 if L =∞, or R =∞ if L = 0.

Example 4.1.1 Find the radius of convergence of the series:

(a)
∞∑
n=0

n!xn (b)
∞∑
n=10

(−1)n
xn

n!
(c)

∞∑
n=0

2nn2(x− 1)n.

Solution (a) Here an = n!, so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞ (n+ 1)!

n!
= lim
n→∞(n+ 1) =∞.

Hence, R = 0.
(b) Here an = (1)n/n! for n > N = 10, so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞ n!

(n+ 1)!
= lim
n→∞ 1

n+ 1
= 0.

Hence, R =∞.
(c) Here an = 2nn2, so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞ 2n+1(n+ 1)2

2nn2 = 2 lim
n→∞

(
1+

1
n

)2

= 2.
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Hence, R = 1/2.

Taylor Series

If a function f has derivatives of all orders at a point x = x0, then the Taylor series of f
about x0 is defined by ∞∑

n=0

f(n)(x0)

n!
(x− x0)

n.

In the special case where x0 = 0, this series is also called the Maclaurin series of f.
Taylor series for most of the common elementary functions converge to the functions

on their open intervals of convergence. For example, you are probably familiar with the
following Maclaurin series:

ex =

∞∑
n=0

xn

n!
, −∞ < x <∞, (4.1.2)

sin x =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, −∞ < x <∞, (4.1.3)

cos x =

∞∑
n=0

(−1)n
x2n

(2n)!
, −∞ < x <∞, (4.1.4)

1
1− x

=

∞∑
n=0

xn, −1 < x < 1. (4.1.5)

Differentiation of Power Series

A power series with a positive radius of convergence defines a function

f(x) =

∞∑
n=0

an(x− x0)
n

on its open interval of convergence. We say that the series represents f on the open
interval of convergence. A function f represented by a power series may be a familiar
elementary function as in (4.1.2)–(4.1.5); however, it often happens that f is not a familiar
function, so the series actually defines f.

The next theorem shows that a function represented by a power series has derivatives
of all orders on the open interval of convergence of the power series. The theorem also
provides power series representations of the derivatives.

Theorem 4.1.4 A power series

f(x) =

∞∑
n=0

an(x− x0)
n

http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Maclaurin.html
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with positive radius of convergence R has derivatives of all orders in its open interval of
convergence, and successive derivatives can be obtained by repeatedly differentiating term by
term; that is,

f ′(x) =

∞∑
n=1

nan(x− x0)
n−1, (4.1.6)

f ′′(x) =

∞∑
n=2

n(n− 1)an(x− x0)
n−2, (4.1.7)

...

f(k)(x) =

∞∑
n=k

n(n− 1) · · · (n− k+ 1)an(x− x0)
n−k. (4.1.8)

Moreover, all of these series have the same radius of convergence R.

Example 4.1.2 Let f(x) = sin x. From (4.1.3),

f(x) =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

From (4.1.6), the derivative of f(x) is

∞∑
n=0

(−1)n
d

dx

[
x2n+1

(2n+ 1)!

]
=

∞∑
n=0

(−1)n
x2n

(2n)!
,

which is the series (4.1.4) for cos x.

Uniqueness of Power Series

The next theorem shows that if f is defined by a power series in x − x0 with a positive
radius of convergence, then the power series is the Taylor series of f about x0.

Theorem 4.1.5 If the power series

f(x) =

∞∑
n=0

an(x− x0)
n

has a positive radius of convergence, then

an =
f(n)(x0)

n!
; (4.1.9)

that is,
∑∞
n=0 an(x− x0)

n is the Taylor series of f about x0.
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The next theorem lists two important properties of power series that follow from
Theorem 4.1.5.

Theorem 4.1.6

(a) If ∞∑
n=0

an(x− x0)
n =

∞∑
n=0

bn(x− x0)
n

for all x in an open interval that contains x0, then an = bn for n = 0, 1, 2, . . . .

(b) If ∞∑
n=0

an(x− x0)
n = 0

for all x in an open interval that contains x0, then an = 0 for n = 0, 1, 2, . . . .

Shifting the Summation Index

In Definition 4.1.1 of a power series in x − x0, the n-th term is a constant multiple of
(x − x0)

n. This is not true in (4.1.6), (4.1.7), and (4.1.8), where the general terms are
constant multiples of (x− x0)

n−1, (x− x0)
n−2, and (x− x0)

n−k, respectively. However,
these series can all be rewritten so that their n-th terms are constant multiples of (x−x0)

n.
For example, letting n = k+ 1 in the series in (4.1.6) yields

f ′(x) =
∞∑
k=0

(k+ 1)ak+1(x− x0)
k, (4.1.10)

where we start the new summation index k from zero so that the first term in (4.1.10)
(obtained by setting k = 0) is the same as the first term in (4.1.6) (obtained by setting
n = 1). However, the sum of a series is independent of the symbol used to denote the
summation index, just as the value of a definite integral is independent of the symbol
used to denote the variable of integration. Therefore we can replace k by n in (4.1.10) to
obtain

f ′(x) =
∞∑
n=0

(n+ 1)an+1(x− x0)
n, (4.1.11)

where the general term is a constant multiple of (x− x0)
n.

It is not necessary to introduce the intermediate summation index k. We can obtain
(4.1.11) directly from (4.1.6) by replacing n by n + 1 in the general term of (4.1.6) and
subtracting 1 from the lower limit of (4.1.6). More generally, we use the following
procedure for shifting indices.
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Shifting the Summation Index in a Power Series

For any integer k, the power series

∞∑
n=n0

bn(x− x0)
n−k

can be rewritten as ∞∑
n=n0−k

bn+k(x− x0)
n.

In words, replacing n by n + k in the general term and subtracting k from the lower
limit of summation leaves the series unchanged.

Example 4.1.3 Rewrite the power series from (4.1.7) and (4.1.8) so that the general term
in each is a constant multiple of (x− x0)

n:

(a)
∞∑
n=2

n(n− 1)an(x− x0)
n−2 (b)

∞∑
n=k

n(n− 1) · · · (n− k+ 1)an(x− x0)
n−k.

Solution (a) Replacing n by n+ 2 in the general term and subtracting 2 from the lower
limit of summation yields

∞∑
n=2

n(n− 1)an(x− x0)
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− x0)
n.

(b) Replacing n by n+ k in the general term and subtracting k from the lower limit of
summation yields

∞∑
n=k

n(n−1) · · · (n−k+1)an(x−x0)
n−k =

∞∑
n=0

(n+k)(n+k−1) · · · (n+1)an+k(x−x0)
n.

Example 4.1.4 Given that

f(x) =

∞∑
n=0

anx
n,

write the function xf ′′ as a power series in which the general term is a constant multiple
of xn.
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Solution From Theorem 4.1.4 with x0 = 0,

f ′′(x) =
∞∑
n=2

n(n− 1)anxn−2.

Therefore

xf ′′(x) =
∞∑
n=2

n(n− 1)anxn−1.

Replacing n by n + 1 in the general term and subtracting 1 from the lower limit of
summation yields

xf ′′(x) =
∞∑
n=1

(n+ 1)nan+1x
n.

We can also write this as

xf ′′(x) =
∞∑
n=0

(n+ 1)nan+1x
n,

since the first term in this last series is zero. However, we will see later that sometimes it
is useful to include zero terms at the beginning of a series.

Linear Combinations of Power Series

If a power series is multiplied by a constant, then the constant can be placed inside the
summation; that is,

c

∞∑
n=0

an(x− x0)
n =

∞∑
n=0

can(x− x0)
n.

Two power series

f(x) =

∞∑
n=0

an(x− x0)
n and g(x) =

∞∑
n=0

bn(x− x0)
n

with positive radii of convergence can be added term by term at points common to their
open intervals of convergence; thus, if the first series converges for |x− x0| < R1 and the
second converges for |x− x0| < R2, then

f(x) + g(x) =

∞∑
n=0

(an + bn)(x− x0)
n

for |x− x0| < R, where R is the smaller of R1 and R2. More generally, linear combinations
of power series can be formed term by term; for example,

c1f(x) + c2f(x) =

∞∑
n=0

(c1an + c2bn)(x− x0)
n.
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Example 4.1.5 Find the Maclaurin series for cosh x as a linear combination of the Maclau-
rin series for ex and e−x.

Solution By definition,

cosh x =
1
2
ex +

1
2
e−x.

Since

ex =

∞∑
n=0

xn

n!
and e−x =

∞∑
n=0

(−1)n
xn

n!
,

it follows that

cosh x =
∞∑
n=0

1
2
[1+ (−1)n]

xn

n!
. (4.1.12)

Since
1
2
[1+ (−1)n] =

{
1 if n = 2m, an even integer,
0 if n = 2m+ 1, an odd integer,

we can rewrite (4.1.12) more simply as

cosh x =
∞∑
m=0

x2m

(2m)!
.

This result is valid on (−∞,∞), since this is the open interval of convergence of the
Maclaurin series for ex and e−x.

Example 4.1.6 Suppose

y =

∞∑
n=0

anx
n

on an open interval I that contains the origin.
(a) Express

(2− x)y ′′ + 2y

as a power series in x on I.

(b) Use the result of (a) to find necessary and sufficient conditions on the coefficients
{an} for y to be a solution of the homogeneous equation

(2− x)y ′′ + 2y = 0 (4.1.13)

on I.

Solution (a) From (4.1.7) with x0 = 0,

y ′′ =
∞∑
n=2

n(n− 1)anxn−2.
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Therefore

(2− x)y ′′ + 2y = 2y ′′ − xy ′ + 2y

=

∞∑
n=2

2n(n− 1)anxn−2 −

∞∑
n=2

n(n− 1)anxn−1 +

∞∑
n=0

2anxn.

(4.1.14)
To combine the three series we shift indices in the first two to make their general terms
constant multiples of xn; thus,

∞∑
n=2

2n(n− 1)anxn−2 =

∞∑
n=0

2(n+ 2)(n+ 1)an+2x
n (4.1.15)

and ∞∑
n=2

n(n− 1)anxn−1 =

∞∑
n=1

(n+ 1)nan+1x
n. (4.1.16)

Notice that we can add a zero term to the series in (4.1.16) by changing the lower index of
summation so that when we substitute (4.1.15) and (4.1.16) into (4.1.14), all three series
will start with n = 0. The result is then

(2− x)y ′′ + 2y =

∞∑
n=0

[2(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + 2an]xn. (4.1.17)

(b) From (4.1.17) we see that y satisfies (4.1.13) on I if

2(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + 2an = 0, n = 0, 1, 2, . . . . (4.1.18)

Conversely, Theorem 4.1.6 (b) implies that if y =
∑∞
n=0 anx

n satisfies (4.1.13) on I, then
(4.1.18) holds.

Example 4.1.7 Suppose

y =

∞∑
n=0

an(x− 1)n

on an open interval I that contains x0 = 1. Express the function

(1+ x)y ′′ + 2(x− 1)2y ′ + 3y (4.1.19)

as a power series in x− 1 on I.

Solution Since we want a power series in x − 1, we rewrite the coefficient of y ′′ in
(4.1.19) as 1+ x = 2+ (x− 1), so (4.1.19) becomes

2y ′′ + (x− 1)y ′′ + 2(x− 1)2y ′ + 3y.
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From (4.1.6) and (4.1.7) with x0 = 1,

y ′ =
∞∑
n=1

nan(x− 1)n−1 and y ′′ =
∞∑
n=2

n(n− 1)an(x− 1)n−2.

At this point, we have constructed four series.

2y ′′ =

∞∑
n=2

2n(n− 1)an(x− 1)n−2

(x− 1)y ′′ =

∞∑
n=2

n(n− 1)an(x− 1)n−1

2(x− 1)2y ′ =

∞∑
n=1

2nan(x− 1)n+1

3y =

∞∑
n=0

3an(x− 1)n

Before adding these four series, we shift indices in the first three so that their general
terms become constant multiples of (x− 1)n. The four series now look like this.

2y ′′ =

∞∑
n=0

2(n+ 2)(n+ 1)an+2(x− 1)n (4.1.20)

(x− 1)y ′′ =

∞∑
n=0

(n+ 1)nan+1(x− 1)n (4.1.21)

2(x− 1)2y ′ =

∞∑
n=1

2(n− 1)an−1(x− 1)n (4.1.22)

3y =

∞∑
n=0

3an(x− 1)n (4.1.23)

Notice that we added initial zero terms to the series in (4.1.21) and (4.1.22). Adding
(4.1.20) – (4.1.23) yields

(1+ x)y ′′ + 2(x− 1)2y ′ + 3y = 2y ′′ + (x− 1)y ′′ + 2(x− 1)2y ′ + 3y

=

∞∑
n=0

bn(x− 1)n,

where

b0 = 4a2 + 3a0, (4.1.24)
bn = 2(n+ 2)(n+ 1)an+2 + (n+ 1)nan+1 + 2(n− 1)an−1 + 3an, n > 1.(4.1.25)
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The formula (4.1.24) for b0 cannot be obtained by setting n = 0 in (4.1.25), since the
summation in (4.1.22) begins with n = 1, while those in (4.1.20), (4.1.21), and (4.1.23)
begin with n = 0.

4.1 Exercises

1. For each power series, use Theorem 4.1.3 to find the radius of convergence R. If
R > 0, find the open interval of convergence.

(a)
∞∑
n=0

(−1)n

2nn
(x− 1)n (b)

∞∑
n=0

2nn(x− 2)n

(c)
∞∑
n=0

n!
9n
xn (d)

∞∑
n=0

n(n+ 1)
16n

(x− 2)n

(e)
∞∑
n=0

(−1)n
7n

n!
xn (f)

∞∑
n=0

3n

4n+1(n+ 1)2
(x+ 7)n

In Exercises 2–6 find a power series solution y(x) =
∑∞
n=0 anx

n.

2. (2+ x)y ′′ + xy ′ + 3y 3. (1+ 3x2)y ′′ + 3x2y ′ − 2y

4. (1+ 2x2)y ′′ + (2− 3x)y ′ + 4y 5. (1+ x2)y ′′ + (2− x)y ′ + 3y

6. (1+ 3x2)y ′′ − 2xy ′ + 4y
7. Suppose y(x) =

∑∞
n=0 an(x + 1)n on an open interval that contains x0 = −1.

Find a power series in x+ 1 for

xy ′′ + (4+ 2x)y ′ + (2+ x)y.

8. Suppose y(x) =
∑∞
n=0 an(x− 2)n on an open interval that contains x0 = 2. Find

a power series in x− 2 for
x2y ′′ + 2xy ′ − 3xy.

9. Suppose the series
∑∞
n=0 anx

n converges on an open interval (−R,R), let r be an
arbitrary real number, and define

y(x) = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r

on (0,R). Use Theorem 4.1.4 and the rule for differentiating the product of two
functions to show that

y ′(x) =

∞∑
n=0

(n+ r)anx
n+r−1,

y ′′(x) =

∞∑
n=0

(n+ r)(n+ r− 1)anxn+r−2,

...

y(k)(x) =

∞∑
n=0

(n+ r)(n+ r− 1) · · · (n+ r− k)anx
n+r−k
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on (0,R).

In Exercises 10–15 let y be as defined in Exercise 9, and write the given expression in the form
xr
∑∞
n=0 bnx

n.

10. x2(1− x)y ′′ + x(4+ x)y ′ + (2− x)y

11. x2(1+ x)y ′′ + x(1+ 2x)y ′ − (4+ 6x)y

12. x2(1+ x)y ′′ − x(1− 6x− x2)y ′ + (1+ 6x+ x2)y

13. x2(1+ 3x)y ′′ + x(2+ 12x+ x2)y ′ + 2x(3+ x)y

14. x2(1+ 2x2)y ′′ + x(4+ 2x2)y ′ + 2(1− x2)y

15. x2(2+ x2)y ′′ + 2x(5+ x2)y ′ + 2(3− x2)y

4.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I

Many physical applications give rise to second order homogeneous linear differential
equations of the form

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0, (4.2.1)

where P2, P1, and P0 are polynomials. Some examples are: Airy’s equation,

y ′′ − xy = 0,

which occurs in astronomy and quantum physics; Bessel’s equation,

x2y ′′ + xy ′ + (x2 − ν2)y = 0,

which occurs in problems displaying cylindrical symmetry such as diffraction of light
through a circular aperture, propagation of electromagnetic radiation through a coaxial
cable, and vibrations of a circular drum head; and Legendre’s equation,

(1− x2)y ′′ − 2xy ′ + α(α+ 1)y = 0,

which occurs in problems displaying spherical symmetry (particularly in electromag-
netism). Usually the solutions of these types of equations cannot be expressed in terms
of familiar elementary functions. Therefore we will consider the problem of representing
solutions of (4.2.1) with series.

We assume throughout that P2, P1 and P0 have no common factors. Then we say
that x0 is an ordinary point of (4.2.1) if P2(x0) 6= 0, or a singular point if P2(x0) = 0. For
Legendre’s equation,

(1− x2)y ′′ − 2xy ′ + α(α+ 1)y = 0, (4.2.2)

x0 = 1 and x0 = −1 are singular points and all other points are ordinary points. For
Bessel’s equation,

x2y ′′ + xy ′ + (x2 − ν2)y = 0,
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x0 = 0 is a singular point and all other points are ordinary points. If P2 is a nonzero
constant as in Airy’s equation,

y ′′ − xy = 0, (4.2.3)

then every point is an ordinary point.
Since polynomials are continuous everywhere, P1/P2 and P0/P2 are continuous at any

point x0 that is not a zero of P2. Therefore, if x0 is an ordinary point of (4.2.1) and a0 and
a1 are arbitrary real numbers, then the initial value problem

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0, y(x0) = a0, y ′(x0) = a1 (4.2.4)

has a unique solution on the largest open interval that contains x0 and does not contain
any zeros of P2. To see this, we rewrite the differential equation in (4.2.4) as

y ′′ +
P1(x)

P2(x)
y ′ +

P0(x)

P2(x)
y = 0

and apply Theorem 3.1.1 with p = P1/P2 and q = P0/P2. In this section and the next we
consider the problem of representing solutions of (4.2.1) by power series that converge
for values of x near an ordinary point x0.

We state the next theorem without proof.

Theorem 4.2.1 Suppose P0, P1, and P2 are polynomials with no common factor and P2 is not
identically zero. Let x0 be a point such that P2(x0) 6= 0, and let ρ be the distance from x0 to the
nearest zero of P2 in the complex plane. (If P2 is constant, then ρ =∞.) Then every solution of

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0 (4.2.5)

can be represented by a power series

y =

∞∑
n=0

an(x− x0)
n (4.2.6)

that converges at least on the open interval (x0 − ρ, x0 + ρ). ( If P2 is nonconstant, so that
ρ is necessarily finite, then the open interval of convergence of (4.2.6) may be larger than
(x0 − ρ, x0 + ρ). If P2 is constant then ρ =∞ and (x0 − ρ, x0 + ρ) = (−∞,∞).)

We call (4.2.6) a power series solution in x− x0 of (4.2.5). We will now develop a method
for finding power series solutions of (4.2.5). For this purpose we write (4.2.5) as Ly = 0,
where

Ly = P2y
′′ + P1y

′ + P0y. (4.2.7)

Theorem 4.2.1 implies that every solution of Ly = 0 on (x0 − ρ, x0 + ρ) can be written
as

y =

∞∑
n=0

an(x− x0)
n.
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Setting x = x0 in this series and in the series

y ′ =
∞∑
n=1

nan(x− x0)
n−1

shows that y(x0) = a0 and y ′(x0) = a1. Since every initial value problem (4.2.4) has a
unique solution, this means that a0 and a1 can be chosen arbitrarily, and a2, a3, . . . are
uniquely determined by them.

To find a2, a3, . . . , first write P0, P1, and P2 in powers of x− x0, then substitute

y =

∞∑
n=0

an(x− x0)
n,

y ′ =
∞∑
n=1

nan(x− x0)
n−1,

y ′′ =
∞∑
n=2

n(n− 1)an(x− x0)
n−2

into (4.2.7) and collect the coefficients of like powers of x− x0. This yields

Ly =

∞∑
n=0

bn(x− x0)
n, (4.2.8)

where {b0,b1, . . . ,bn, . . . } are expressed in terms of {a0,a1, . . . ,an, . . . } and the coeffi-
cients of P0, P1, and P2, written in powers of x− x0. Since (4.2.8) and (a) of Theorem 4.1.6
imply that Ly = 0 if and only if bn = 0 for n > 0, all power series solutions in x − x0
of Ly = 0 can be obtained by choosing a0 and a1 arbitrarily and computing a2, a3, . . . ,
successively so that bn = 0 for n > 0. For simplicity, we call the power series obtained
this way the power series in x − x0 for the general solution of Ly = 0, without explicitly
identifying the open interval of convergence of the series.

Example 4.2.1 Let x0 be an arbitrary real number. Find the power series in x − x0 for
the general solution of

y ′′ + y = 0. (4.2.9)

Solution Here
Ly = y ′′ + y.

If

y =

∞∑
n=0

an(x− x0)
n,

then

y ′′ =
∞∑
n=2

n(n− 1)an(x− x0)
n−2,
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so

Ly =

∞∑
n=2

n(n− 1)an(x− x0)
n−2 +

∞∑
n=0

an(x− x0)
n.

To collect coefficients of like powers of x− x0, we shift the summation index in the first
sum. This yields

Ly =

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− x0)
n +

∞∑
n=0

an(x− x0)
n =

∞∑
n=0

bn(x− x0)
n,

with
bn = (n+ 2)(n+ 1)an+2 + an.

Therefore Ly = 0 if and only if

an+2 =
−an

(n+ 2)(n+ 1)
, n > 0, (4.2.10)

where a0 and a1 are arbitrary. Since the indices on the left and right sides of (4.2.10)
differ by two, we write (4.2.10) separately for n even (n = 2m) and n odd (n = 2m+ 1).
This yields

a2m+2 =
−a2m

(2m+ 2)(2m+ 1)
, m > 0, (4.2.11)

and

a2m+3 =
−a2m+1

(2m+ 3)(2m+ 2)
, m > 0. (4.2.12)

Computing the coefficients of the even powers of x− x0 from (4.2.11) yields

a2 = −
a0

2 · 1

a4 = −
a2

4 · 3 = −
1

4 · 3
(
−
a0

2 · 1
)
=

a0

4 · 3 · 2 · 1,

a6 = −
a4

6 · 5 = −
1

6 · 5
( a0

4 · 3 · 2 · 1
)
= −

a0

6 · 5 · 4 · 3 · 2 · 1,

and, in general,
a2m = (−1)m

a0

(2m)!
, m > 0. (4.2.13)

Computing the coefficients of the odd powers of x− x0 from (4.2.12) yields

a3 = −
a1

3 · 2

a5 = −
a3

5 · 4 = −
1

5 · 4
(
−
a1

3 · 2
)
=

a1

5 · 4 · 3 · 2,

a7 = −
a5

7 · 6 = −
1

7 · 6
( a1

5 · 4 · 3 · 2
)
= −

a1

7 · 6 · 5 · 4 · 3 · 2,
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and, in general,

a2m+1 =
(−1)ma1

(2m+ 1)!
m > 0. (4.2.14)

Thus, the general solution of (4.2.9) can be written as

y =

∞∑
m=0

a2m(x− x0)
2m +

∞∑
m=0

a2m+1(x− x0)
2m+1,

or, from (4.2.13) and (4.2.14), as

y = a0

∞∑
m=0

(−1)m
(x− x0)

2m

(2m)!
+ a1

∞∑
m=0

(−1)m
(x− x0)

2m+1

(2m+ 1)!
. (4.2.15)

If we recall from calculus that
∞∑
m=0

(−1)m
(x− x0)

2m

(2m)!
= cos(x− x0) and

∞∑
m=0

(−1)m
(x− x0)

2m+1

(2m+ 1)!
= sin(x− x0),

then (4.2.15) becomes
y = a0 cos(x− x0) + a1 sin(x− x0),

which should look familiar.
Equations like (4.2.10), (4.2.11), and (4.2.12), which define a given coefficient in the

sequence {an} in terms of one or more coefficients with lesser indices are called recurrence
relations.

In the remainder of this section, we consider the problem of finding power series
solutions in x− x0 for equations of the form(

1+ α(x− x0)
2)y ′′ + β(x− x0)y

′ + γy = 0. (4.2.16)

Many important equations that arise in applications are of this form with x0 = 0,
including Legendre’s equation (4.2.2) and Airy’s equation (4.2.3).

Since
P2(x) = 1+ α(x− x0)

2

in (4.2.16), the point x0 is an ordinary point of (4.2.16), and Theorem 4.2.1 implies that
the solutions of (4.2.16) can be written as power series in x − x0 that converge on the
interval (x0 − 1/

√
|α|, x0 + 1/

√
|α|) if α 6= 0, or on (−∞,∞) if α = 0. We will see that the

coefficients in these power series can be obtained by methods similar to the one used in
Example 4.2.1.

To simplify finding the coefficients, we introduce some notation for products:

s∏
j=r

bj = brbr+1 · · ·bs if s > r.
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Thus,
7∏
j=2

bj = b2b3b4b5b6b7,

4∏
j=0

(2j+ 1) = (1)(3)(5)(7)(9) = 945,

and
2∏
j=2

j2 = 22 = 4.

We define
s∏
j=r

bj = 1 if s < r,

no matter what the form of bj.

Example 4.2.2 Find the power series in x for the general solution of

(1+ 2x2)y ′′ + 6xy ′ + 2y = 0. (4.2.17)

Solution Here
Ly = (1+ 2x2)y ′′ + 6xy ′ + 2y.

If

y =

∞∑
n=0

anx
n

then

y ′ =
∞∑
n=1

nanx
n−1 and y ′′ =

∞∑
n=2

n(n− 1)anxn−2,

so

Ly = (1+ 2x2)

∞∑
n=2

n(n− 1)anxn−2 + 6x
∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anx
n

=

∞∑
n=2

n(n− 1)anxn−2 +

∞∑
n=0

[2n(n− 1) + 6n+ 2]anxn

=

∞∑
n=2

n(n− 1)anxn−2 + 2
∞∑
n=0

(n+ 1)2anxn.

To collect coefficients of xn, we shift the summation index in the first sum. Ly is now
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n + 2

∞∑
n=0

(n+ 1)2anxn =

∞∑
n=0

bnx
n,
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with
bn = (n+ 2)(n+ 1)an+2 + 2(n+ 1)2an, n > 0.

To obtain solutions of (4.2.17), we set bn = 0 for n > 0. This is equivalent to the
recurrence relation

an+2 = −2
n+ 1
n+ 2

an, n > 0. (4.2.18)

Since the indices on the left and right differ by two, we write (4.2.18) separately for
n = 2m and n = 2m+ 1, as in Example 4.2.1. This yields

a2m+2 = −2
2m+ 1
2m+ 2

a2m = −
2m+ 1
m+ 1

a2m, m > 0, (4.2.19)

and

a2m+3 = −2
2m+ 2
2m+ 3

a2m+1 = −4
m+ 1
2m+ 3

a2m+1, m > 0. (4.2.20)

Computing the coefficients of even powers of x from (4.2.19) yields

a2 = −
1
1
a0,

a4 = −
3
2
a2 =

(
−
3
2

)(
−
1
1

)
a0 =

1 · 3
1 · 2a0,

a6 = −
5
3
a4 = −

5
3

(
1 · 3
1 · 2

)
a0 = −

1 · 3 · 5
1 · 2 · 3a0,

a8 = −
7
4
a6 = −

7
4

(
−
1 · 3 · 5
1 · 2 · 3

)
a0 =

1 · 3 · 5 · 7
1 · 2 · 3 · 4a0.

In general,

a2m = (−1)m
∏m
j=1(2j− 1)
m!

a0, m > 0. (4.2.21)

(Note that (4.2.21) is correct form = 0 because we defined
∏0
j=1 bj = 1 for any bj.)

Computing the coefficients of odd powers of x from (4.2.20) yields

a3 = −4
1
3
a1,

a5 = −4
2
5
a3 = −4

2
5

(
−4

1
3

)
a1 = 42 1 · 2

3 · 5a1,

a7 = −4
3
7
a5 = −4

3
7

(
42 1 · 2

3 · 5

)
a1 = −43 1 · 2 · 3

3 · 5 · 7a1,

a9 = −4
4
9
a7 = −4

4
9

(
43 1 · 2 · 3

3 · 5 · 7

)
a1 = 44 1 · 2 · 3 · 4

3 · 5 · 7 · 9a1.
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In general,

a2m+1 =
(−1)m4mm!∏m
j=1(2j+ 1)

a1, m > 0. (4.2.22)

From (4.2.21) and (4.2.22),

y = a0

∞∑
m=0

(−1)m
∏m
j=1(2j− 1)
m!

x2m + a1

∞∑
m=0

(−1)m
4mm!∏m
j=1(2j+ 1)

x2m+1.

is the power series in x for the general solution of (4.2.17). Since P2(x) = 1 + 2x2

has no real zeros, Theorem 3.1.1 implies that every solution of (4.2.17) is defined on
(−∞,∞). However, since P2(±i/

√
2) = 0, Theorem 4.2.1 implies only that the power

series converges in (−1/
√
2, 1/
√
2) for any choice of a0 and a1.

The results in Examples 4.2.1 and 4.2.2 are consequences of the following general
theorem.

Theorem 4.2.2 The coefficients {an} in any solution y =
∑∞
n=0 an(x− x0)

n of(
1+ α(x− x0)

2)y ′′ + β(x− x0)y
′ + γy = 0 (4.2.23)

satisfy the recurrence relation

an+2 = −
p(n)

(n+ 2)(n+ 1)
an, n > 0, (4.2.24)

where
p(n) = αn(n− 1) + βn+ γ. (4.2.25)

Moreover, the coefficients of the even and odd powers of x− x0 can be computed separately as

a2m+2 = −
p(2m)

(2m+ 2)(2m+ 1)
a2m, m > 0 (4.2.26)

and

a2m+3 = −
p(2m+ 1)

(2m+ 3)(2m+ 2)
a2m+1, m > 0, (4.2.27)

where a0 and a1 are arbitrary.

Proof Here
Ly = (1+ α(x− x0)

2)y ′′ + β(x− x0)y
′ + γy.

If

y =

∞∑
n=0

an(x− x0)
n,

then

y ′ =
∞∑
n=1

nan(x− x0)
n−1 and y ′′ =

∞∑
n=2

n(n− 1)an(x− x0)
n−2.
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Hence,

Ly =

∞∑
n=2

n(n− 1)an(x− x0)
n−2 +

∞∑
n=0

[αn(n− 1) + βn+ γ]an(x− x0)
n

=

∞∑
n=2

n(n− 1)an(x− x0)
n−2 +

∞∑
n=0

p(n)an(x− x0)
n,

from (4.2.25). To collect coefficients of powers of x− x0, we shift the summation index in
the first sum. This yields

Ly =

∞∑
n=0

[(n+ 2)(n+ 1)an+2 + p(n)an] (x− x0)
n.

Thus, Ly = 0 if and only if

(n+ 2)(n+ 1)an+2 + p(n)an = 0, n > 0,

which is equivalent to (4.2.24). Writing (4.2.24) separately for the cases where n = 2m
and n = 2m+ 1 yields (4.2.26) and (4.2.27).

Example 4.2.3 Find the power series in x− 1 for the general solution of

(2+ 4x− 2x2)y ′′ − 12(x− 1)y ′ − 12y = 0. (4.2.28)

Solution We must first write the coefficient P2(x) = 2+ 4x− x2 in powers of x− 1. To
do this, we write x = (x− 1) + 1 in P2(x) and then expand the terms, collecting powers
of x− 1; thus,

2+ 4x− 2x2 = 2+ 4[(x− 1) + 1] − 2[(x− 1) + 1]2

= 4− 2(x− 1)2.

Therefore we can rewrite (4.2.28) as(
4− 2(x− 1)2

)
y ′′ − 12(x− 1)y ′ − 12y = 0,

or, equivalently, (
1−

1
2
(x− 1)2

)
y ′′ − 3(x− 1)y ′ − 3y = 0.

This is of the form (4.2.23) with α = −1/2, β = −3, and γ = −3. Therefore, from (4.2.25)

p(n) = −
n(n− 1)

2
− 3n− 3 = −

(n+ 2)(n+ 3)
2

.
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Hence, Theorem 4.2.2 implies that

a2m+2 = −
p(2m)

(2m+ 2)(2m+ 1)
a2m

=
(2m+ 2)(2m+ 3)
2(2m+ 2)(2m+ 1)

a2m =
2m+ 3

2(2m+ 1)
a2m, m > 0

and

a2m+3 = −
p(2m+ 1)

(2m+ 3)(2m+ 2)
a2m+1

=
(2m+ 3)(2m+ 4)
2(2m+ 3)(2m+ 2)

a2m+1 =
m+ 2

2(m+ 1)
a2m+1, m > 0.

We leave it to you to show that

a2m =
2m+ 1
2m

a0 and a2m+1 =
m+ 1
2m

a1, m > 0,

which implies that the power series in x− 1 for the general solution of (4.2.28) is

y = a0

∞∑
m=0

2m+ 1
2m

(x− 1)2m + a1

∞∑
m=0

m+ 1
2m

(x− 1)2m+1.

In the examples considered so far we were able to express the coefficients in the power
series solutions by using summation notation. In some cases this is impossible, and
we must settle for computing a finite number of terms in the series. The next example
illustrates this with an initial value problem.

Example 4.2.4 Compute a0, a1, . . . , a7 in the series solution y =
∑∞
n=0 anx

n of the
initial value problem

(1+ 2x2)y ′′ + 10xy ′ + 8y = 0, y(0) = 2, y ′(0) = −3. (4.2.29)

Solution Since α = 2, β = 10, and γ = 8 in (4.2.29),

p(n) = 2n(n− 1) + 10n+ 8 = 2(n+ 2)2.

Therefore

an+2 = −2
(n+ 2)2

(n+ 2)(n+ 1)
an = −2

n+ 2
n+ 1

an, n > 0.

Writing this equation separately for n = 2m and n = 2m+ 1 yields

a2m+2 = −2
(2m+ 2)
2m+ 1

a2m = −4
m+ 1
2m+ 1

a2m, m > 0 (4.2.30)

and
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a2m+3 = −2
2m+ 3
2m+ 2

a2m+1 = −
2m+ 3
m+ 1

a2m+1, m > 0. (4.2.31)

From the initial condition for the function, we start with a0 = 2 and then we compute
a2,a4, and a6 from (4.2.30):

a2 = −4
1
1
2 = −8,

a4 = −4
2
3
(−8) =

64
3
,

a6 = −4
3
5

(
64
3

)
= −

256
5

.

Based on the initial condition for the derivative of the function, we start with a1 = −3
and compute a3,a5 and a7 from (4.2.31):

a3 = −
3
1
(−3) = 9,

a5 = −
5
2
9 = −

45
2
,

a7 = −
7
3

(
−
45
2

)
=

105
2

.

Therefore the solution of (4.2.29) is

y = 2− 3x− 8x2 + 9x3 +
64
3
x4 −

45
2
x5 −

256
5
x6 +

105
2
x7 + · · · .

4.2 Exercises

In Exercises 1 –8 find the power series in x for the general solution.

1. (1+ x2)y ′′ + 6xy ′ + 6y = 0 2. (1+ x2)y ′′ + 2xy ′ − 2y = 0

3. (1+ x2)y ′′ − 8xy ′ + 20y = 0 4. (1− x2)y ′′ − 8xy ′ − 12y = 0

5. (1+ 2x2)y ′′ + 7xy ′ + 2y = 0 6. (1+ x2)y ′′ + 2xy ′ +
1
4
y = 0

7. (1− x2)y ′′ − 5xy ′ − 4y = 0 8. (1+ x2)y ′′ − 10xy ′ + 28y = 0
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In Exercises 9 –13 find the power series in x− x0 for the general solution.

9. y ′′ − y = 0; x0 = 310. y ′′ − (x − 3)y ′ − y =
0; x0 = 3

11. (1− 4x+ 2x2)y ′′ + 10(x− 1)y ′ + 6y = 0; x0 = 1

12. (11− 8x+ 2x2)y ′′ − 16(x− 2)y ′ + 36y = 0; x0 = 2

13. (5+ 6x+ 3x2)y ′′ + 9(x+ 1)y ′ + 3y = 0; x0 = −1

In Exercises 14 –19 find a0, . . . , aN forN at least 5 in the power series y =
∑∞
n=0 an(x− x0)

n

for the solution of the initial value problem. Take x0 to be the point where the initial conditions
are imposed.

14. (x2 − 4)y ′′ − xy ′ − 3y = 0, y(0) = −1, y ′(0) = 2

15. y ′′ + (x− 3)y ′ + 3y = 0, y(3) = −2, y ′(3) = 3

16. (5− 6x+ 3x2)y ′′ + (x− 1)y ′ + 12y = 0, y(1) = −1, y ′(1) = 1

17. (4x2 − 24x+ 37)y ′′ + y = 0, y(3) = 4, y ′(3) = −6

18. (x2 − 8x+ 14)y ′′ − 8(x− 4)y ′ + 20y = 0, y(4) = 3, y ′(4) = −4

19. (2x2 + 4x+ 5)y ′′ − 20(x+ 1)y ′ + 60y = 0, y(−1) = 3, y ′(−1) = −3

4.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II

In this section we continue to find series solutions

y =

∞∑
n=0

an(x− x0)
n

of initial value problems

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0, y(x0) = a0, y ′(x0) = a1, (4.3.1)

where P0,P1, and P2 are polynomials and P2(x0) 6= 0, so x0 is an ordinary point of (4.3.1).
However, here we consider cases where the differential equation in (4.3.1) is not of the
form (

1+ α(x− x0)
2)y ′′ + β(x− x0)y

′ + γy = 0,

so Theorem 4.2.2 does not apply and the computation of the coefficients {an} is more
complicated. For the equations considered here it is difficult or impossible to obtain an
explicit formula for an in terms of n. Nevertheless, we can calculate as many coefficients
as we wish. We provide three examples to illustrate this.
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Example 4.3.1 Find the coefficients a0, . . . , a5 in the series solution y =
∑∞
n=0 anx

n of
the initial value problem

(1+ x+ 2x2)y ′′ + (1+ 7x)y ′ + 2y = 0, y(0) = −1, y ′(0) = −2. (4.3.2)

Solution Here
Ly = (1+ x+ 2x2)y ′′ + (1+ 7x)y ′ + 2y.

The zeros (−1±i
√
7)/4 of P2(x) = 1+x+2x2 have absolute value 1/

√
2, so Theorem 4.2.2

implies that the series solution converges to the solution of (4.3.2) on (−1/
√
2, 1/
√
2).

Since

y =

∞∑
n=0

anx
n, y ′ =

∞∑
n=1

nanx
n−1 and y ′′ =

∞∑
n=2

n(n− 1)anxn−2,

Ly =

∞∑
n=2

n(n− 1)anxn−2 +

∞∑
n=2

n(n− 1)anxn−1 + 2
∞∑
n=2

n(n− 1)anxn

+

∞∑
n=1

nanx
n−1 + 7

∞∑
n=1

nanx
n + 2

∞∑
n=0

anx
n.

Shifting indices so the general term in each series is a constant multiple of xn yields

Ly =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

(n+ 1)nan+1x
n + 2

∞∑
n=0

n(n− 1)anxn

+

∞∑
n=0

(n+ 1)an+1x
n + 7

∞∑
n=0

nanx
n + 2

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n,

where
bn = (n+ 2)(n+ 1)an+2 + (n+ 1)2an+1 + (n+ 2)(2n+ 1)an.

Therefore y =
∑∞
n=0 anx

n is a solution of Ly = 0 if and only if

an+2 = −
n+ 1
n+ 2

an+1 −
2n+ 1
n+ 1

an, n > 0. (4.3.3)

From the initial conditions in (4.3.2), a0 = −1 and a1 = −2. Setting n = 0 in (4.3.3) yields

a2 = −
1
2
a1 − a0 = −

1
2
(−2) − (−1) = 2.

Setting n = 1 in (4.3.3) yields

a3 = −
2
3
a2 −

3
2
a1 = −

2
3
(2) −

3
2
(−2) =

5
3
.
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We leave it to you to compute a4 and a5 from (4.3.3) and show that

y = −1− 2x+ 2x2 +
5
3
x3 −

55
12
x4 +

3
4
x5 + · · · .

Example 4.3.2 Find the coefficients a0, . . . , a5 in the series solution

y =

∞∑
n=0

an(x+ 1)n

of the initial value problem

(3+ x)y ′′ + (1+ 2x)y ′ − (2− x)y = 0, y(−1) = 2, y ′(−1) = −3. (4.3.4)

Solution Since the desired series is in powers of x+1 we rewrite the differential equation
in (4.3.4) as Ly = 0, with

Ly = (2+ (x+ 1))y ′′ − (1− 2(x+ 1))y ′ − (3− (x+ 1))y.

Since

y =

∞∑
n=0

an(x+1)n, y ′ =
∞∑
n=1

nan(x+1)n−1 and y ′′ =
∞∑
n=2

n(n−1)an(x+1)n−2,

Ly = 2
∞∑
n=2

n(n− 1)an(x+ 1)n−2 +

∞∑
n=2

n(n− 1)an(x+ 1)n−1

−

∞∑
n=1

nan(x+ 1)n−1 + 2
∞∑
n=1

nan(x+ 1)n

−3
∞∑
n=0

an(x+ 1)n +

∞∑
n=0

an(x+ 1)n+1.

Shifting indices so that the general term in each series is a constant multiple of (x+ 1)n

yields

Ly = 2
∞∑
n=0

(n+ 2)(n+ 1)an+2(x+ 1)n +

∞∑
n=0

(n+ 1)nan+1(x+ 1)n

−

∞∑
n=0

(n+ 1)an+1(x+ 1)n +

∞∑
n=0

(2n− 3)an(x+ 1)n +

∞∑
n=1

an−1(x+ 1)n

=

∞∑
n=0

bn(x+ 1)n,
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where
b0 = 4a2 − a1 − 3a0

and

bn = 2(n+ 2)(n+ 1)an+2 + (n2 − 1)an+1 + (2n− 3)an + an−1, n > 1.

Therefore y =
∑∞
n=0 an(x+ 1)n is a solution of Ly = 0 if and only if

a2 =
1
4
(a1 + 3a0) (4.3.5)

and

an+2 = −
1

2(n+ 2)(n+ 1)
[
(n2 − 1)an+1 + (2n− 3)an + an−1

]
, n > 1. (4.3.6)

From the initial conditions in (4.3.4), a0 = 2 and a1 = −3. We leave it to you to compute
a2, . . . , a5 with (4.3.5) and (4.3.6) and show that the solution of (4.3.4) is

y = −2− 3(x+ 1) +
3
4
(x+ 1)2 −

5
12

(x+ 1)3 +
7
48

(x+ 1)4 −
1
60

(x+ 1)5 + · · · .

Example 4.3.3 Find the coefficients a0, . . . , a5 in the series solution y =
∑∞
n=0 anx

n of
the initial value problem

y ′′ + 3xy ′ + (4+ 2x2)y = 0, y(0) = 2, y ′(0) = −3. (4.3.7)

Solution Here
Ly = y ′′ + 3xy ′ + (4+ 2x2)y.

Since

y =

∞∑
n=0

anx
n, y ′ =

∞∑
n=1

nanx
n−1, and y ′′ =

∞∑
n=2

n(n− 1)anxn−2,

Ly =

∞∑
n=2

n(n− 1)anxn−2 + 3
∞∑
n=1

nanx
n + 4

∞∑
n=0

anx
n + 2

∞∑
n=0

anx
n+2.

Shifting indices so that the general term in each series is a constant multiple of xn yields
Ly as

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

(3n+ 4)anxn + 2
∞∑
n=2

an−2x
n =

∞∑
n=0

bnx
n
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where
b0 = 2a2 + 4a0, b1 = 6a3 + 7a1,

and
bn = (n+ 2)(n+ 1)an+2 + (3n+ 4)an + 2an−2, n > 2.

Therefore y =
∑∞
n=0 anx

n is a solution of Ly = 0 if and only if

a2 = −2a0, a3 = −
7
6
a1, (4.3.8)

and
an+2 = −

1
(n+ 2)(n+ 1)

[(3n+ 4)an + 2an−2] , n > 2. (4.3.9)

From the initial conditions in (4.3.7), a0 = 2 and a1 = −3. We leave it to you to compute
a2, . . . , a5 with (4.3.8) and (4.3.9) and show that the solution of (4.3.7) is

y = 2− 3x− 4x2 +
7
2
x3 + 3x4 −

79
40
x5 + · · · .

4.3 Exercises

In Exercises 1–12 find the coefficients a0,. . . , aN for N at least 5 in the series solution
y =
∑∞
n=0 anx

n of the initial value problem.

1. (1+ 3x)y ′′ + xy ′ + 2y = 0, y(0) = 2, y ′(0) = −3

2. (1+ x+ 2x2)y ′′ + (2+ 8x)y ′ + 4y = 0, y(0) = −1, y ′(0) = 2

3. (1− 2x2)y ′′ + (2− 6x)y ′ − 2y = 0, y(0) = 1, y ′(0) = 0

4. (1+ x+ 3x2)y ′′ + (2+ 15x)y ′ + 12y = 0, y(0) = 0, y ′(0) = 1

5. (2+ x)y ′′ + (1+ x)y ′ + 3y = 0, y(0) = 4, y ′(0) = 3

6. (3+ 3x+ x2)y ′′ + (6+ 4x)y ′ + 2y = 0, y(0) = 7, y ′(0) = 3

7. (4+ x)y ′′ + (2+ x)y ′ + 2y = 0, y(0) = 2, y ′(0) = 5

8. (2− 3x+ 2x2)y ′′ − (4− 6x)y ′ + 2y = 0, y(1) = 1, y ′(1) = −1

9. (3x+ 2x2)y ′′ + 10(1+ x)y ′ + 8y = 0, y(−1) = 1, y ′(−1) = −1

10. (1− x+ x2)y ′′ − (1− 4x)y ′ + 2y = 0, y(1) = 2, y ′(1) = −1

11. (2+ x)y ′′ + (2+ x)y ′ + y = 0, y(−1) = −2, y ′(−1) = 3

12. x2y ′′ − (6− 7x)y ′ + 8y = 0, y(1) = 1, y ′(1) = −2

In Exercises 13–22 find the coefficients a0, . . . , aN for N at least 5 in the series solution

y =

∞∑
n=0

an(x− x0)
n

of the initial value problem. Take x0 to be the point where the initial conditions are imposed.
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13. (2+ 4x)y ′′ − 4y ′ − (6+ 4x)y = 0, y(0) = 2, y ′(0) = −7

14. (1+ 2x)y ′′ − (1− 2x)y ′ − (3− 2x)y = 0, y(1) = 1, y ′(1) = −2

15. (5+ 2x)y ′′ − y ′ + (5+ x)y = 0, y(−2) = 2, y ′(−2) = −1

16. (4+ x)y ′′ − (4+ 2x)y ′ + (6+ x)y = 0, y(−3) = 2, y ′(−3) = −2

17. (2+ 3x)y ′′ − xy ′ + 2xy = 0, y(0) = −1, y ′(0) = 2

18. (3+ 2x)y ′′ + 3y ′ − xy = 0, y(−1) = 2, y ′(−1) = −3

19. (3+ 2x)y ′′ − 3y ′ − (2+ x)y = 0, y(−2) = −2, y ′(−2) = 3

20. (10− 2x)y ′′ + (1+ x)y = 0, y(2) = 2, y ′(2) = −4

21. (7+ x)y ′′ + (8+ 2x)y ′ + (5+ x)y = 0, y(−4) = 1, y ′(−4) = 2

22. (6+ 4x)y ′′ + (1+ 2x)y = 0, y(−1) = −1, y ′(−1) = 2

In Exercises 23–29 find the coefficients a0, . . . , aN for N at least 5 in the series solution
y =
∑∞
n=0 anx

n of the initial value problem.

23. y ′′ + 2xy ′ + (3+ 2x2)y = 0, y(0) = 1, y ′(0) = −2

24. y ′′ − 3xy ′ + (5+ 2x2)y = 0, y(0) = 1, y ′(0) = −2

25. y ′′ + 5xy ′ − (3− x2)y = 0, y(0) = 6, y ′(0) = −2

26. y ′′ − 2xy ′ − (2+ 3x2)y = 0, y(0) = 2, y ′(0) = −5

27. y ′′ − 3xy ′ + (2+ 4x2)y = 0, y(0) = 3, y ′(0) = 6

28. 2y ′′ + 5xy ′ + (4+ 2x2)y = 0, y(0) = 3, y ′(0) = −2

29. 3y ′′ + 2xy ′ + (4− x2)y = 0, y(0) = −2, y ′(0) = 3
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4.4 SERIES SOLUTIONS NEAR A SINGULAR POINT

We continue to study equations of the form

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0 (4.4.1)

where P0, P1, and P2 are polynomials, but the emphasis will be different from that of
Sections 4.2 and 4.3, where we obtained solutions of (4.4.1) near an ordinary point x0 in
the form of power series in x−x0. In this section, we consider cases where x0 is a singular
point of (4.4.1) (that is, where P(x0) = 0). The solutions of such equations cannot in
general be represented by power series in x− x0. Nevertheless, it is often necessary in
physical applications to study the behavior of solutions of (4.4.1) near a singular point.
Although this can be difficult in the absence of some sort of assumption on the nature
of the singular point, equations that satisfy the requirements of the next definition can
be solved by series methods discussed in the next three sections. Fortunately, many
equations arising in applications satisfy these requirements.

Definition 4.4.1 Let P0, P1, and P2 be polynomials with no common factor and suppose
P2(x0) = 0. Then x0 is a regular singular point of the equation

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0 (4.4.2)

if (4.4.2) can be written as

(x− x0)
2A(x)y ′′ + (x− x0)B(x)y

′ + C(x)y = 0 (4.4.3)

where A, B, and C are polynomials and A(x0) 6= 0; otherwise, x0 is an irregular singular
point of (4.4.2).

Example 4.4.1 Bessel’s equation,

x2y ′′ + xy ′ + (x2 − ν2)y = 0, (4.4.4)

has the singular point x0 = 0. Since this equation is of the form (4.4.3) with x0 = 0,
A(x) = 1, B(x) = 1, and C(x) = x2 − ν2, it follows that x0 = 0 is a regular singular point
of (4.4.4).

Example 4.4.2 Legendre’s equation,

(1− x2)y ′′ − 2xy ′ + α(α+ 1)y = 0, (4.4.5)

has the singular points x0 = ±1. Mutiplying through by 1− x yields

(x− 1)2(x+ 1)y ′′ + 2x(x− 1)y ′ − α(α+ 1)(x− 1)y = 0,

which is of the form (4.4.3) with x0 = 1, A(x) = x + 1, B(x) = 2x, and C(x) = −α(α +
1)(x − 1). Therefore x0 = 1 is a regular singular point of (4.4.5). We leave it to you to
show that x0 = −1 is also a regular singular point of (4.4.5).
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Example 4.4.3 The equation
x3y ′′ + xy ′ + y = 0

has an irregular singular point at x0 = 0. (Verify.)

For convenience we restrict our attention to the case where x0 = 0 is a regular singular
point of (4.4.2). This is not really a restriction, since if x0 6= 0 is a regular singular point of
(4.4.2) then introducing the new independent variable t = x− x0 and the new unknown
Y(t) = y(t+ x0) leads to a differential equation with polynomial coefficients that has a
regular singular point at t0 = 0.

Euler Equations

The simplest kind of equation with a regular singular point at x0 = 0 is the Euler
equation, defined as follows.

Definition 4.4.2 An Euler equation is an equation that can be written in the form

ax2y ′′ + bxy ′ + cy = 0, (4.4.6)

where a,b, and c are real constants and a 6= 0.

Theorem 3.1.1 implies that (4.4.6) has solutions defined on (0,∞) and (−∞, 0), since
(4.4.6) can be rewritten as

ay ′′ +
b

x
y ′ +

c

x2y = 0.

For convenience we restrict our attention to the interval (0,∞). The key to finding
solutions on (0,∞) is that if x > 0 then xr is defined as a real-valued function on (0,∞)
for all values of r, and substituting y = xr into (4.4.6) produces

ax2(xr) ′′ + bx(xr) ′ + cxr = ax2r(r− 1)xr−2 + bxrxr−1 + cxr

= [ar(r− 1) + br+ c]xr. (4.4.7)

The polynomial
p(r) = ar(r− 1) + br+ c

is called the indicial polynomial of (4.4.6), and p(r) = 0 is its indicial equation. From (4.4.7)
we can see that y = xr is a solution of (4.4.6) on (0,∞) if and only if p(r) = 0. Therefore,
if the indicial equation has distinct real roots r1 and r2 then y1 = xr1 and y2 = xr2 form
a fundamental set of solutions of (4.4.6) on (0,∞), since y2/y1 = xr2−r1 is nonconstant.
In this case

y = c1x
r1 + c2x

r2

is the general solution of (4.4.6) on (0,∞).

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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Example 4.4.4 Find the general solution of

x2y ′′ − xy ′ − 8y = 0 (4.4.8)

on (0,∞).

Solution The indicial polynomial p(r) of (4.4.8) is

r(r− 1) − r− 8 = (r− 4)(r+ 2).

Therefore y1 = x4 and y2 = x−2 are solutions of (4.4.8) on (0,∞), and its general solution
on (0,∞) is

y = c1x
4 +

c2

x2 .

Example 4.4.5 Find the general solution of

6x2y ′′ + 5xy ′ − y = 0 (4.4.9)

on (0,∞).

Solution The indicial polynomial p(r) of (4.4.9) is

6r(r− 1) + 5r− 1 = (2r− 1)(3r+ 1).

Therefore the general solution of (4.4.9) on (0,∞) is

y = c1x
1/2 + c2x

−1/3.

If the indicial equation has a repeated root r1, then y1 = xr1 is a solution of

ax2y ′′ + bxy ′ + cy = 0, (4.4.10)

on (0,∞), but (4.4.10) has no other solution of the form y = xr. If the indicial equation
has complex conjugate zeros then (4.4.10) has no real–valued solutions of the form y = xr.
Fortunately we can use the results of Section 3.2 for constant coefficient equations to
solve (4.4.10) in any case.

Theorem 4.4.3 Suppose the roots of the indicial equation

ar(r− 1) + br+ c = 0 (4.4.11)

are r1 and r2. Then the general solution of the Euler equation

ax2y ′′ + bxy ′ + cy = 0 (4.4.12)
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on (0,∞) is

y = c1x
r1 + c2x

r2 if r1 and r2 are distinct real numbers ;
y = xr1(c1 + c2 ln x) if r1 = r2 ;
y = xλ [c1 cos (ω ln x) + c2 sin (ω ln x)] if r1, r2 = λ± iω withω > 0.

Proof We first show that y = y(x) satisfies (4.4.12) on (0,∞) if and only if Y(t) = y(et)
satisfies the constant coefficient equation

a
d2Y

dt2
+ (b− a)

dY

dt
+ cY = 0 (4.4.13)

on (−∞,∞). To do this, it is convenient to write x = et, or, equivalently, t = ln x; thus,
Y(t) = y(x), where x = et. From the chain rule,

dY

dt
=
dy

dx

dx

dt

and, since
dx

dt
= et = x,

it follows that
dY

dt
= x

dy

dx
. (4.4.14)

Differentiating this with respect to t and using the chain rule again yields the second
derivative as

d

dt

(
dY

dt

)
=

d

dt

(
x
dy

dx

)

=
dx

dt

dy

dx
+ x

d2y

dx2
dx

dt

= x
dy

dx
+ x2d

2y

dx2

(
since

dx

dt
= x

)
.

From this and (4.4.14),

x2d
2y

dx2 =
d2Y

dt2
−
dY

dt
.

Substituting this and (4.4.14) into (4.4.12) yields (4.4.13). Since (4.4.11) is the character-
istic equation of (4.4.13), Theorem 3.2.1 implies that the general solution of (4.4.13) on
(−∞,∞) is

Y(t) = c1e
r1t + c2e

r2t if r1 and r2 are distinct real numbers;
Y(t) = er1t(c1 + c2t) if r1 = r2;
Y(t) = eλt (c1 cosωt+ c2 sinωt) if r1, r2 = λ± iωwithω 6= 0.

Since Y(t) = y(et), substituting t = ln x in the last three equations shows that the general
solution of (4.4.12) on (0,∞) has the form stated in the theorem.
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Example 4.4.6 Find the general solution of

x2y ′′ − 5xy ′ + 9y = 0 (4.4.15)

on (0,∞).

Solution The indicial polynomial p(r) of (4.4.15) is

r(r− 1) − 5r+ 9 = (r− 3)2.

Therefore the general solution of (4.4.15) on (0,∞) is

y = x3(c1 + c2 ln x).

Example 4.4.7 Find the general solution of

x2y ′′ + 3xy ′ + 2y = 0 (4.4.16)

on (0,∞).

Solution The indicial polynomial p(r) of (4.4.16) is

r(r− 1) + 3r+ 2 = (r+ 1)2 + 1.

The roots of the indicial equation are r = −1± i and the general solution of (4.4.16) on
(0,∞) is

y =
1
x
[c1 cos(ln x) + c2 sin(ln x)] .

4.4 Exercises

In Exercises 1–18 find the general solution of the given Euler equation on (0,∞).

1. x2y ′′ + 7xy ′ + 8y = 0 2. x2y ′′ − 7xy ′ + 7y = 0

3. x2y ′′ − xy ′ + y = 0 4. x2y ′′ + 5xy ′ + 4y = 0

5. x2y ′′ + xy ′ + y = 0 6. x2y ′′ − 3xy ′ + 13y = 0

7. x2y ′′ + 3xy ′ − 3y = 0 8. 12x2y ′′ − 5xy ′′ + 6y = 0
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9. 4x2y ′′ + 8xy ′ + y = 0 10. 3x2y ′′ − xy ′ + y = 0

11. 2x2y ′′ − 3xy ′ + 2y = 0 12. x2y ′′ + 3xy ′ + 5y = 0

13. 9x2y ′′ + 15xy ′ + y = 0 14. x2y ′′ − xy ′ + 10y = 0

15. x2y ′′ − 6y = 0 16. 2x2y ′′ + 3xy ′ − y = 0

17. x2y ′′ − 3xy ′ + 4y = 0 18. 2x2y ′′ + 10xy ′ + 9y = 0



CHAPTER 5

LAPLACE TRANSFORMS

IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of
the basic problem solving techniques in mathematics: transform a difficult problem into
an easier one, solve the latter, and then use its solution to obtain a solution of the original
problem. The method discussed here transforms an initial value problem for a constant
coefficient equation into an algebraic equation whose solution can then be used to solve
the initial value problem. In some cases this method is merely an alternative procedure
for solving problems that can be solved equally well by methods that we considered
previously; however, in other cases the method of Laplace transforms is more efficient
than the methods previously discussed. This is especially true in physical problems
dealing with discontinuous forcing functions.

SECTION 8.1 defines the Laplace transform and developes its properties.

SECTION 8.2 deals with the problem of finding a function that has a given Laplace
transform.

SECTION 8.3 applies the Laplace transform to solve initial value problems for constant
coefficient second order differential equations on (0,∞).

SECTION 8.4 introduces the unit step function.

SECTION 8.5 uses the unit step function to solve constant coefficient equations with
piecewise continuous forcing functions.

SECTION 8.6 deals with the convolution theorem, an important theoretical property of
the Laplace transform.

SECTION 8.7 introduces the idea of impulsive force, and treats constant coefficient
equations with impulsive forcing functions.

SECTION 8.8 is a brief table of Laplace transforms.

5.1 INTRODUCTION TO THE LAPLACE TRANSFORM

215

http://www-history.mcs.st-and.ac.uk/Mathematicians/Laplace.html
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Definition of the Laplace Transform

To define the Laplace transform, we first recall the definition of an improper integral. If
g is integrable over the interval [a, T ] for every T > a, then the improper integral of g over
[a,∞) is defined as ∫∞

a

g(t)dt = lim
T→∞

∫T
a

g(t)dt. (5.1.1)

We say that the improper integral converges if the limit in (5.1.1) exists; otherwise, we say
that the improper integral diverges or does not exist. Here’s the definition of the Laplace
transform of a function f.

Definition 5.1.1 Let f be defined for t > 0 and let s be a real number. Then the Laplace
transform of f is the function F defined by

F(s) =

∫∞
0
e−stf(t)dt, (5.1.2)

for those values of s for which the improper integral converges.

It is important to keep in mind that the variable of integration in (5.1.2) is t, while s
is a parameter independent of t. We use t as the independent variable for f because in
applications the Laplace transform is usually applied to functions of time.

The Laplace transform can be viewed as an operator L that transforms the function
f = f(t) into the function F = F(s). Thus, (5.1.2) can be expressed as

F = L(f).

The functions f and F form a transform pair, which we’ll sometimes denote by

f(t)↔ F(s).

It can be shown that if F(s) is defined for s = s0 then it’s defined for all s > s0 (Exer-
cise 14(b)).

Computation of Some Simple Laplace Transforms

Example 5.1.1 Find the Laplace transform of f(t) = 1.

Solution From (5.1.2) with f(t) = 1,

F(s) =

∫∞
0
e−st dt = lim

T→∞
∫T
0
e−st dt.

If s 6= 0 then ∫T
0
e−stdt = −

1
s
e−st

∣∣∣T
0
=

1− e−sT

s
. (5.1.3)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Laplace.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Laplace.html
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Therefore

lim
T→∞

∫T
0
e−stdt =

{ 1
s
, s > 0,∞, s < 0.

(5.1.4)

If s = 0 the integrand reduces to the constant 1, and

lim
T→∞

∫T
0
1dt = lim

T→∞
∫T
0
1dt = lim

T→∞ T =∞.

Therefore F(0) is undefined, and

F(s) =

∫∞
0
e−stdt =

1
s
, s > 0.

This result can be written in operator notation as

L(1) =
1
s
, s > 0,

or as the transform pair

1↔ 1
s
, s > 0.

REMARK: It is convenient to combine the steps of integrating from 0 to T and letting
T →∞. Therefore, instead of writing (5.1.3) and (5.1.4) as separate steps we write∫∞

0
e−stdt = −

1
s
e−st

∣∣∣∞
0

=

{ 1
s
, s > 0,∞, s < 0.

We’ll follow this practice throughout this chapter.

Example 5.1.2 Find the Laplace transform of f(t) = t.

Solution From (5.1.2) with f(t) = t,

F(s) =

∫∞
0
e−stt dt. (5.1.5)

If s 6= 0, integrating by parts yields∫∞
0
e−stt dt = −

te−st

s

∣∣∣∣∞
0
+

1
s

∫∞
0
e−st dt = −

[
t

s
+

1
s2

]
e−st

∣∣∣∣∞
0

=

{ 1
s2

, s > 0,∞, s < 0.

If s = 0, the integral in (5.1.5) becomes∫∞
0
t dt =

t2

2

∣∣∣∣∞
0

=∞.



218 Chapter 5 Laplace Transforms

Therefore F(0) is undefined and

F(s) =
1
s2

, s > 0.

This result can also be written as

L(t) =
1
s2

, s > 0,

or as the transform pair

t↔ 1
s2

, s > 0.

Example 5.1.3 Find the Laplace transform of f(t) = eat, where a is a constant.

Solution From (5.1.2) with f(t) = eat,

F(s) =

∫∞
0
e−steat dt.

Combining the exponentials yields

F(s) =

∫∞
0
e−(s−a)t dt.

However, we know from Example 5.1.1 that∫∞
0
e−st dt =

1
s
, s > 0.

Replacing s by s− a here shows that

F(s) =
1

s− a
, s > a.

This can also be written as

L(eat) =
1

s− a
, s > a, or eat ↔ 1

s− a
, s > a.

Example 5.1.4 Find the Laplace transforms of f(t) = sinωt and g(t) = cosωt, whereω
is a constant.

Solution Define
F(s) =

∫∞
0
e−st sinωtdt (5.1.6)

and
G(s) =

∫∞
0
e−st cosωtdt. (5.1.7)
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If s > 0, integrating (5.1.6) by parts yields

F(s) = −
e−st

s
sinωt

∣∣∣∞
0
+
ω

s

∫∞
0
e−st cosωtdt,

so
F(s) =

ω

s
G(s). (5.1.8)

If s > 0, integrating (5.1.7) by parts yields

G(s) = −
e−st cosωt

s

∣∣∣∞
0
−
ω

s

∫∞
0
e−st sinωtdt,

so
G(s) =

1
s
−
ω

s
F(s).

Now substitute from (5.1.8) into this to obtain

G(s) =
1
s
−
ω2

s2
G(s).

Solving this for G(s) yields

G(s) =
s

s2 +ω2 , s > 0.

This and (5.1.8) imply that
F(s) =

ω

s2 +ω2 , s > 0.

Tables of Laplace transforms

Extensive tables of Laplace transforms have been compiled and are commonly used in
applications. The brief table of Laplace transforms in the Appendix will be adequate for
our purposes.

Example 5.1.5 Use the table of Laplace transforms to find L(t3e4t).

Solution The table includes the transform pair

tneat ↔ n!
(s− a)n+1 .

Setting n = 3 and a = 4 here yields

L(t3e4t) =
3!

(s− 4)4
=

6
(s− 4)4

.

We’ll sometimes write Laplace transforms of specific functions without explicitly
stating how they are obtained. In such cases you should refer to the table of Laplace
transforms.

Linearity of the Laplace Transform

The next theorem presents an important property of the Laplace transform.
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Theorem 5.1.2 [Linearity Property] Suppose L(fi) is defined for s > si, 1 6 i 6 n). Let s0 be
the largest of the numbers s1, s2, . . . ,sn, and let c1, c2,. . . , cn be constants. Then

L(c1f1 + c2f2 + · · ·+ cnfn) = c1L(f1) + c2L(f2) + · · ·+ cnL(fn) for s > s0.

Proof We give the proof for the case where n = 2. If s > s0 then

L(c1f1 + c2f2) =

∫∞
0
e−st (c1f1(t) + c2f2(t))) dt

= c1

∫∞
0
e−stf1(t)dt+ c2

∫∞
0
e−stf2(t)dt

= c1L(f1) + c2L(f2).

Example 5.1.6 Use Theorem 5.1.2 and the known Laplace transform

L(eat) =
1

s− a

to find L(coshbt) (b 6= 0).

Solution By definition,

coshbt =
ebt + e−bt

2
.

Therefore

L(coshbt) = L

(
1
2
ebt +

1
2
e−bt

)
=

1
2
L(ebt) +

1
2
L(e−bt) (linearity property)

=
1
2

1
s− b

+
1
2

1
s+ b

,

(5.1.9)

where the first transform on the right is defined for s > b and the second for s > −b;
hence, both are defined for s > |b|. Simplifying the last expression in (5.1.9) yields

L(coshbt) =
s

s2 − b2 , s > |b|.

The First Shifting Theorem

The next theorem enables us to start with known transform pairs and derive others. (For
other results of this kind, see Exercises 6 and 13.)

Theorem 5.1.3 [First Shifting Theorem] If

F(s) =

∫∞
0
e−stf(t)dt (5.1.10)

is the Laplace transform of f(t) for s > s0, then F(s− a) is the Laplace transform of eatf(t) for
s > s0 + a.
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PROOF. Replacing s by s− a in (5.1.10) yields

F(s− a) =

∫∞
0
e−(s−a)tf(t)dt (5.1.11)

if s− a > s0; that is, if s > s0 + a. However, (5.1.11) can be rewritten as

F(s− a) =

∫∞
0
e−st

(
eatf(t)

)
dt,

which implies the conclusion.

Example 5.1.7 Use Theorem 5.1.3 and the known Laplace transforms of 1, t, cosωt, and
sinωt to find

L(eat), L(teat), L(eλt sinωt), and L(eλt cosωt).

Solution In the following table the known transform pairs are listed on the left and the
required transform pairs listed on the right are obtained by applying Theorem 5.1.3.

f(t)↔ F(s) eatf(t)↔ F(s− a)

1↔ 1
s
, s > 0 eat ↔ 1

(s− a)
, s > a

t↔ 1
s2

, s > 0 teat ↔ 1
(s− a)2

, s > a

sinωt↔ ω

s2 +ω2 , s > 0 eλt sinωt↔ ω

(s− λ)2 +ω2 , s > λ

cosωt↔ s

s2 +ω2 , s > 0 eλt sinωt↔ s− λ

(s− λ)2 +ω2 , s > λ

Existence of Laplace Transforms

Not every function has a Laplace transform. For example, it can be shown (Exercise 3)
that ∫∞

0
e−stet

2
dt =∞

for every real number s. Hence, the function f(t) = et
2

does not have a Laplace
transform.

Our next objective is to establish conditions that ensure the existence of the Laplace
transform of a function. We first review some relevant definitions from calculus.

Recall that a limit
lim
t→t0

f(t)
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Figure 5.1 A jump discontinuity

exists if and only if the one-sided limits

lim
t→t0−

f(t) and lim
t→t0+

f(t)

both exist and are equal; in this case,

lim
t→t0

f(t) = lim
t→t0−

f(t) = lim
t→t0+

f(t).

Recall also that f is continuous at a point t0 in an open interval (a,b) if and only if

lim
t→t0

f(t) = f(t0),

which is equivalent to
lim
t→t0+

f(t) = lim
t→t0−

f(t) = f(t0). (5.1.12)

For simplicity, we define

f(t0+) = lim
t→t0+

f(t) and f(t0−) = lim
t→t0−

f(t),

so (5.1.12) can be expressed as

f(t0+) = f(t0−) = f(t0).

If f(t0+) and f(t0−) have finite but distinct values, we say that f has a jump discontinuity
at t0, and

f(t0+) − f(t0−)

is called the jump in f at t0 (Figure 5.1).

If f(t0+) and f(t0−) are finite and equal, but either f isn’t defined at t0 or it’s defined
but

f(t0) 6= f(t0+) = f(t0−),

we say that f has a removable discontinuity at t0 (Figure 5.2). This terminolgy is appropriate
since a function f with a removable discontinuity at t0 can be made continuous at t0 by
defining (or redefining)

f(t0) = f(t0+) = f(t0−).

Figure 5.2
Figure 5.3 A piecewise continuous function

on [a,b]

REMARK: We know from calculus that a definite integral isn’t affected by changing the
values of its integrand at isolated points. Therefore, redefining a function f to make it
continuous at removable discontinuities does not change L(f).
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Definition 5.1.4
(i) A function f is said to be piecewise continuous on a finite closed interval [0, T ]

if f(0+) and f(T−) are finite and f is continuous on the open interval (0, T) ex-
cept possibly at finitely many points, where fmay have jump discontinuities or
removable discontinuities.

(ii) A function f is said to be piecewise continuous on the infinite interval [0,∞) if it’s
piecewise continuous on [0, T ] for every T > 0.

Figure 5.3 shows the graph of a typical piecewise continuous function.
It is shown in calculus that if a function is piecewise continuous on a finite closed

interval then it’s integrable on that interval. But if f is piecewise continuous on [0,∞),
then so is e−stf(t), and therefore ∫T

0
e−stf(t)dt

exists for every T > 0. However, piecewise continuity alone does not guarantee that the
improper integral ∫∞

0
e−stf(t)dt = lim

T→∞
∫T
0
e−stf(t)dt (5.1.13)

converges for s in some interval (s0,∞). For example, we noted earlier that (5.1.13)
diverges for all s if f(t) = et

2
. Stated informally, this occurs because et

2
increases too

rapidly as t→∞. The next definition provides a constraint on the growth of a function
that guarantees convergence of its Laplace transform for s in some interval (s0,∞) .

Definition 5.1.5 A function f is said to be of exponential order s0 if there are constantsM
and t0 such that

|f(t)| 6Mes0t, t > t0. (5.1.14)

In situations where the specific value of s0 is irrelevant we say simply that f is of
exponential order.

The next theorem gives useful sufficient conditions for a function f to have a Laplace
transform. The proof is sketched in Exercise 10.

Theorem 5.1.6 If f is piecewise continuous on [0,∞) and of exponential order s0, then L(f) is
defined for s > s0.

REMARK: We emphasize that the conditions of Theorem 5.1.6 are sufficient, but not
necessary, for f to have a Laplace transform. For example, Exercise 14(c) shows that f
may have a Laplace transform even though f isn’t of exponential order.

Example 5.1.8 If f is bounded on some interval [t0,∞), say

|f(t)| 6M, t > t0,
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then (5.1.14) holds with s0 = 0, so f is of exponential order zero. Thus, for example,
sinωt and cosωt are of exponential order zero, and Theorem 5.1.6 implies that L(sinωt)
and L(cosωt) exist for s > 0. This is consistent with the conclusion of Example 5.1.4.

Example 5.1.9 It can be shown that if limt→∞ e−s0tf(t) exists and is finite then f is of
exponential order s0 (Exercise 9). If α is any real number and s0 > 0 then f(t) = tα is of
exponential order s0, since

lim
t→∞ e−s0ttα = 0,

by L’Hôpital’s rule. If α > 0, f is also continuous on [0,∞). Therefore Exercise 9 and
Theorem 5.1.6 imply that L(tα) exists for s > s0. However, since s0 is an arbitrary
positive number, this really implies that L(tα) exists for all s > 0. This is consistent with
the results of Example 5.1.2 and Exercises 6 and 8.

Example 5.1.10 Find the Laplace transform of the piecewise continuous function

f(t) =

{
1, 0 6 t < 1,

−3e−t, t > 1.

Solution Since f is defined by different formulas on [0, 1) and [1,∞), we write

F(s) =

∫∞
0
e−stf(t)dt =

∫1
0
e−st(1)dt+

∫∞
1
e−st(−3e−t)dt.

Since ∫1
0
e−st dt =


1− e−s

s
, s 6= 0,

1, s = 0,

and ∫∞
1
e−st(−3e−t)dt = −3

∫∞
1
e−(s+1)t dt = −

3e−(s+1)

s+ 1
, s > −1,

it follows that

F(s) =


1− e−s

s
− 3

e−(s+1)

s+ 1
, s > −1, s 6= 0,

1−
3
e

, s = 0.

This is consistent with Theorem 5.1.6, since

|f(t)| 6 3e−t, t > 1,

and therefore f is of exponential order s0 = −1.
REMARK: In Section 8.4 we’ll develop a more efficient method for finding Laplace
transforms of piecewise continuous functions.
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Example 5.1.11 We stated earlier that∫∞
0
e−stet

2
dt =∞

for all s, so Theorem 5.1.6 implies that f(t) = et
2

is not of exponential order, since

lim
t→∞ et

2

Mes0t
= lim
t→∞ 1

M
et

2−s0t =∞,

so
et

2
> Mes0t

for sufficiently large values of t, for any choice ofM and s0 (Exercise 3).

5.1 Exercises

1. Find the Laplace transforms of the following functions by evaluating the integral
F(s) =

∫∞
0 e

−stf(t)dt.

(a) t (b) te−t (c) sinhbt
(d) e2t − 3et (e) t2

2. Use the table of Laplace transforms to find the Laplace transforms of the following
functions.

(a) cosh t sin t (b) sin2 t (c) cos2 2t
(d) cosh2 t (e) t sinh 2t (f) sin t cos t
(g) sin

(
t+

π

4

)
(h) cos 2t− cos 3t (i) sin 2t+ cos 4t

3. Show that ∫∞
0
e−stet

2
dt =∞

for every real number s.

4. Graph the following piecewise continuous functions and evaluate f(t+), f(t−),
and f(t) at each point of discontinuity.

(a) f(t) =


−t, 0 6 t < 2,
t− 4, 2 6 t < 3,
1, t > 3.

(b) f(t) =


t2 + 2, 0 6 t < 1,

4, t = 1,
t, t > 1.

(c) f(t) =
sin t, 0 6 t < π/2,

2 sin t, π/2 6 t < π,
cos t, t > π.

(d) f(t) =


t, 0 6 t < 1,
2, t = 1,

2− t, 1 6 t < 2,
3, t = 2,
6, t > 2.
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5. Find the Laplace transform:

(a) f(t) =
{

e−t, 0 6 t < 1,
e−2t, t > 1. (b) f(t) =

{
1, 0 6 t < 4,
t, t > 4.

(c) f(t) =
{
t, 0 6 t < 1,
1, t > 1. (d) f(t) =

{
tet, 0 6 t < 1,
et, t > 1.

6. Prove that if f(t) ↔ F(s) then tkf(t) ↔ (−1)kF(k)(s). HINT: Assume that it’s
permissible to differentiate the integral

∫∞
0 e

−stf(t)dt with respect to s under the integral
sign.

7. Use the known Laplace transforms

L(eλt sinωt) =
ω

(s− λ)2 +ω2 and L(eλt cosωt) =
s− λ

(s− λ)2 +ω2

and the result of Exercise 6 to find L(teλt cosωt) and L(teλt sinωt).

8. Use the known Laplace transform L(1) = 1/s and the result of Exercise 6 to show
that

L(tn) =
n!
sn+1 , n = integer.

9. (a) Show that if limt→∞ e−s0tf(t) exists and is finite then f is of exponential order
s0.

(b) Show that if f is of exponential order s0 then limt→∞ e−stf(t) = 0 for all
s > s0.

(c) Show that if f is of exponential order s0 and g(t) = f(t+ τ) where τ > 0, then
g is also of exponential order s0.

10. Recall the next theorem from calculus.

THEOREM A. Let g be integrable on [0, T ] for every T > 0. Suppose there’s a function
w defined on some interval [τ,∞) (with τ > 0) such that |g(t)| 6 w(t) for t > τ and∫∞
τ w(t)dt converges. Then

∫∞
0 g(t)dt converges.

Use Theorem A to show that if f is piecewise continuous on [0,∞) and of expo-
nential order s0, then f has a Laplace transform F(s) defined for s > s0.

11. Prove: If f is piecewise continuous and of exponential order then lims→∞ F(s) = 0.

12. Prove: If f is continuous on [0,∞) and of exponential order s0 > 0, then

L

(∫t
0
f(τ)dτ

)
=

1
s
L(f), s > s0.

HINT: Use integration by parts to evaluate the transform on the left.

13. Suppose f is piecewise continuous and of exponential order, and that limt→0+ f(t)/t
exists. Show that

L

(
f(t)

t

)
=

∫∞
s

F(r)dr.

HINT: Use the results of Exercises 6 and 11.
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14. Suppose f is piecewise continuous on [0,∞).

(a) Prove: If the integral g(t) =
∫t

0 e
−s0τf(τ)dτ satisfies the inequality |g(t)| 6

M (t > 0), then f has a Laplace transform F(s) defined for s > s0. HINT: Use
integration by parts to show that∫T

0
e−stf(t)dt = e−(s−s0)Tg(T) + (s− s0)

∫T
0
e−(s−s0)tg(t)dt.

(b) Show that if L(f) exists for s = s0 then it exists for s > s0. Show that the
function

f(t) = tet
2
cos(et

2
)

has a Laplace transform defined for s > 0, even though f isn’t of exponential
order.

(c) Show that the function
f(t) = tet

2
cos(et

2
)

has a Laplace transform defined for s > 0, even though f isn’t of exponential
order.

15. Use the table of Laplace transforms and the result of Exercise 13 to find the Laplace
transforms of the following functions.

(a)
sinωt
t

(ω > 0) (b)
cosωt− 1

t
(ω >

0)
(c)
eat − ebt

t

(d)
cosh t− 1

t
(e)

sinh2 t

t

16. The gamma function is defined by

Γ(α) =

∫∞
0
xα−1e−x dx,

which can be shown to converge if α > 0.

(a) Use integration by parts to show that

Γ(α+ 1) = αΓ(α), α > 0.

(b) Show that Γ(n+ 1) = n! if n = 1, 2, 3,. . . .
(c) From (b) and the table of Laplace transforms,

L(tα) =
Γ(α+ 1)
sα+1 , s > 0,

if α is a nonnegative integer. Show that this formula is valid for any α > −1.
HINT: Change the variable of integration in the integral for Γ(α+ 1).
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17. Suppose f is continuous on [0, T ] and f(t+ T) = f(t) for all t > 0. (We say in this
case that f is periodic with period T .)

(a) Conclude from Theorem 5.1.6 that the Laplace transform of f is defined for
s > 0. HINT: Since f is continuous on [0, T ] and periodic with period T , it’s bounded
on [0,∞).

(b) (b) Show that

F(s) =
1

1− e−sT

∫T
0
e−stf(t)dt, s > 0.

HINT: Write

F(s) =

∞∑
n=0

∫ (n+1)T

nT

e−stf(t)dt.

Then show that ∫ (n+1)T

nT

e−stf(t)dt = e−nsT
∫T
0
e−stf(t)dt,

and recall the formula for the sum of a geometric series.

18. Use the formula given in Exercise 17(b) to find the Laplace transforms of the given
periodic functions:

(a) f(t) =

{
t, 0 6 t < 1,

2− t, 1 6 t < 2, f(t+ 2) = f(t), t > 0

(b) f(t) =

{
1, 0 6 t < 1

2 ,
−1, 1

2 6 t < 1, f(t+ 1) = f(t), t > 0

(c) f(t) = | sin t|

(d) f(t) =

{
sin t, 0 6 t < π,
0, π 6 t < 2π, f(t+ 2π) = f(t)

5.2 THE INVERSE LAPLACE TRANSFORM

Definition of the Inverse Laplace Transform

In Section 8.1 we defined the Laplace transform of f by

F(s) = L(f) =

∫∞
0
e−stf(t)dt.

We’ll also say that f is an inverse Laplace Transform of F, and write

f = L−1(F).

To solve differential equations with the Laplace transform, we must be able to obtain
f from its transform F. There’s a formula for doing this, but we can’t use it because it
requires the theory of functions of a complex variable. Fortunately, we can use the table
of Laplace transforms to find inverse transforms that we’ll need.
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Example 5.2.1 Use the table of Laplace transforms to find

(a) L−1
(

1
s2 − 1

)
and (b) L−1

(
s

s2 + 9

)
.

SOLUTION(a) Setting b = 1 in the transform pair

sinhbt↔ b

s2 − b2

shows that

L−1
(

1
s2 − 1

)
= sinh t.

SOLUTION(b) Settingω = 3 in the transform pair

cosωt↔ s

s2 +ω2

shows that

L−1
(

s

s2 + 9

)
= cos 3t.

The next theorem enables us to find inverse transforms of linear combinations of
transforms in the table. We omit the proof.

Theorem 5.2.1 [Linearity Property] If F1, F2, . . . , Fn are Laplace transforms and c1, c2, . . . ,
cn are constants, then

L−1(c1F1 + c2F2 + · · ·+ cnFn) = c1L−1(F1) + c2L
−1(F2) + · · ·+ cnL−1Fn.

Example 5.2.2 Find

L−1
(

8
s+ 5

+
7

s2 + 3

)
.

Solution From the table of Laplace transforms in Section 8.8„

eat ↔ 1
s− a

and sinωt↔ ω

s2 +ω2 .

Theorem 5.2.1 with a = −5 andω =
√
3 yields

L−1
(

8
s+ 5

+
7

s2 + 3

)
= 8L−1

(
1

s+ 5

)
+ 7L−1

(
1

s2 + 3

)

= 8L−1
(

1
s+ 5

)
+

7√
3
L−1

( √
3

s2 + 3

)

= 8e−5t +
7√
3
sin
√
3t.



230 Chapter 5 Laplace Transforms

Example 5.2.3 Find

L−1
(

3s+ 8
s2 + 2s+ 5

)
.

Solution Completing the square in the denominator yields

3s+ 8
s2 + 2s+ 5

=
3s+ 8

(s+ 1)2 + 4
.

Because of the form of the denominator, we consider the transform pairs

e−t cos 2t↔ s+ 1
(s+ 1)2 + 4

and e−t sin 2t↔ 2
(s+ 1)2 + 4

,

and write

L−1
(

3s+ 8
(s+ 1)2 + 4

)
= L−1

(
3s+ 3

(s+ 1)2 + 4

)
+ L−1

(
5

(s+ 1)2 + 4

)

= 3L−1
(

s+ 1
(s+ 1)2 + 4

)
+

5
2
L−1

(
2

(s+ 1)2 + 4

)

= e−t(3 cos 2t+
5
2
sin 2t).

REMARK: We’ll often write inverse Laplace transforms of specific functions without
explicitly stating how they are obtained. In such cases you should refer to the table of
Laplace transforms in Section 8.8.

Inverse Laplace Transforms of Rational Functions

Using the Laplace transform to solve differential equations often requires finding the
inverse transform of a rational function

F(s) =
P(s)

Q(s)
,

where P and Q are polynomials in s with no common factors. Since it can be shown
that lims→∞ F(s) = 0 if F is a Laplace transform, we need only consider the case where
degree(P) < degree(Q). To obtain L−1(F), we find the partial fraction expansion of F,
obtain inverse transforms of the individual terms in the expansion from the table of
Laplace transforms, and use the linearity property of the inverse transform. The next
two examples illustrate this.

Example 5.2.4 Find the inverse Laplace transform of

F(s) =
3s+ 2

s2 − 3s+ 2
. (5.2.1)
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Solution (METHOD 1) Factoring the denominator in (5.2.1) yields

F(s) =
3s+ 2

(s− 1)(s− 2)
. (5.2.2)

The form for the partial fraction expansion is

3s+ 2
(s− 1)(s− 2)

=
A

s− 1
+

B

s− 2
. (5.2.3)

Multiplying this by (s− 1)(s− 2) yields

3s+ 2 = (s− 2)A+ (s− 1)B.

Setting s = 2 yields B = 8 and setting s = 1 yields A = −5. Therefore

F(s) = −
5

s− 1
+

8
s− 2

and

L−1(F) = −5L−1
(

1
s− 1

)
+ 8L−1

(
1

s− 2

)
= −5et + 8e2t.

Solution (METHOD 2) We don’t really have to multiply (5.2.3) by (s−1)(s−2) to compute
A and B. We can obtain A by simply ignoring the factor s − 1 in the denominator of
(5.2.2) and setting s = 1 elsewhere; thus,

A =
3s+ 2
s− 2

∣∣∣∣
s=1

=
3 · 1+ 2
1− 2

= −5. (5.2.4)

Similarly, we can obtain B by ignoring the factor s− 2 in the denominator of (5.2.2) and
setting s = 2 elsewhere; thus,

B =
3s+ 2
s− 1

∣∣∣∣
s=2

=
3 · 2+ 2
2− 1

= 8. (5.2.5)

To justify this, we observe that multiplying (5.2.3) by s− 1 yields

3s+ 2
s− 2

= A+ (s− 1)
B

s− 2
,

and setting s = 1 leads to (5.2.4). Similarly, multiplying (5.2.3) by s− 2 yields

3s+ 2
s− 1

= (s− 2)
A

s− 2
+ B

and setting s = 2 leads to (5.2.5). (It isn’t necesary to write the last two equations. We
wrote them only to justify the shortcut procedure indicated in (5.2.4) and (5.2.5).)

The shortcut employed in the second solution of Example 5.2.4 is Heaviside’s method.
The next theorem states this method formally. For a proof and an extension of this
theorem, see Exercise 10.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Heaviside.html
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Theorem 5.2.2 Suppose

F(s) =
P(s)

(s− s1)(s− s2) · · · (s− sn)
, (5.2.6)

where s1, s2, . . . , sn are distinct and P is a polynomial of degree less than n. Then

F(s) =
A1

s− s1
+

A2

s− s2
+ · · ·+ An

s− sn
,

whereAi can be computed from (5.2.6) by ignoring the factor s−si and setting s = si elsewhere.

Example 5.2.5 Find the inverse Laplace transform of

F(s) =
6+ (s+ 1)(s2 − 5s+ 11)
s(s− 1)(s− 2)(s+ 1)

. (5.2.7)

Solution The partial fraction expansion of (5.2.7) is of the form

F(s) =
A

s
+

B

s− 1
+

C

s− 2
+

D

s+ 1
. (5.2.8)

To find A, we ignore the factor s in the denominator of (5.2.7) and set s = 0 elsewhere.
This yields

A =
6+ (1)(11)
(−1)(−2)(1)

=
17
2
.

Similarly, the other coefficients are given by

B =
6+ (2)(7)
(1)(−1)(2)

= −10,

C =
6+ 3(5)
2(1)(3)

=
7
2
,

and
D =

6
(−1)(−2)(−3)

= −1.

Therefore
F(s) =

17
2

1
s
−

10
s− 1

+
7
2

1
s− 2

−
1

s+ 1
and

L−1(F) =
17
2
L−1

(
1
s

)
− 10L−1

(
1

s− 1

)
+

7
2
L−1

(
1

s− 2

)
− L−1

(
1

s+ 1

)
=

17
2

− 10et +
7
2
e2t − e−t.

REMARK: We didn’t “multiply out” the numerator in (5.2.7) before computing the
coefficients in (5.2.8), since it wouldn’t simplify the computations.
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Example 5.2.6 Find the inverse Laplace transform of

F(s) =
8− (s+ 2)(4s+ 10)

(s+ 1)(s+ 2)2
. (5.2.9)

Solution The form for the partial fraction expansion is

F(s) =
A

s+ 1
+

B

s+ 2
+

C

(s+ 2)2
. (5.2.10)

Because of the repeated factor (s + 2)2 in (5.2.9), Heaviside’s method doesn’t work.
Instead, we find a common denominator in (5.2.10). This yields

F(s) =
A(s+ 2)2 + B(s+ 1)(s+ 2) + C(s+ 1)

(s+ 1)(s+ 2)2
. (5.2.11)

If (5.2.9) and (5.2.11) are to be equivalent, then

A(s+ 2)2 + B(s+ 1)(s+ 2) + C(s+ 1) = 8− (s+ 2)(4s+ 10). (5.2.12)

The two sides of this equation are polynomials of degree two. From a theorem of algebra,
they will be equal for all s if they are equal for any three distinct values of s. We may
determine A, B and C by choosing convenient values of s.

The left side of (5.2.12) suggests that we take s = −2 to obtain C = −8, and s = −1
to obtain A = 2. We can now choose any third value of s to determine B. Taking s = 0
yields 4A+ 2B+ C = −12. Since A = 2 and C = −8 this implies that B = −6. Therefore

F(s) =
2

s+ 1
−

6
s+ 2

−
8

(s+ 2)2

and

L−1(F) = 2L−1
(

1
s+ 1

)
− 6L−1

(
1

s+ 2

)
− 8L−1

(
1

(s+ 2)2

)
= 2e−t − 6e−2t − 8te−2t.

Example 5.2.7 Find the inverse Laplace transform of

F(s) =
s2 − 5s+ 7
(s+ 2)3

.

Solution The form for the partial fraction expansion is

F(s) =
A

s+ 2
+

B

(s+ 2)2
+

C

(s+ 2)3
.
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The easiest way to obtain A, B, and C is to expand the numerator in powers of s + 2.
This yields

s2 − 5s+ 7 = [(s+ 2) − 2]2 − 5[(s+ 2) − 2] + 7 = (s+ 2)2 − 9(s+ 2) + 21.

Therefore

F(s) =
(s+ 2)2 − 9(s+ 2) + 21

(s+ 2)3

=
1

s+ 2
−

9
(s+ 2)2

+
21

(s+ 2)3

and

L−1(F) = L−1
(

1
s+ 2

)
− 9L−1

(
1

(s+ 2)2

)
+

21
2
L−1

(
2

(s+ 2)3

)

= e−2t
(
1− 9t+

21
2
t2
)
.

Example 5.2.8 Find the inverse Laplace transform of

F(s) =
1− s(5+ 3s)
s [(s+ 1)2 + 1]

. (5.2.13)

Solution One form for the partial fraction expansion of F is

F(s) =
A

s
+

Bs+ C

(s+ 1)2 + 1
. (5.2.14)

However, we see from the table of Laplace transforms that the inverse transform of
the second fraction on the right of (5.2.14) will be a linear combination of the inverse
transforms

e−t cos t and e−t sin t

of
s+ 1

(s+ 1)2 + 1
and

1
(s+ 1)2 + 1

respectively. Therefore, instead of (5.2.14) we write

F(s) =
A

s
+
B(s+ 1) + C
(s+ 1)2 + 1

. (5.2.15)

Finding a common denominator yields

F(s) =
A
[
(s+ 1)2 + 1

]
+ B(s+ 1)s+ Cs

s [(s+ 1)2 + 1]
. (5.2.16)
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If (5.2.13) and (5.2.16) are to be equivalent, then

A
[
(s+ 1)2 + 1

]
+ B(s+ 1)s+ Cs = 1− s(5+ 3s).

This is true for all s if it’s true for three distinct values of s. Choosing s = 0, −1, and 1
yields the system

2A = 1
A− C = 3

5A+ 2B+ C = −7.

Solving this system yields

A =
1
2
, B = −

7
2
, C = −

5
2
.

Hence, from (5.2.15),

F(s) =
1
2s

−
7
2

s+ 1
(s+ 1)2 + 1

−
5
2

1
(s+ 1)2 + 1

.

Therefore

L−1(F) =
1
2
L−1

(
1
s

)
−

7
2
L−1

(
s+ 1

(s+ 1)2 + 1

)
−

5
2
L−1

(
1

(s+ 1)2 + 1

)
=

1
2
−

7
2
e−t cos t−

5
2
e−t sin t.

Example 5.2.9 Find the inverse Laplace transform of

F(s) =
8+ 3s

(s2 + 1)(s2 + 4)
. (5.2.17)

Solution The form for the partial fraction expansion is

F(s) =
A+ Bs

s2 + 1
+
C+Ds

s2 + 4
.

The coefficients A, B, C and D can be obtained by finding a common denominator and
equating the resulting numerator to the numerator in (5.2.17). However, since there’s no
first power of s in the denominator of (5.2.17), there’s an easier way: the expansion of

F1(s) =
1

(s2 + 1)(s2 + 4)

can be obtained quickly by using Heaviside’s method to expand

1
(x+ 1)(x+ 4)

=
1
3

(
1

x+ 1
−

1
x+ 4

)
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and then setting x = s2 to obtain

1
(s2 + 1)(s2 + 4)

=
1
3

(
1

s2 + 1
−

1
s2 + 4

)
.

Multiplying this by 8+ 3s yields

F(s) =
8+ 3s

(s2 + 1)(s2 + 4)
=

1
3

(
8+ 3s
s2 + 1

−
8+ 3s
s2 + 4

)
.

Therefore
L−1(F) =

8
3
sin t+ cos t−

4
3
sin 2t− cos 2t.

USING TECHNOLOGY

Some software packages that do symbolic algebra can find partial fraction expansions
very easily. We recommend that you use such a package if one is available to you, but
only after you’ve done enough partial fraction expansions on your own to master the
technique.

5.2 Exercises

1. Use the table of Laplace transforms to find the inverse Laplace transform.

(a)
3

(s− 7)4
(b)

2s− 4
s2 − 4s+ 13

(c)
1

s2 + 4s+ 20

(d)
2

s2 + 9
(e)

s2 − 1
(s2 + 1)2

(f)
1

(s− 2)2 − 4

(g)
12s− 24

(s2 − 4s+ 85)2
(h)

2
(s− 3)2 − 9

(i)
s2 − 4s+ 3

(s2 − 4s+ 5)2

2. Use Theorem 5.2.1 and the table of Laplace transforms to find the inverse Laplace
transform.

(a)
2s+ 3
(s− 7)4

(b)
s2 − 1
(s− 2)6

(c)
s+ 5

s2 + 6s+ 18

(d)
2s+ 1
s2 + 9

(e)
s

s2 + 2s+ 1
(f)

s+ 1
s2 − 9

(g)
s3 + 2s2 − s− 3

(s+ 1)4
(h)

2s+ 3
(s− 1)2 + 4

(i)
1
s
−

s

s2 + 1

(j)
3s+ 4
s2 − 1

(k)
3

s− 1
+

4s+ 1
s2 + 9

(l)
3

(s+ 2)2
−

2s+ 6
s2 + 4

3. Use Heaviside’s method to find the inverse Laplace transform.
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(a)
3− (s+ 1)(s− 2)

(s+ 1)(s+ 2)(s− 2)
(b)

7+ (s+ 4)(18− 3s)
(s− 3)(s− 1)(s+ 4)

(c)
2+ (s− 2)(3− 2s)
(s− 2)(s+ 2)(s− 3)

(d)
3− (s− 1)(s+ 1)

(s+ 4)(s− 2)(s− 1)

(e)
3+ (s− 2)(10− 2s− s2)

(s− 2)(s+ 2)(s− 1)(s+ 3)
(f)

3+ (s− 3)(2s2 + s− 21)
(s− 3)(s− 1)(s+ 4)(s− 2)

4. Find the inverse Laplace transform.

(a)
2+ 3s

(s2 + 1)(s+ 2)(s+ 1)
(b)

3s2 + 2s+ 1
(s2 + 1)(s2 + 2s+ 2)

(c)
3s+ 2

(s− 2)(s2 + 2s+ 5)
(d)

3s2 + 2s+ 1
(s− 1)2(s+ 2)(s+ 3)

(e)
2s2 + s+ 3

(s− 1)2(s+ 2)2
(f)

3s+ 2
(s2 + 1)(s− 1)2

5. Use the method of Example 5.2.9 to find the inverse Laplace transform.

(a)
3s+ 2

(s2 + 4)(s2 + 9)
(b)

−4s+ 1
(s2 + 1)(s2 + 16)

(c)
5s+ 3

(s2 + 1)(s2 + 4)

(d)
−s+ 1

(4s2 + 1)(s2 + 1)
(e)

17s− 34
(s2 + 16)(16s2 + 1)

(f)
2s− 1

(4s2 + 1)(9s2 + 1)
6. Find the inverse Laplace transform.

(a)
17s− 15

(s2 − 2s+ 5)(s2 + 2s+ 10)
(b)

8s+ 56
(s2 − 6s+ 13)(s2 + 2s+ 5)

(c)
s+ 9

(s2 + 4s+ 5)(s2 − 4s+ 13)
(d)

3s− 2
(s2 − 4s+ 5)(s2 − 6s+ 13)

(e)
3s− 1

(s2 − 2s+ 2)(s2 + 2s+ 5)
(f)

20s+ 40
(4s2 − 4s+ 5)(4s2 + 4s+ 5)

7. Find the inverse Laplace transform.

(a)
1

s(s2 + 1)
(b)

1
(s− 1)(s2 − 2s+ 17)

(c)
3s+ 2

(s− 2)(s2 + 2s+ 10)
(d)

34− 17s
(2s− 1)(s2 − 2s+ 5)

(e)
s+ 2

(s− 3)(s2 + 2s+ 5)
(f)

2s− 2
(s− 2)(s2 + 2s+ 10)

8. Find the inverse Laplace transform.

(a)
2s+ 1

(s2 + 1)(s− 1)(s− 3)
(b)

s+ 2
(s2 + 2s+ 2)(s2 − 1)

(c)
2s− 1

(s2 − 2s+ 2)(s+ 1)(s− 2)
(d)

s− 6
(s2 − 1)(s2 + 4)

(e)
2s− 3

s(s− 2)(s2 − 2s+ 5)
(f)

5s− 15
(s2 − 4s+ 13)(s− 2)(s− 1)
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9. Given that f(t) ↔ F(s), find the inverse Laplace transform of F(as − b), where
a > 0.

10. (a) If s1, s2, . . . , sn are distinct and P is a polynomial of degree less than n, then

P(s)

(s− s1)(s− s2) · · · (s− sn)
=

A1

s− s1
+

A2

s− s2
+ · · ·+ An

s− sn
.

Multiply through by s− si to show that Ai can be obtained by ignoring the
factor s− si on the left and setting s = si elsewhere.

(b) Suppose P and Q1 are polynomials such that degree(P) 6 degree(Q1) and
Q1(s1) 6= 0. Show that the coefficient of 1/(s − s1) in the partial fraction
expansion of

F(s) =
P(s)

(s− s1)Q1(s)

is P(s1)/Q1(s1).
(c) Explain how the results of (a) and (b) are related.

5.3 SOLUTION OF INITIAL VALUE PROBLEMS

Laplace Transforms of Derivatives

In the rest of this chapter we’ll use the Laplace transform to solve initial value problems
for constant coefficient second order equations. To do this, we must know how the
Laplace transform of f ′ is related to the Laplace transform of f. The next theorem
answers this question.

Theorem 5.3.1 Suppose f is continuous on [0,∞) and of exponential order s0, and f ′ is piece-
wise continuous on [0,∞). Then f and f ′ have Laplace transforms for s > s0, and

L(f ′) = sL(f) − f(0). (5.3.1)

Proof
We know from Theorem 8.1.6 that L(f) is defined for s > s0. We first consider the case

where f ′ is continuous on [0,∞). Integration by parts yields∫T
0
e−stf ′(t)dt = e−stf(t)

∣∣∣T
0
+ s

∫T
0
e−stf(t)dt

= e−sT f(T) − f(0) + s
∫T
0
e−stf(t)dt

(5.3.2)

for any T > 0. Since f is of exponential order s0, limT→∞ e−sT f(T) = 0 and the last
integral in (5.3.2) converges as T →∞ if s > s0. Therefore∫∞

0
e−stf ′(t)dt = −f(0) + s

∫∞
0
e−stf(t)dt

= −f(0) + sL(f),
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which proves (5.3.1). Now suppose T > 0 and f ′ is only piecewise continuous on [0, T ],
with discontinuities at t1 < t2 < · · · < tn−1. For convenience, let t0 = 0 and tn = T .
Integrating by parts yields∫ti

ti−1

e−stf ′(t)dt = e−stf(t)
∣∣∣ti
ti−1

+ s

∫ti
ti−1

e−stf(t)dt

= e−stif(ti) − e
−sti−1f(ti−1) + s

∫ti
ti−1

e−stf(t)dt.

Summing both sides of this equation from i = 1 to n and noting that(
e−st1f(t1) − e

−st0f(t0)
)
+
(
e−st2f(t2) − e

−st1f(t1)
)
+· · ·+

(
e−stNf(tN) − e

−stN−1f(tN−1)
)

= e−stNf(tN) − e
−st0f(t0) = e

−sT f(T) − f(0)

yields (5.3.2), so (5.3.1) follows as before.

Example 5.3.1 In Example 5.1.4 we saw that

L(cosωt) =
s

s2 +ω2 .

Applying (5.3.1) with f(t) = cosωt shows that

L(−ω sinωt) = s
s

s2 +ω2 − 1 = −
ω2

s2 +ω2 .

Therefore
L(sinωt) =

ω

s2 +ω2 ,

which agrees with the corresponding result obtained in 5.1.4.

In Section 2.1 we showed that the solution of the initial value problem

y ′ = ay, y(0) = y0, (5.3.3)

is y = y0e
at. We’ll now obtain this result by using the Laplace transform.

Let Y(s) = L(y) be the Laplace transform of the unknown solution of (5.3.3). Taking
Laplace transforms of both sides of (5.3.3) yields

L(y ′) = L(ay),

which, by Theorem 5.3.1, can be rewritten as

sL(y) − y(0) = aL(y),

or
sY(s) − y0 = aY(s).
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Solving for Y(s) yields
Y(s) =

y0

s− a
,

so

y = L−1(Y(s)) = L−1
(
y0

s− a

)
= y0L

−1
(

1
s− a

)
= y0e

at,

which agrees with the known result.
We need the next theorem to solve second order differential equations using the

Laplace transform.

Theorem 5.3.2 Suppose f and f ′ are continuous on [0,∞) and of exponential order s0, and
that f ′′ is piecewise continuous on [0,∞). Then f, f ′, and f ′′ have Laplace transforms for s > s0,

L(f ′) = sL(f) − f(0), (5.3.4)

and
L(f ′′) = s2L(f) − f ′(0) − sf(0). (5.3.5)

Proof Theorem 5.3.1 implies that L(f ′) exists and satisfies (5.3.4) for s > s0. To prove
that L(f ′′) exists and satisfies (5.3.5) for s > s0, we first apply Theorem 5.3.1 to g = f ′.
Since g satisfies the hypotheses of Theorem 5.3.1, we conclude that L(g ′) is defined and
satisfies

L(g ′) = sL(g) − g(0)

for s > s0. However, since g ′ = f ′′, this can be rewritten as

L(f ′′) = sL(f ′) − f ′(0).

Substituting (5.3.4) into this yields (5.3.5).

Solving Second Order Equations with the Laplace Transform

We’ll now use the Laplace transform to solve initial value problems for second order
equations.

Example 5.3.2 Use the Laplace transform to solve the initial value problem

y ′′ − 6y ′ + 5y = 3e2t, y(0) = 2, y ′(0) = 3. (5.3.6)

Solution Taking Laplace transforms of both sides of the differential equation in (5.3.6)
yields

L(y ′′ − 6y ′ + 5y) = L
(
3e2t

)
=

3
s− 2

,

which we rewrite as
L(y ′′) − 6L(y ′) + 5L(y) =

3
s− 2

. (5.3.7)
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Now denote L(y) = Y(s). Theorem 5.3.2 and the initial conditions in (5.3.6) imply that

L(y ′) = sY(s) − y(0) = sY(s) − 2

and
L(y ′′) = s2Y(s) − y ′(0) − sy(0) = s2Y(s) − 3− 2s.

Substituting from the last two equations into (5.3.7) yields

(
s2Y(s) − 3− 2s

)
− 6 (sY(s) − 2) + 5Y(s) =

3
s− 2

.

Therefore
(s2 − 6s+ 5)Y(s) =

3
s− 2

+ (3+ 2s) + 6(−2), (5.3.8)

so

(s− 5)(s− 1)Y(s) =
3+ (s− 2)(2s− 9)

s− 2
,

and
Y(s) =

3+ (s− 2)(2s− 9)
(s− 2)(s− 5)(s− 1)

.

Heaviside’s method yields the partial fraction expansion

Y(s) = −
1

s− 2
+

1
2

1
s− 5

+
5
2

1
s− 1

,

and taking the inverse transform of this yields

y = −e2t +
1
2
e5t +

5
2
et

as the solution of (5.3.6).
It isn’t necessary to write all the steps that we used to obtain (5.3.8). To see how to

avoid this, let’s apply the method of Example 5.3.2 to the general initial value problem

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1. (5.3.9)

Taking Laplace transforms of both sides of the differential equation in (5.3.9) yields

aL(y ′′) + bL(y ′) + cL(y) = F(s). (5.3.10)

Now let Y(s) = L(y). Theorem 5.3.2 and the initial conditions in (5.3.9) imply that

L(y ′) = sY(s) − k0 and L(y ′′) = s2Y(s) − k1 − k0s.

Substituting these into (5.3.10) yields

a
(
s2Y(s) − k1 − k0s

)
+ b (sY(s) − k0) + cY(s) = F(s). (5.3.11)
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The coefficient of Y(s) on the left is the characteristic polynomial

p(s) = as2 + bs+ c

of the complementary equation for (5.3.9). Using this and moving the terms involving
k0 and k1 to the right side of (5.3.11) yields

p(s)Y(s) = F(s) + a(k1 + k0s) + bk0. (5.3.12)

This equation corresponds to (5.3.8) of Example 5.3.2. Having established the form of
this equation in the general case, it is preferable to go directly from the initial value
problem to this equation. You may find it easier to remember (5.3.12) rewritten as

p(s)Y(s) = F(s) + a
(
y ′(0) + sy(0)

)
+ by(0). (5.3.13)

Example 5.3.3 Use the Laplace transform to solve the initial value problem

2y ′′ + 3y ′ + y = 8e−2t, y(0) = −4, y ′(0) = 2. (5.3.14)

Solution The characteristic polynomial is

p(s) = 2s2 + 3s+ 1 = (2s+ 1)(s+ 1)

and
F(s) = L(8e−2t) =

8
s+ 2

,

so (5.3.13) becomes

(2s+ 1)(s+ 1)Y(s) =
8

s+ 2
+ 2(2− 4s) + 3(−4).

Solving for Y(s) yields

Y(s) =
4 (1− (s+ 2)(s+ 1))
(s+ 1/2)(s+ 1)(s+ 2)

.

Heaviside’s method yields the partial fraction expansion

Y(s) =
4
3

1
s+ 1/2

−
8

s+ 1
+

8
3

1
s+ 2

,

so the solution of (5.3.14) is

y = L−1(Y(s)) =
4
3
e−t/2 − 8e−t +

8
3
e−2t

(Figure 5.1).

Example 5.3.4 Solve the initial value problem

y ′′ + 2y ′ + 2y = 1, y(0) = −3, y ′(0) = 1. (5.3.15)
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Figure 5.1 y =
4
3
e−t/2 − 8e−t +

8
3
e−2t Figure 5.2 y =

1
2
−

7
2
e−t cos t−

5
2
e−t sin t

Solution The characteristic polynomial is

p(s) = s2 + 2s+ 2 = (s+ 1)2 + 1

and
F(s) = L(1) =

1
s
,

so (5.3.13) becomes [
(s+ 1)2 + 1

]
Y(s) =

1
s
+ 1 · (1− 3s) + 2(−3).

Solving for Y(s) yields

Y(s) =
1− s(5+ 3s)
s [(s+ 1)2 + 1]

.

In Example 5.2.8 we found the inverse transform of this function to be

y =
1
2
−

7
2
e−t cos t−

5
2
e−t sin t

(Figure 5.2), which is therefore the solution of (5.3.15).

REMARK: In our examples we applied Theorems 5.3.1 and 5.3.2 without verifying that
the unknown function y satisfies their hypotheses. This is characteristic of the formal
manipulative way in which the Laplace transform is used to solve differential equations.
Any doubts about the validity of the method for solving a given equation can be resolved
by verifying that the resulting function y is the solution of the given problem.

5.3 Exercises

In Exercises 1–31 use the Laplace transform to solve the initial value problem.

1. y ′′ + 3y ′ + 2y = et, y(0) = 1, y ′(0) = −6

2. y ′′ − y ′ − 6y = 2, y(0) = 1, y ′(0) = 0

3. y ′′ + y ′ − 2y = 2e3t, y(0) = −1, y ′(0) = 4

4. y ′′ − 4y = 2e3t, y(0) = 1, y ′(0) = −1

5. y ′′ + y ′ − 2y = e3t, y(0) = 1, y ′(0) = −1

6. y ′′ + 3y ′ + 2y = 6et, y(0) = 1, y ′(0) = −1

7. y ′′ + y = sin 2t, y(0) = 0, y ′(0) = 1

8. y ′′ − 3y ′ + 2y = 2e3t, y(0) = 1, y ′(0) = −1

9. y ′′ − 3y ′ + 2y = e4t, y(0) = 1, y ′(0) = −2
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10. y ′′ − 3y ′ + 2y = e3t, y(0) = −1, y ′(0) = −4

11. y ′′ + 3y ′ + 2y = 2et, y(0) = 0, y ′(0) = −1

12. y ′′ + y ′ − 2y = −4, y(0) = 2, y ′(0) = 3

13. y ′′ + 4y = 4, y(0) = 0, y ′(0) = 1

14. y ′′ − y ′ − 6y = 2, y(0) = 1, y ′(0) = 0

15. y ′′ + 3y ′ + 2y = et, y(0) = 0, y ′(0) = 1

16. y ′′ − y = 1, y(0) = 1, y ′(0) = 0

17. y ′′ + 4y = 3 sin t, y(0) = 1, y ′(0) = −1

18. y ′′ + y ′ = 2e3t, y(0) = −1, y ′(0) = 4

19. y ′′ + y = 1, y(0) = 2, y ′(0) = 0

20. y ′′ + y = t, y(0) = 0, y ′(0) = 2

21. y ′′ + y = t− 3 sin 2t, y(0) = 1, y ′(0) = −3

22. y ′′ + 5y ′ + 6y = 2e−t, y(0) = 1, y ′(0) = 3

23. y ′′ + 2y ′ + y = 6 sin t− 4 cos t, y(0) = −1, y ′(0) = 1

24. y ′′ − 2y ′ − 3y = 10 cos t, y(0) = 2, y ′(0) = 7

25. y ′′ + y = 4 sin t+ 6 cos t, y(0) = −6, y ′(0) = 2

26. y ′′ + 4y = 8 sin 2t+ 9 cos t, y(0) = 1, y ′(0) = 0

27. y ′′ − 5y ′ + 6y = 10et cos t, y(0) = 2, y ′(0) = 1

28. y ′′ + 2y ′ + 2y = 2t, y(0) = 2, y ′(0) = −7

29. y ′′ − 2y ′ + 2y = 5 sin t+ 10 cos t, y(0) = 1, y ′(0) = 2

30. y ′′ + 4y ′ + 13y = 10e−t − 36et, y(0) = 0, y ′(0) = −16

31. y ′′ + 4y ′ + 5y = e−t(cos t+ 3 sin t), y(0) = 0, y ′(0) = 4

32. 2y ′′ − 3y ′ − 2y = 4et, y(0) = 1, y ′(0) = −2

33. 6y ′′ − y ′ − y = 3e2t, y(0) = 0, y ′(0) = 0

34. 2y ′′ + 2y ′ + y = 2t, y(0) = 1, y ′(0) = −1

35. 4y ′′ − 4y ′ + 5y = 4 sin t− 4 cos t, y(0) = 0, y ′(0) = 11/17

36. 4y ′′ + 4y ′ + y = 3 sin t+ cos t, y(0) = 2, y ′(0) = −1

37. 9y ′′ + 6y ′ + y = 3e3t, y(0) = 0, y ′(0) = −3

38. Suppose a,b, and c are constants and a 6= 0. Let

y1 = L−1
(

as+ b

as2 + bs+ c

)
and y2 = L−1

(
a

as2 + bs+ c

)
.

Show that

y1(0) = 1, y ′1(0) = 0 and y2(0) = 0, y ′2(0) = 1.
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HINT: Use the Laplace transform to solve the initial value problems

ay ′′ + by ′ + cy = 0, y(0) = 1, y ′(0) = 0
ay ′′ + by ′ + cy = 0, y(0) = 0, y ′(0) = 1.

5.4 THE UNIT STEP FUNCTION

In the next section we’ll consider initial value problems

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1,

where a, b, and c are constants and f is piecewise continuous. In this section we’ll
develop procedures for using the table of Laplace transforms to find Laplace transforms
of piecewise continuous functions, and to find the piecewise continuous inverses of
Laplace transforms.

Example 5.4.1 Use the table of Laplace transforms to find the Laplace transform of

f(t) =

{
2t+ 1, 0 6 t < 2,
3t, t > 2

(5.4.1)

(Figure 5.1).

Solution Since the formula for f changes at t = 2, we write

L(f) =

∫∞
0
e−stf(t)dt

=

∫2
0
e−st(2t+ 1)dt+

∫∞
2
e−st(3t)dt.

(5.4.2)

To relate the first term to a Laplace transform, we add and subtract∫∞
2
e−st(2t+ 1)dt

in (5.4.2) to obtain

L(f) =

∫∞
0
e−st(2t+ 1)dt+

∫∞
2
e−st(3t− 2t− 1)dt

=

∫∞
0
e−st(2t+ 1)dt+

∫∞
2
e−st(t− 1)dt

= L(2t+ 1) +
∫∞
2
e−st(t− 1)dt.

(5.4.3)
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To relate the last integral to a Laplace transform, we make the change of variable x = t−2
and rewrite the integral as∫∞

2
e−st(t− 1)dt =

∫∞
0
e−s(x+2)(x+ 1)dx

= e−2s
∫∞
0
e−sx(x+ 1)dx.

Since the symbol used for the variable of integration has no effect on the value of a
definite integral, we can now replace x by the more standard t and write∫∞

2
e−st(t− 1)dt = e−2s

∫∞
0
e−st(t+ 1)dt = e−2sL(t+ 1).

This and (5.4.3) imply that

L(f) = L(2t+ 1) + e−2sL(t+ 1).

Now we can use the table of Laplace transforms to find that

L(f) =
2
s2

+
1
s
+ e−2s

(
1
s2

+
1
s

)
.

Figure 5.1 The piecewise continuous
function (5.4.1) Figure 5.2 y = u(t− τ)

Laplace Transforms of Piecewise Continuous Functions

We’ll now develop the method of Example 5.4.1 into a systematic way to find the Laplace
transform of a piecewise continuous function. It is convenient to introduce the unit step
function, defined as

u(t) =

{
0, t < 0
1, t > 0. (5.4.4)

Thus, u(t) “steps” from the constant value 0 to the constant value 1 at t = 0. If we
replace t by t− τ in (5.4.4), then

u(t− τ) =

{
0, t < τ,
1, t > τ

;

that is, the step now occurs at t = τ (Figure 5.2).
The step function enables us to represent piecewise continuous functions conveniently.

For example, consider the function

f(t) =

{
f0(t), 0 6 t < t1,
f1(t), t > t1,

(5.4.5)
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where we assume that f0 and f1 are defined on [0,∞), even though they equal f only on
the indicated intervals. This assumption enables us to rewrite (5.4.5) as

f(t) = f0(t) + u(t− t1) (f1(t) − f0(t)) . (5.4.6)

To verify this, note that if t < t1 then u(t− t1) = 0 and (5.4.6) becomes

f(t) = f0(t) + (0) (f1(t) − f0(t)) = f0(t).

If t > t1 then u(t− t1) = 1 and (5.4.6) becomes

f(t) = f0(t) + (1) (f1(t) − f0(t)) = f1(t).

We need the next theorem to show how (5.4.6) can be used to find L(f).

Theorem 5.4.1 Let g be defined on [0,∞). Suppose τ > 0 and L (g(t+ τ)) exists for s > s0.
Then L (u(t− τ)g(t)) exists for s > s0, and

L(u(t− τ)g(t)) = e−sτL (g(t+ τ)) .

Proof By definition,

L (u(t− τ)g(t)) =

∫∞
0
e−stu(t− τ)g(t)dt.

From this and the definition of u(t− τ),

L (u(t− τ)g(t)) =

∫τ
0
e−st(0)dt+

∫∞
τ

e−stg(t)dt.

The first integral on the right equals zero. Introducing the new variable of integration
x = t− τ in the second integral yields

L (u(t− τ)g(t)) =

∫∞
0
e−s(x+τ)g(x+ τ)dx = e−sτ

∫∞
0
e−sxg(x+ τ)dx.

Changing the name of the variable of integration in the last integral from x to t yields

L (u(t− τ)g(t)) = e−sτ
∫∞
0
e−stg(t+ τ)dt = e−sτL(g(t+ τ)).

Example 5.4.2 Find
L
(
u(t− 1)(t2 + 1)

)
.

Solution Here τ = 1 and g(t) = t2 + 1, so

g(t+ 1) = (t+ 1)2 + 1 = t2 + 2t+ 2.

Since
L (g(t+ 1)) =

2
s3

+
2
s2

+
2
s
,

Theorem 5.4.1 implies that

L
(
u(t− 1)(t2 + 1)

)
= e−s

(
2
s3

+
2
s2

+
2
s

)
.
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Figure 5.3 The piecewise contnuous function (5.4.7)

Example 5.4.3 Use Theorem 5.4.1 to find the Laplace transform of the function

f(t) =

{
2t+ 1, 0 6 t < 2,
3t, t > 2,

from Example 5.4.1.

Solution We first write f in the form (5.4.6) as

f(t) = 2t+ 1+ u(t− 2)(t− 1).

Therefore

L(f) = L(2t+ 1) + L (u(t− 2)(t− 1))
= L(2t+ 1) + e−2sL(t+ 1) (from Theorem 5.4.1)

=
2
s2

+
1
s
+ e−2s

(
1
s2

+
1
s

)
,

which is the result obtained in Example 5.4.1.
Formula (5.4.6) can be extended to more general piecewise continuous functions. For

example, we can write

f(t) =


f0(t), 0 6 t < t1,
f1(t), t1 6 t < t2,
f2(t), t > t2,

as
f(t) = f0(t) + u(t− t1) (f1(t) − f0(t)) + u(t− t2) (f2(t) − f1(t))

if f0, f1, and f2 are all defined on [0,∞).

Example 5.4.4 Find the Laplace transform of

f(t) =


1, 0 6 t < 2,

−2t+ 1, 2 6 t < 3,
3t, 3 6 t < 5,
t− 1, t > 5

(5.4.7)

(Figure 5.3).

Solution In terms of step functions,

f(t) = 1+ u(t− 2)(−2t+ 1− 1) + u(t− 3)(3t+ 2t− 1)
+u(t− 5)(t− 1− 3t),
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Figure 5.4 The piecewise continuous function (5.4.10)

or
f(t) = 1− 2u(t− 2)t+ u(t− 3)(5t− 1) − u(t− 5)(2t+ 1).

Now Theorem 5.4.1 implies that

L(f) = L(1) − 2e−2sL(t+ 2) + e−3sL (5(t+ 3) − 1) − e−5sL (2(t+ 5) + 1)

= L(1) − 2e−2sL(t+ 2) + e−3sL(5t+ 14) − e−5sL(2t+ 11)

=
1
s
− 2e−2s

(
1
s2

+
2
s

)
+ e−3s

(
5
s2

+
14
s

)
− e−5s

(
2
s2

+
11
s

)
.

The trigonometric identities

sin(A+ B) = sinA cosB+ cosA sinB (5.4.8)
cos(A+ B) = cosA cosB− sinA sinB (5.4.9)

are useful in problems that involve shifting the arguments of trigonometric functions.
We’ll use these identities in the next example.

Example 5.4.5 Find the Laplace transform of

f(t) =


sin t, 0 6 t <

π

2
,

cos t− 3 sin t,
π

2
6 t < π,

3 cos t, t > π

(5.4.10)

(Figure 5.4).

Solution In terms of step functions,

f(t) = sin t+ u(t− π/2)(cos t− 4 sin t) + u(t− π)(2 cos t+ 3 sin t).

Now Theorem 5.4.1 implies that

L(f) = L(sin t) + e−
π
2 sL

(
cos
(
t+ π

2

)
− 4 sin

(
t+ π

2

))
+e−πsL (2 cos(t+ π) + 3 sin(t+ π)) .

(5.4.11)

Since
cos
(
t+

π

2

)
− 4 sin

(
t+

π

2

)
= − sin t− 4 cos t

and
2 cos(t+ π) + 3 sin(t+ π) = −2 cos t− 3 sin t,
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we see from (5.4.11) that

L(f) = L(sin t) − e−πs/2L(sin t+ 4 cos t) − e−πsL(2 cos t+ 3 sin t)

=
1

s2 + 1
− e−

π
2 s

(
1+ 4s
s2 + 1

)
− e−πs

(
3+ 2s
s2 + 1

)
.

The Second Shifting Theorem

Replacing g(t) by g(t− τ) in Theorem 5.4.1 yields the next theorem.

Theorem 5.4.2 [Second Shifting Theorem] If τ > 0 and L(g) exists for s > s0 then L (u(t− τ)g(t− τ))

exists for s > s0 and
L(u(t− τ)g(t− τ)) = e−sτL(g(t)),

or, equivalently,

if g(t)↔ G(s), then u(t− τ)g(t− τ)↔ e−sτG(s). (5.4.12)

REMARK: Recall that the First Shifting Theorem (Theorem 5.1.3 states that multiplying
a function by eat corresponds to shifting the argument of its transform by a units.
Theorem 5.4.2 states that multiplying a Laplace transform by the exponential e−τs

corresponds to shifting the argument of the inverse transform by τ units.

Example 5.4.6 Use (5.4.12) to find

L−1
(
e−2s

s2

)
.

Solution To apply (5.4.12) we let τ = 2 and G(s) = 1/s2. Then g(t) = t and (5.4.12)
implies that

L−1
(
e−2s

s2

)
= u(t− 2)(t− 2).

Example 5.4.7 Find the inverse Laplace transform h of

H(s) =
1
s2

− e−s
(

1
s2

+
2
s

)
+ e−4s

(
4
s3

+
1
s

)
,

and find distinct formulas for h on appropriate intervals.

Solution Let
G0(s) =

1
s2

, G1(s) =
1
s2

+
2
s
, G2(s) =

4
s3

+
1
s
.

Then
g0(t) = t, g1(t) = t+ 2, g2(t) = 2t2 + 1.
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Hence, (5.4.12) and the linearity of L−1 imply that

h(t) = L−1 (G0(s)) − L−1 (e−sG1(s)
)
+ L−1 (e−4sG2(s)

)
= t− u(t− 1) [(t− 1) + 2] + u(t− 4)

[
2(t− 4)2 + 1

]
= t− u(t− 1)(t+ 1) + u(t− 4)(2t2 − 16t+ 33),

which can also be written as

h(t) =


t, 0 6 t < 1,
−1, 1 6 t < 4,

2t2 − 16t+ 32, t > 4.

Example 5.4.8 Find the inverse transform of

H(s) =
2s

s2 + 4
− e−

π
2 s

3s+ 1
s2 + 9

+ e−πs
s+ 1

s2 + 6s+ 10
.

Solution Let

G0(s) =
2s

s2 + 4
, G1(s) = −

(3s+ 1)
s2 + 9

,

and
G2(s) =

s+ 1
s2 + 6s+ 10

=
(s+ 3) − 2
(s+ 3)2 + 1

.

Then
g0(t) = 2 cos 2t, g1(t) = −3 cos 3t−

1
3
sin 3t,

and
g2(t) = e

−3t(cos t− 2 sin t).

Therefore (5.4.12) and the linearity of L−1 imply that

h(t) = 2 cos 2t− u(t− π/2)
[
3 cos 3(t− π/2) +

1
3
sin 3

(
t−

π

2

)]
+u(t− π)e−3(t−π) [cos(t− π) − 2 sin(t− π)] .

Using the trigonometric identities (5.4.8) and (5.4.9), we can rewrite this as

h(t) = 2 cos 2t+ u(t− π/2)
(
3 sin 3t− 1

3 cos 3t
)

−u(t− π)e−3(t−π)(cos t− 2 sin t)
(5.4.13)

(Figure 5.5).

Figure 5.5 The piecewise continouous function (5.4.13)
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5.4 Exercises

In Exercises 1–6 find the Laplace transform by the method of Example 5.4.1. Then
express the given function f in terms of unit step functions as in Eqn. (5.4.6), and use
Theorem 5.4.1 to find L(f). Where indicated by C/G , graph f.

1. f(t) =

{
1, 0 6 t < 4,

t, t > 4.

2. f(t) =

{
t, 0 6 t < 1,

1, t > 1.

3. C/G

f(t) =

{
2t− 1, 0 6 t < 2,

t, t > 2.

4. C/G

f(t) =

{
1, 0 6 t < 1,

t+ 2, t > 1.

5. f(t) =

{
t− 1, 0 6 t < 2,

4, t > 2.
6. f(t) =

{
t2, 0 6 t < 1,

0, t > 1.

In Exercises 7–18 express the given function f in terms of unit step functions and use Theo-
rem 5.4.1 to find L(f). Where indicated by C/G , graph f.

7. f(t) =

{
0, 0 6 t < 2,

t2 + 3t, t > 2.

8. f(t) =

{
t2 + 2, 0 6 t < 1,

t, t > 1.

9. f(t) =

{
tet, 0 6 t < 1,

et, t > 1.
10. f(t) =

{
e −t, 0 6 t < 1,

e−2t, t > 1.

11. f(t) =


−t, 0 6 t < 2,

t− 4, 2 6 t < 3,

1, t > 3.

12. f(t) =


0, 0 6 t < 1,

t, 1 6 t < 2,

0, t > 2.

13. f(t) =


t, 0 6 t < 1,

t2, 1 6 t < 2,

0, t > 2.

14. f(t) =


t, 0 6 t < 1,

2− t, 1 6 t < 2,

6, t > 2.

15. C/G f(t) =


sin t, 0 6 t <

π

2
,

2 sin t,
π

2
6 t < π,

cos t, t > π.
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16. C/G f(t) =


2, 0 6 t < 1,

−2t+ 2, 1 6 t < 3,

3t, t > 3.

17. C/G f(t) =


3, 0 6 t < 2,

3t+ 2, 2 6 t < 4,

4t, t > 4.

18. C/G f(t) =

{
(t+ 1)2, 0 6 t < 1,

(t+ 2)2, t > 1.

In Exercises 19–28 use Theorem 5.4.2 to express the inverse transforms in terms of step functions,
and then find distinct formulas the for inverse transforms on the appropriate intervals, as in
Example 5.4.7. Where indicated by C/G , graph the inverse transform.

19. H(s) =
e−2s

s− 2

20. H(s) =
e−s

s(s+ 1)

21. C/G H(s) =
e−s

s3
+
e−2s

s2

22. C/G H(s) =

(
2
s
+

1
s2

)
+ e−s

(
3
s
−

1
s2

)
+ e−3s

(
1
s
+

1
s2

)
23. H(s) =

(
5
s
−

1
s2

)
+ e−3s

(
6
s
+

7
s2

)
+

3e−6s

s3

24. H(s) =
e−πs(1− 2s)
s2 + 4s+ 5

25. C/G H(s) =

(
1
s
−

s

s2 + 1

)
+ e−

π
2 s

(
3s− 1
s2 + 1

)
26. H(s) = e−2s

[
3(s− 3)

(s+ 1)(s− 2)
−

s+ 1
(s− 1)(s− 2)

]
27. H(s) =

1
s
+

1
s2

+ e−s
(
3
s
+

2
s2

)
+ e−3s

(
4
s
+

3
s2

)
28. H(s) =

1
s
−

2
s3

+ e−2s
(
3
s
−

1
s3

)
+
e−4s

s2

29. Find L (u(t− τ)).

30. Let {tm}∞m=0 be a sequence of points such that t0 = 0, tm+1 > tm, and limm→∞ tm =∞. For each nonnegative integerm, let fm be continuous on [tm,∞), and let f be
defined on [0,∞) by

f(t) = fm(t), tm 6 t < tm+1 (m = 0, 1, . . . ).
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Show that f is piecewise continuous on [0,∞) and that it has the step function
representation

f(t) = f0(t) +

∞∑
m=1

u(t− tm) (fm(t) − fm−1(t)) , 0 6 t <∞.

How do we know that the series on the right converges for all t in [0,∞)?

31. In addition to the assumptions of Exercise 30, assume that

|fm(t)| 6Mes0t, t > tm, m = 0, 1, . . . , (A)

and that the series ∞∑
m=0

e−ρtm (B)

converges for some ρ > 0. Using the steps listed below, show that L(f) is defined
for s > s0 and

L(f) = L(f0) +

∞∑
m=1

e−stmL(gm) (C)

for s > s0 + ρ, where

gm(t) = fm(t+ tm) − fm−1(t+ tm).

(a) Use (A) and Theorem 8.1.6 to show that

L(f) =

∞∑
m=0

∫tm+1

tm

e−stfm(t)dt (D)

is defined for s > s0.
(b) Show that (D) can be rewritten as

L(f) =

∞∑
m=0

(∫∞
tm

e−stfm(t)dt−

∫∞
tm+1

e−stfm(t)dt

)
. (E)

(c) Use (A), the assumed convergence of (B), and the comparison test to show
that the series∞∑

m=0

∫∞
tm

e−stfm(t)dt and
∞∑
m=0

∫∞
tm+1

e−stfm(t)dt

both converge (absolutely) if s > s0 + ρ.
(d) Show that (E) can be rewritten as

L(f) = L(f0) +

∞∑
m=1

∫∞
tm

e−st (fm(t) − fm−1(t)) dt

if s > s0 + ρ.
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(e) Complete the proof of (C).

32. Suppose {tm}∞m=0 and {fm}∞m=0 satisfy the assumptions of Exercises 30 and 31, and
there’s a positive constant K such that tm > Km for m sufficiently large. Show
that the series (B) of Exercise 31 converges for any ρ > 0, and conclude from this
that (C) of Exercise 31 holds for s > s0.

In Exercises 33–36 find the step function representation of f and use the result of Exercise 32 to
find L(f). HINT: You will need formulas related to the formula for the sum of a geometric series.

33. f(t) = m+ 1, m 6 t < m+ 1 (m = 0, 1, 2, . . . )

34. f(t) = (−1)m, m 6 t < m+ 1 (m = 0, 1, 2, . . . )

35. f(t) = (m+ 1)2, m 6 t < m+ 1 (m = 0, 1, 2, . . . )

36. f(t) = (−1)mm, m 6 t < m+ 1 (m = 0, 1, 2, . . . )

5.5 CONSTANT COEEFFICIENT EQUATIONS WITH PIECEWISE CONTINUOUS FORC-
ING FUNCTIONS

We’ll now consider initial value problems of the form

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1, (5.5.1)

where a, b, and c are constants (a 6= 0) and f is piecewise continuous on [0,∞). Prob-
lems of this kind occur in situations where the input to a physical system undergoes
instantaneous changes, as when a switch is turned on or off or the forces acting on the
system change abruptly.

It can be shown (Exercises 23 and 24) that the differential equation in (5.5.1) has no
solutions on an open interval that contains a jump discontinuity of f. Therefore we must
define what we mean by a solution of (5.5.1) on [0,∞) in the case where f has jump
discontinuities. The next theorem motivates our definition. We omit the proof.

Theorem 5.5.1 Suppose a,b, and c are constants (a 6= 0), and f is piecewise continuous on
[0,∞). with jump discontinuities at t1, . . . , tn, where

0 < t1 < · · · < tn.
Let k0 and k1 be arbitrary real numbers. Then there is a unique function y defined on [0,∞)
with these properties:
(a) y(0) = k0 and y ′(0) = k1.

(b) y and y ′ are continuous on [0,∞).

(c) y ′′ is defined on every open subinterval of [0,∞) that does not contain any of the points t1,
. . . , tn, and

ay ′′ + by ′ + cy = f(t)

on every such subinterval.
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(d) y ′′ has limits from the right and left at t1, . . . , tn.

We define the function y of Theorem 5.5.1 to be the solution of the initial value problem
(5.5.1).

We begin by considering initial value problems of the form

ay ′′ + by ′ + cy =

{
f0(t), 0 6 t < t1,
f1(t), t > t1,

y(0) = k0, y ′(0) = k1, (5.5.2)

where the forcing function has a single jump discontinuity at t1.
We can solve (5.5.2) by the these steps:

Step 1. Find the solution y0 of the initial value problem

ay ′′ + by ′ + cy = f0(t), y(0) = k0, y ′(0) = k1.

Step 2. Compute c0 = y0(t1) and c1 = y ′0(t1).

Step 3. Find the solution y1 of the initial value problem

ay ′′ + by ′ + cy = f1(t), y(t1) = c0, y ′(t1) = c1.

Step 4. Obtain the solution y of (5.5.2) as

y =

{
y0(t), 0 6 t < t1
y1(t), t > t1.

It is shown in Exercise 23 that y ′ exists and is continuous at t1. The next example
illustrates this procedure.

Example 5.5.1 Solve the initial value problem

y ′′ + y = f(t), y(0) = 2, y ′(0) = −1, (5.5.3)

where

f(t) =

 1, 0 6 t <
π

2
,

−1, t >
π

2
.

Solution The initial value problem in Step 1 is

y ′′ + y = 1, y(0) = 2, y ′(0) = −1.

We leave it to you to verify that its solution is

y0 = 1+ cos t− sin t.



Section 5.5 Constant Coeefficient Equations with Piecewise Continuous Forcing Functions
257

Figure 5.1 Graph of (5.5.4)

Doing Step 2 yields y0(π/2) = 0 and y ′0(π/2) = −1, so the second initial value problem
is

y ′′ + y = −1, y
(π
2

)
= 0, y ′

(π
2

)
= −1.

We leave it to you to verify that the solution of this problem is

y1 = −1+ cos t+ sin t.

Hence, the solution of (5.5.3) is

y =

 1+ cos t− sin t, 0 6 t <
π

2
,

−1+ cos t+ sin t, t >
π

2

(5.5.4)

(Figure:8.5.1).
If f0 and f1 are defined on [0,∞), we can rewrite (5.5.2) as

ay ′′ + by ′ + cy = f0(t) + u(t− t1) (f1(t) − f0(t)) , y(0) = k0, y ′(0) = k1,

and apply the method of Laplace transforms. We’ll now solve the problem considered
in Example 5.5.1 by this method.

Example 5.5.2 Use the Laplace transform to solve the initial value problem

y ′′ + y = f(t), y(0) = 2, y ′(0) = −1, (5.5.5)

where

f(t) =

 1, 0 6 t <
π

2
,

−1, t >
π

2
.

Solution Here
f(t) = 1− 2u

(
t−

π

2

)
,

so Theorem 5.4.1 (with g(t) = 1) implies that

L(f) =
1− 2e−πs/2

s
.

Therefore, transforming (5.5.5) yields

(s2 + 1)Y(s) =
1− 2e−πs/2

s
− 1+ 2s,

so
Y(s) = (1− 2e−πs/2)G(s) +

2s− 1
s2 + 1

, (5.5.6)
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with
G(s) =

1
s(s2 + 1)

.

The form for the partial fraction expansion of G is

1
s(s2 + 1)

=
A

s
+
Bs+ C

s2 + 1
. (5.5.7)

Multiplying through by s(s2 + 1) yields

A(s2 + 1) + (Bs+ C)s = 1,

or
(A+ B)s2 + Cs+A = 1.

Equating coefficients of like powers of s on the two sides of this equation shows that
A = 1, B = −A = −1 and C = 0. Hence, from (5.5.7),

G(s) =
1
s
−

s

s2 + 1
.

Therefore
g(t) = 1− cos t.

From this, (5.5.6), and Theorem 5.4.2,

y = 1− cos t− 2u
(
t−

π

2

)(
1− cos

(
t−

π

2

))
+ 2 cos t− sin t.

Simplifying this (recalling that cos(t− π/2) = sin t) yields

y = 1+ cos t− sin t− 2u
(
t−

π

2

)
(1− sin t),

or

y =

 1+ cos t− sin t, 0 6 t <
π

2
,

−1+ cos t+ sin t, t >
π

2
,

which is the result obtained in Example 5.5.1.

REMARK: It isn’t obvious that using the Laplace transform to solve (5.5.2) as we did in
Example 5.5.2 yields a function y with the properties stated in Theorem 5.5.1; that is,
such that y and y ′ are continuous on [0,∞) and y ′′ has limits from the right and left at
t1. However, this is true if f0 and f1 are continuous and of exponential order on [0,∞).
A proof is sketched in Exercises 8.6.11–8.6.13.

Example 5.5.3 Solve the initial value problem

y ′′ − y = f(t), y(0) = −1, y ′(0) = 2, (5.5.8)

where

f(t) =

{
t, 0 6 t < 1,
1, t > 1.
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Solution Here
f(t) = t− u(t− 1)(t− 1),

so

L(f) = L(t) − L (u(t− 1)(t− 1))

= L(t) − e−sL(t) (from Theorem 5.4.1)

=
1
s2

−
e−s

s2
.

Since transforming (5.5.8) yields

(s2 − 1)Y(s) = L(f) + 2− s,

we see that
Y(s) = (1− e−s)H(s) +

2− s
s2 − 1

, (5.5.9)

where
H(s) =

1
s2(s2 − 1)

=
1

s2 − 1
−

1
s2

;

therefore
h(t) = sinh t− t. (5.5.10)

Since

L−1
(

2− s
s2 − 1

)
= 2 sinh t− cosh t,

we conclude from (5.5.9), (5.5.10), and Theorem 5.4.1 that

y = sinh t− t− u(t− 1) (sinh(t− 1) − t+ 1) + 2 sinh t− cosh t,

or
y = 3 sinh t− cosh t− t− u(t− 1) (sinh(t− 1) − t+ 1) (5.5.11)

We leave it to you to verify that y and y ′ are continuous and y ′′ has limits from the right
and left at t1 = 1.

Example 5.5.4 Solve the initial value problem

y ′′ + y = f(t), y(0) = 0, y ′(0) = 0, (5.5.12)

where

f(t) =


0, 0 6 t <

π

4
,

cos 2t,
π

4
6 t < π,

0, t > π.
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Solution Here
f(t) = u(t− π/4) cos 2t− u(t− π) cos 2t,

so

L(f) = L (u(t− π/4) cos 2t) − L (u(t− π) cos 2t)

= e−πs/4L (cos 2(t+ π/4)) − e−πsL (cos 2(t+ π))

= −e−πs/4L(sin 2t) − e−πsL(cos 2t)

= −
2e−πs/4

s2 + 4
−
se−πs

s2 + 4
.

Since transforming (5.5.12) yields

(s2 + 1)Y(s) = L(f),

we see that
Y(s) = e−πs/4H1(s) + e

−πsH2(s), (5.5.13)

where

H1(s) = −
2

(s2 + 1)(s2 + 4)
and H2(s) = −

s

(s2 + 1)(s2 + 4)
. (5.5.14)

To simplify the required partial fraction expansions, we first write

1
(x+ 1)(x+ 4)

=
1
3

[
1

x+ 1
−

1
x+ 4

]
.

Setting x = s2 and substituting the result in (5.5.14) yields

H1(s) = −
2
3

[
1

s2 + 1
−

1
s2 + 4

]
and H2(s) = −

1
3

[
s

s2 + 1
−

s

s2 + 4

]
.

The inverse transforms are

h1(t) = −
2
3
sin t+

1
3
sin 2t and h2(t) = −

1
3
cos t+

1
3
cos 2t.

From (5.5.13) and Theorem 8.4.2,

y = u
(
t−

π

4

)
h1

(
t−

π

4

)
+ u(t− π)h2(t− π). (5.5.15)

Since

h1

(
t−

π

4

)
= −

2
3
sin
(
t−

π

4

)
+

1
3
sin 2

(
t−

π

4

)
= −

√
2
3

(sin t− cos t) −
1
3
cos 2t
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Figure 5.2 Graph of (5.5.16)

and

h2(t− π) = −
1
3
cos(t− π) +

1
3
cos 2(t− π)

=
1
3
cos t+

1
3
cos 2t,

(5.5.15) can be rewritten as

y = −
1
3
u
(
t−

π

4

)(√
2(sin t− cos t) + cos 2t

)
+

1
3
u(t− π)(cos t+ cos 2t)

or

y =



0, 0 6 t <
π

4
,

−

√
2
3

(sin t− cos t) −
1
3
cos 2t,

π

4
6 t < π,

−

√
2
3

sin t+
1+
√
2

3
cos t, t > π.

(5.5.16)

We leave it to you to verify that y and y ′ are continuous and y ′′ has limits from the right
and left at t1 = π/4 and t2 = π (Figure 5.2).

5.5 Exercises

In Exercises 1–20 use the Laplace transform to solve the initial value problem. Where
indicated by
C/G , graph the solution.

1. y ′′ + y =

{
3, 0 6 t < π,

0, t > π,
y(0) = 0, y ′(0) = 0

2. y ′′ + y =

{
3, 0 6 t < 4,

; 2t− 5, t > 4, y(0) = 1, y ′(0) = 0

3. y ′′ − 2y ′ =

{
4, 0 6 t < 1,

6, t > 1,
y(0) = −6, y ′(0) = 1

4. y ′′ − y =

{
e2t, 0 6 t < 2,

1, t > 2,
y(0) = 3, y ′(0) = −1

5. y ′′ − 3y ′ + 2y =


0, 0 6 t < 1,

1, 1 6 t < 2,

−1, t > 2,

y(0) = −3, y ′(0) = 1

6. C/G y ′′ + 4y =

{
| sin t|, 0 6 t < 2π,

0, t > 2π,
y(0) = −3, y ′(0) = 1
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7. y ′′ − 5y ′ + 4y =


1, 0 6 t < 1

−1, 1 6 t < 2,

0, t > 2,

y(0) = 3, y ′(0) = −5

8. y ′′ + 9y =


cos t, 0 6 t <

3π
2
,

sin t, t >
3π
2
,

y(0) = 0, y ′(0) = 0

9. C/G y ′′ + 4y =

 t, 0 6 t <
π

2
,

π, t >
π

2
,

y(0) = 0, y ′(0) = 0

10. y ′′ + y =

{
t, 0 6 t < π,

−t, t > π,
y(0) = 0, y ′(0) = 0

11. y ′′ − 3y ′ + 2y =

{
0, 0 6 t < 2,

2t− 4, t > 2, , y(0) = 0, y ′(0) = 0

12. y ′′ + y =

{
t, 0 6 t < 2π,

−2t, t > 2π, y(0) = 1, y ′(0) = 2

13. C/G y ′′ + 3y ′ + 2y =

{
1, 0 6 t < 2,

−1, t > 2, y(0) = 0, y ′(0) = 0

14. y ′′ − 4y ′ + 3y =

{
−1, 0 6 t < 1,
1, t > 1, y(0) = 0, y ′(0) = 0

15. y ′′ + 2y ′ + y =

{
et, 0 6 t < 1,

et − 1, t > 1, y(0) = 3, y ′(0) = −1

16. y ′′ + 2y ′ + y =

{
4et, 0 6 t < 1,
0, t > 1, y(0) = 0, y ′(0) = 0

17. y ′′ + 3y ′ + 2y =

{
e−t, 0 6 t < 1,
0, t > 1, y(0) = 1, y ′(0) = −1

18. y ′′ − 4y ′ + 4y =

{
e2t, 0 6 t < 2,

−e2t, t > 2, y(0) = 0, y ′(0) = −1

19. C/G y ′′ =


t2, 0 6 t < 1,
−t, 1 6 t < 2,
t+ 1, t > 2,

y(0) = 1, y ′(0) = 0

20. y ′′ + 2y ′ + 2y =


1, 0 6 t < 2π,
t, 2π 6 t < 3π,

−1, t > 3π,
y(0) = 2, y ′(0) = −1

21. Solve the initial value problem

y ′′ = f(t), y(0) = 0, y ′(0) = 0,
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where
f(t) = m+ 1, m 6 t < m+ 1, m = 0, 1, 2, . . . .

22. Solve the given initial value problem and find a formula that does not involve step
functions and represents y on each interval of continuity of f.

(a) y ′′ + y = f(t), y(0) = 0, y ′(0) = 0;
f(t) = m+ 1, mπ 6 t < (m+ 1)π, m = 0, 1, 2, . . . .

(b) y ′′ + y = f(t), y(0) = 0, y ′(0) = 0;
f(t) = (m + 1)t, 2mπ 6 t < 2(m + 1)π, m = 0, 1, 2, . . . HINT: You’ll need
the formula

1+ 2+ · · ·+m =
m(m+ 1)

2
.

(c) y ′′ + y = f(t), y(0) = 0, y ′(0) = 0;
f(t) = (−1)m, mπ 6 t < (m+ 1)π, m = 0, 1, 2, . . . .

(d) y ′′ − y = f(t), y(0) = 0, y ′(0) = 0;
f(t) = m+ 1, m 6 t < (m+ 1), m = 0, 1, 2, . . . .
HINT: You will need the formula

1+ r+ · · ·+ rm =
1− rm+1

1− r
(r 6= 1).

(e) y ′′ + 2y ′ + 2y = f(t), y(0) = 0, y ′(0) = 0;
f(t) = (m+ 1)(sin t+ 2 cos t), 2mπ 6 t < 2(m+ 1)π, m = 0, 1, 2, . . . .
(See the hint in (d).)

(f) y ′′ − 3y ′ + 2y = f(t), y(0) = 0, y ′(0) = 0;
f(t) = m+ 1, m 6 t < m+ 1, m = 0, 1, 2, . . . .
(See the hints in (b) and (d).)

23. (a) Let g be continuous on (α,β) and differentiable on the (α, t0) and (t0,β).
SupposeA = limt→t0− g ′(t) and B = limt→t0+ g ′(t) both exist. Use the mean
value theorem to show that

lim
t→t0−

g(t) − g(t0)

t− t0
= A and lim

t→t0+
g(t) − g(t0)

t− t0
= B.

(b) Conclude from (a) that g ′(t0) exists and g ′ is continuous at t0 if A = B.
(c) Conclude from (a) that if g is differentiable on (α,β) then g ′ can’t have a jump

discontinuity on (α,β).

24. (a) Let a, b, and c be constants, with a 6= 0. Let f be piecewise continuous on
an interval (α,β), with a single jump discontinuity at a point t0 in (α,β).
Suppose y and y ′ are continuous on (α,β) and y ′′ on (α, t0) and (t0,β).
Suppose also that

ay ′′ + by ′ + cy = f(t) (A)
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on (α, t0) and (t0,β). Show that

y ′′(t0+) − y ′′(t0−) =
f(t0+) − f(t0−)

a
6= 0.

(b) Use (a) and Exercise 23(c) to show that (A) does not have solutions on any
interval (α,β) that contains a jump discontinuity of f.

25. Suppose P0,P1, and P2 are continuous and P0 has no zeros on an open interval
(a,b), and that F has a jump discontinuity at a point t0 in (a,b). Show that the
differential equation

P0(t)y
′′ + P1(t)y

′ + P2(t)y = F(t)

has no solutions on (a,b).HINT: Generalize the result of Exercise 24 and use Exer-
cise 23(c).

26. Let 0 = t0 < t1 < · · · < tn. Suppose fm is continuous on [tm,∞) form = 1, . . . ,n.
Let

f(t) =

{
fm(t), tm 6 t < tm+1, m = 1, . . . ,n− 1,
fn(t), t > tn.

Show that the solution of

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1,

as defined following Theorem 8.5.1, is given by

y =



z0(t), 0 6 t < t1,
z0(t) + z1(t), t1 6 t < t2,

...
z0 + · · ·+ zn−1(t), tn−1 6 t < tn,
z0 + · · ·+ zn(t), t > tn,

where z0 is the solution of

az ′′ + bz ′ + cz = f0(t), z(0) = k0, z ′(0) = k1

and zm is the solution of

az ′′ + bz ′ + cz = fm(t) − fm−1(t), z(tm) = 0, z ′(tm) = 0

form = 1, . . . ,n.

5.6 CONVOLUTION
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In this section we consider the problem of finding the inverse Laplace transform of a
product H(s) = F(s)G(s), where F and G are the Laplace transforms of known functions
f and g. To motivate our interest in this problem, consider the initial value problem

ay ′′ + by ′ + cy = f(t), y(0) = 0, y ′(0) = 0.

Taking Laplace transforms yields

(as2 + bs+ c)Y(s) = F(s),

so
Y(s) = F(s)G(s), (5.6.1)

where
G(s) =

1
as2 + bs+ c

.

Until now wen’t been interested in the factorization indicated in (5.6.1), since we dealt
only with differential equations with specific forcing functions. Hence, we could simply
do the indicated multiplication in (5.6.1) and use the table of Laplace transforms to find
y = L−1(Y). However, this isn’t possible if we want a formula for y in terms of f, which
may be unspecified.

To motivate the formula for L−1(FG), consider the initial value problem

y ′ − ay = f(t), y(0) = 0, (5.6.2)

which we first solve without using the Laplace transform. The solution of the differential
equation in (5.6.2) is of the form y = ueat where

u ′ = e−atf(t).

Integrating this from 0 to t and imposing the initial condition u(0) = y(0) = 0 yields

u =

∫t
0
e−aτf(τ)dτ.

Therefore

y(t) = eat
∫t
0
e−aτf(τ)dτ =

∫t
0
ea(t−τ)f(τ)dτ. (5.6.3)

Now we’ll use the Laplace transform to solve (5.6.2) and compare the result to (5.6.3).
Taking Laplace transforms in (5.6.2) yields

(s− a)Y(s) = F(s),

so
Y(s) = F(s)

1
s− a

,
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which implies that

y(t) = L−1
(
F(s)

1
s− a

)
. (5.6.4)

If we now let g(t) = eat, so that

G(s) =
1

s− a
,

then (5.6.3) and (5.6.4) can be written as

y(t) =

∫t
0
f(τ)g(t− τ)dτ

and
y = L−1(FG),

respectively. Therefore

L−1(FG) =

∫t
0
f(τ)g(t− τ)dτ (5.6.5)

in this case.
This motivates the next definition.

Definition 5.6.1 The convolution f ∗ g of two functions f and g is defined by

(f ∗ g)(t) =
∫t
0
f(τ)g(t− τ)dτ.

It can be shown (Exercise 6) that f ∗ g = g ∗ f; that is,∫t
0
f(t− τ)g(τ)dτ =

∫t
0
f(τ)g(t− τ)dτ.

Eqn. (5.6.5) shows that L−1(FG) = f ∗ g in the special case where g(t) = eat. This next
theorem states that this is true in general.

Theorem 5.6.2 [The Convolution Theorem] If L(f) = F and L(g) = G, then

L(f ∗ g) = FG.

A complete proof of the convolution theorem is beyond the scope of this book. How-
ever, we’ll assume that f ∗ g has a Laplace transform and verify the conclusion of the
theorem in a purely computational way. By the definition of the Laplace transform,

L(f ∗ g) =
∫∞
0
e−st(f ∗ g)(t)dt =

∫∞
0
e−st

∫t
0
f(τ)g(t− τ)dτdt.

This iterated integral equals a double integral over the region shown in Figure 5.1.
Reversing the order of integration yields

L(f ∗ g) =
∫∞
0
f(τ)

∫∞
τ

e−stg(t− τ)dtdτ. (5.6.6)
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Figure 5.1

However, the substitution x = t− τ shows that∫∞
τ

e−stg(t− τ)dt =

∫∞
0
e−s(x+τ)g(x)dx

= e−sτ
∫∞
0
e−sxg(x)dx = e−sτG(s).

Substituting this into (5.6.6) and noting that G(s) is independent of τ yields

L(f ∗ g) =

∫∞
0
e−sτf(τ)G(s)dτ

= G(s)

∫∞
0
e−stf(τ)dτ = F(s)G(s).

Example 5.6.1 Let

f(t) = eat and g(t) = ebt (a 6= b).
Verify that L(f ∗ g) = L(f)L(g), as implied by the convolution theorem.

Solution We first compute

(f ∗ g)(t) =

∫t
0
eaτeb(t−τ) dτ = ebt

∫t
0
e(a−b)τdτ

= ebt
e(a−b)τ

a− b

∣∣∣∣t
0

=
ebt

[
e(a−b)t − 1

]
a− b

=
eat − ebt

a− b
.

Since
eat ↔ 1

s− a
and ebt ↔ 1

s− b
,

it follows that

L(f ∗ g) =
1

a− b

[
1

s− a
−

1
s− b

]

=
1

(s− a)(s− b)

= L(eat)L(ebt) = L(f)L(g).

A Formula for the Solution of an Initial Value Problem

The convolution theorem provides a formula for the solution of an initial value problem
for a linear constant coefficient second order equation with an unspecified. The next
three examples illustrate this.



268 Chapter 5 Laplace Transforms

Example 5.6.2 Find a formula for the solution of the initial value problem

y ′′ − 2y ′ + y = f(t), y(0) = k0, y ′(0) = k1. (5.6.7)

Solution Taking Laplace transforms in (5.6.7) yields

(s2 − 2s+ 1)Y(s) = F(s) + (k1 + k0s) − 2k0.

Therefore

Y(s) =
1

(s− 1)2
F(s) +

k1 + k0s− 2k0

(s− 1)2

=
1

(s− 1)2
F(s) +

k0

s− 1
+
k1 − k0

(s− 1)2
.

From the table of Laplace transforms,

L−1
(
k0

s− 1
+
k1 − k0

(s− 1)2

)
= et (k0 + (k1 − k0)t) .

Since
1

(s− 1)2
↔ tet and F(s)↔ f(t),

the convolution theorem implies that

L−1
(

1
(s− 1)2

F(s)

)
=

∫t
0
τeτf(t− τ)dτ.

Therefore the solution of (5.6.7) is

y(t) = et (k0 + (k1 − k0)t) +

∫t
0
τeτf(t− τ)dτ.

Example 5.6.3 Find a formula for the solution of the initial value problem

y ′′ + 4y = f(t), y(0) = k0, y ′(0) = k1. (5.6.8)

Solution Taking Laplace transforms in (5.6.8) yields

(s2 + 4)Y(s) = F(s) + k1 + k0s.

Therefore
Y(s) =

1
(s2 + 4)

F(s) +
k1 + k0s

s2 + 4
.

From the table of Laplace transforms,

L−1
(
k1 + k0s

s2 + 4

)
= k0 cos 2t+

k1

2
sin 2t.



Section 5.6 Convolution 269

Since
1

(s2 + 4)
↔ 1

2
sin 2t and F(s)↔ f(t),

the convolution theorem implies that

L−1
(

1
(s2 + 4)

F(s)

)
=

1
2

∫t
0
f(t− τ) sin 2τdτ.

Therefore the solution of (5.6.8) is

y(t) = k0 cos 2t+
k1

2
sin 2t+

1
2

∫t
0
f(t− τ) sin 2τdτ.

Example 5.6.4 Find a formula for the solution of the initial value problem

y ′′ + 2y ′ + 2y = f(t), y(0) = k0, y ′(0) = k1. (5.6.9)

Solution Taking Laplace transforms in (5.6.9) yields

(s2 + 2s+ 2)Y(s) = F(s) + k1 + k0s+ 2k0.

Therefore

Y(s) =
1

(s+ 1)2 + 1
F(s) +

k1 + k0s+ 2k0

(s+ 1)2 + 1

=
1

(s+ 1)2 + 1
F(s) +

(k1 + k0) + k0(s+ 1)
(s+ 1)2 + 1

.

From the table of Laplace transforms,

L−1
(
(k1 + k0) + k0(s+ 1)

(s+ 1)2 + 1

)
= e−t ((k1 + k0) sin t+ k0 cos t) .

Since
1

(s+ 1)2 + 1
↔ e−t sin t and F(s)↔ f(t),

the convolution theorem implies that

L−1
(

1
(s+ 1)2 + 1

F(s)

)
=

∫t
0
f(t− τ)e−τ sin τdτ.

Therefore the solution of (5.6.9) is

y(t) = e−t ((k1 + k0) sin t+ k0 cos t) +
∫t
0
f(t− τ)e−τ sin τdτ. (5.6.10)

Evaluating Convolution Integrals

We’ll say that an integral of the form
∫t

0 u(τ)v(t − τ)dτ is a convolution integral. The
convolution theorem provides a convenient way to evaluate convolution integrals.
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Example 5.6.5 Evaluate the convolution integral

h(t) =

∫t
0
(t− τ)5τ7dτ.

Solution We could evaluate this integral by expanding (t− τ)5 in powers of τ and then
integrating. However, the convolution theorem provides an easier way. The integral is
the convolution of f(t) = t5 and g(t) = t7. Since

t5 ↔ 5!
s6

and t7 ↔ 7!
s8

,

the convolution theorem implies that

h(t)↔ 5!7!
s14 =

5!7!
13!

13!
s14 ,

where we have written the second equality because

13!
s14 ↔ t13.

Hence,

h(t) =
5!7!
13!

t13.

Example 5.6.6 Use the convolution theorem and a partial fraction expansion to evaluate
the convolution integral

h(t) =

∫t
0
sina(t− τ) cosbτdτ (|a| 6= |b|).

Solution Since
sinat↔ a

s2 + a2 and cosbt↔ s

s2 + b2 ,

the convolution theorem implies that

H(s) =
a

s2 + a2
s

s2 + b2 .

Expanding this in a partial fraction expansion yields

H(s) =
a

b2 − a2

[
s

s2 + a2 −
s

s2 + b2

]
.

Therefore
h(t) =

a

b2 − a2 (cosat− cosbt) .
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Volterra Integral Equations

An equation of the form

y(t) = f(t) +

∫t
0
k(t− τ)y(τ)dτ (5.6.11)

is a Volterra integral equation. Here f and k are given functions and y is unknown. Since
the integral on the right is a convolution integral, the convolution theorem provides a
convenient formula for solving (5.6.11). Taking Laplace transforms in (5.6.11) yields

Y(s) = F(s) + K(s)Y(s),

and solving this for Y(s) yields

Y(s) =
F(s)

1− K(s)
.

We then obtain the solution of (5.6.11) as y = L−1(Y).

Example 5.6.7 Solve the integral equation

y(t) = 1+ 2
∫t
0
e−2(t−τ)y(τ)dτ. (5.6.12)

Solution Taking Laplace transforms in (5.6.12) yields

Y(s) =
1
s
+

2
s+ 2

Y(s),

and solving this for Y(s) yields

Y(s) =
1
s
+

2
s2

.

Hence,
y(t) = 1+ 2t.

Transfer Functions

The next theorem presents a formula for the solution of the general initial value problem

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1,

where we assume for simplicity that f is continuous on [0,∞) and that L(f) exists. In
Exercises 11–14 it’s shown that the formula is valid under much weaker conditions on f.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Volterra.html
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Theorem 5.6.3 Suppose f is continuous on [0,∞) and has a Laplace transform. Then the
solution of the initial value problem

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1, (5.6.13)

is

y(t) = k0y1(t) + k1y2(t) +

∫t
0
w(τ)f(t− τ)dτ, (5.6.14)

where y1 and y2 satisfy

ay ′′1 + by ′1 + cy1 = 0, y1(0) = 1, y ′1(0) = 0, (5.6.15)

and
ay ′′2 + by ′2 + cy2 = 0, y2(0) = 0, y ′2(0) = 1, (5.6.16)

and
w(t) =

1
a
y2(t). (5.6.17)

Proof Taking Laplace transforms in (5.6.13) yields

p(s)Y(s) = F(s) + a(k1 + k0s) + bk0,

where
p(s) = as2 + bs+ c.

Hence,
Y(s) =W(s)F(s) + V(s) (5.6.18)

with
W(s) =

1
p(s)

(5.6.19)

and
V(s) =

a(k1 + k0s) + bk0

p(s)
. (5.6.20)

Taking Laplace transforms in (5.6.15) and (5.6.16) shows that

p(s)Y1(s) = as+ b and p(s)Y2(s) = a.

Therefore
Y1(s) =

as+ b

p(s)

and
Y2(s) =

a

p(s)
. (5.6.21)

Hence, (5.6.20) can be rewritten as

V(s) = k0Y1(s) + k1Y2(s).
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Substituting this into (5.6.18) yields

Y(s) = k0Y1(s) + k1Y2(s) +
1
a
Y2(s)F(s).

Taking inverse transforms and invoking the convolution theorem yields (5.6.14). Finally,
(5.6.19) and (5.6.21) imply (5.6.17).

It is useful to note from (5.6.14) that y is of the form

y = v+ h,

where
v(t) = k0y1(t) + k1y2(t)

depends on the initial conditions and is independent of the forcing function, while

h(t) =

∫t
0
w(τ)f(t− τ)dτ

depends on the forcing function and is independent of the initial conditions. If the zeros
of the characteristic polynomial

p(s) = as2 + bs+ c

of the complementary equation have negative real parts, then y1 and y2 both approach
zero as t → ∞, so limt→∞ v(t) = 0 for any choice of initial conditions. Moreover,
the value of h(t) is essentially independent of the values of f(t − τ) for large τ, since
limτ→∞w(τ) = 0. In this case we say that v and h are transient and steady state components,
respectively, of the solution y of (5.6.13). These definitions apply to the initial value
problem of Example 5.6.4, where the zeros of

p(s) = s2 + 2s+ 2 = (s+ 1)2 + 1

are −1± i. From (5.6.10), we see that the solution of the general initial value problem of
Example 5.6.4 is y = v+ h, where

v(t) = e−t ((k1 + k0) sin t+ k0 cos t)

is the transient component of the solution and

h(t) =

∫t
0
f(t− τ)e−τ sin τdτ

is the steady state component. The definitions don’t apply to the initial value problems
considered in Examples 5.6.2 and 5.6.3, since the zeros of the characteristic polynomials
in these two examples don’t have negative real parts.
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In physical applications where the input f and the output y of a device are related by
(5.6.13), the zeros of the characteristic polynomial usually do have negative real parts.
ThenW = L(w) is called the transfer function of the device. Since

H(s) =W(s)F(s),

we see that

W(s) =
H(s)

F(s)

is the ratio of the transform of the steady state output to the transform of the input.
Because of the form of

h(t) =

∫t
0
w(τ)f(t− τ)dτ,

w is sometimes called the weighting function of the device, since it assigns weights to
past values of the input f. It is also called the impulse response of the device, for reasons
discussed in the next section.

Formula (5.6.14) is given in more detail in Exercises 8–10 for the three possible cases
where the zeros of p(s) are real and distinct, real and repeated, or complex conjugates,
respectively.

5.6 Exercises

1. Express the inverse transform as an integral.

(a)
1

s2(s2 + 4)
(b)

s

(s+ 2)(s2 + 9)

(c)
s

(s2 + 4)(s2 + 9)
(d)

s

(s2 + 1)2

(e)
1

s(s− a)
(f)

1
(s+ 1)(s2 + 2s+ 2)

(g)
1

(s+ 1)2(s2 + 4s+ 5)
(h)

1
(s− 1)3(s+ 2)2

(i)
s− 1

s2(s2 − 2s+ 2)
(j)

s(s+ 3)
(s2 + 4)(s2 + 6s+ 10)

(k)
1

(s− 3)5s6
(l)

1
(s− 1)3(s2 + 4)

(m)
1

s2(s− 2)3
(n)

1
s7(s− 2)6

2. Find the Laplace transform.

(a)
∫t
0
sinaτ cosb(t− τ)dτ (b)

∫t
0
eτ sina(t− τ)dτ



Section 5.6 Convolution 275

(c)
∫t
0
sinhaτ cosha(t− τ)dτ (d)

∫t
0
τ(t− τ) sinωτ cosω(t− τ)dτ

(e) et
∫t
0
sinωτ cosω(t− τ)dτ (f) et

∫t
0
τ2(t− τ)eτ dτ

(g) e−t
∫t
0
e−ττ cosω(t− τ)dτ (h) et

∫t
0
e2τ sinh(t− τ)dτ

(i)
∫t
0
τe2τ sin 2(t− τ)dτ (j)

∫t
0
(t− τ)3eτ dτ

(k)
∫t
0
τ6e−(t−τ) sin 3(t− τ)dτ (l)

∫t
0
τ2(t− τ)3 dτ

(m)
∫t
0
(t− τ)7e−τ sin 2τdτ (n)

∫t
0
(t− τ)4 sin 2τdτ

3. Find a formula for the solution of the initial value problem.

(a) y ′′ + 3y ′ + y = f(t), y(0) = 0, y ′(0) = 0

(b) y ′′ + 4y = f(t), y(0) = 0, y ′(0) = 0

(c) y ′′ + 2y ′ + y = f(t), y(0) = 0, y ′(0) = 0

(d) y ′′ + k2y = f(t), y(0) = 1, y ′(0) = −1

(e) y ′′ + 6y ′ + 9y = f(t), y(0) = 0, y ′(0) = −2

(f) y ′′ − 4y = f(t), y(0) = 0, y ′(0) = 3

(g) y ′′ − 5y ′ + 6y = f(t), y(0) = 1, y ′(0) = 3

(h) y ′′ +ω2y = f(t), y(0) = k0, y ′(0) = k1

4. Solve the integral equation.

(a) y(t) = t−
∫t
0
(t− τ)y(τ)dτ

(b) y(t) = sin t− 2
∫t
0
cos(t− τ)y(τ)dτ

(c) y(t) = 1+ 2
∫t
0
y(τ) cos(t− τ)dτ(d) y(t) = t+

∫t
0
y(τ)e−(t−τ) dτ

(e) y ′(t) = t+
∫t
0
y(τ) cos(t− τ)dτ, y(0) = 4

(f) y(t) = cos t− sin t+
∫t
0
y(τ) sin(t− τ)dτ

5. Use the convolution theorem to evaluate the integral.
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(a)
∫t
0
(t− τ)7τ8 dτ (b)

∫t
0
(t− τ)13τ7 dτ

(c)
∫t
0
(t− τ)6τ7 dτ (d)

∫t
0
e−τ sin(t− τ)dτ

(e)
∫t
0
sin τ cos 2(t− τ)dτ

6. Show that ∫t
0
f(t− τ)g(τ)dτ =

∫t
0
f(τ)g(t− τ)dτ

by introducing the new variable of integration x = t− τ in the first integral.

7. Use the convolution theorem to show that if f(t)↔ F(s) then∫t
0
f(τ)dτ↔ F(s)

s
.

8. Show that if p(s) = as2 + bs+ c has distinct real zeros r1 and r2 then the solution
of

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1

is

y(t) = k0
r2e

r1t − r1e
r2t

r2 − r1
+ k1

er2t − er1t

r2 − r1

+
1

a(r2 − r1)

∫t
0
(er2τ − er1τ)f(t− τ)dτ.

9. Show that if p(s) = as2 + bs+ c has a repeated real zero r1 then the solution of

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1

is

y(t) = k0(1− r1t)er1t + k1te
r1t +

1
a

∫t
0
τer1τf(t− τ)dτ.

10. Show that if p(s) = as2 + bs + c has complex conjugate zeros λ ± iω then the
solution of

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1

is

y(t) = eλt
[
k0(cosωt−

λ

ω
sinωt) +

k1

ω
sinωt

]
+

1
aω

∫t
0
eλtf(t− τ) sinωτdτ.
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11. Let

w = L−1
(

1
as2 + bs+ c

)
,

where a,b, and c are constants and a 6= 0.

(a) Show that w is the solution of

aw ′′ + bw ′ + cw = 0, w(0) = 0, w ′(0) =
1
a
.

(b) Let f be continuous on [0,∞) and define

h(t) =

∫t
0
w(t− τ)f(τ)dτ.

Use Leibniz’s rule for differentiating an integral with respect to a parameter to
show that h is the solution of

ah ′′ + bh ′ + ch = f, h(0) = 0, h ′(0) = 0.

(c) Show that the function y in Eqn. (5.6.14) is the solution of Eqn. (5.6.13) pro-
vided that f is continuous on [0,∞); thus, it’s not necessary to assume that f
has a Laplace transform.

12. Consider the initial value problem

ay ′′ + by ′ + cy = f(t), y(0) = 0, y ′(0) = 0, (A)

where a,b, and c are constants, a 6= 0, and

f(t) =

{
f0(t), 0 6 t < t1,

f1(t), t > t1.

Assume that f0 is continuous and of exponential order on [0,∞) and f1 is continu-
ous and of exponential order on [t1,∞). Let

p(s) = as2 + bs+ c.

(a) Show that the Laplace transform of the solution of (A) is

Y(s) =
F0(s) + e

−st1G(s)

p(s)

where g(t) = f1(t+ t1) − f0(t+ t1).
(b) Let w be as in Exercise 11. Use Theorem 5.4.2 and the convolution theorem to

show that the solution of (A) is

y(t) =

∫t
0
w(t− τ)f0(τ)dτ+ u(t− t1)

∫t−t1
0

w(t− t1 − τ)g(τ)dτ

for t > 0.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Leibniz.html
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(c) Henceforth, assume only that f0 is continuous on [0,∞) and f1 is continuous
on [t1,∞). Use Exercise 11 (a) and (b) to show that

y ′(t) =
∫t
0
w ′(t− τ)f0(τ)dτ+ u(t− t1)

∫t−t1
0

w ′(t− t1 − τ)g(τ)dτ

for t > 0, and

y ′′(t) =
f(t)

a
+

∫t
0
w ′′(t− τ)f0(τ)dτ+ u(t− t1)

∫t−t1
0

w ′′(t− t1 − τ)g(τ)dτ

for 0 < t < t1 and t > t1. Also, show y satisfies the differential equation in
(A) on(0, t1) and (t1,∞).

(d) Show that y and y ′ are continuous on [0,∞).

13. Suppose

f(t) =



f0(t), 0 6 t < t1,

f1(t), t1 6 t < t2,
...

fk−1(t), tk−1 6 t < tk,

fk(t), t > tk,

where fm is continuous on [tm,∞) form = 0, . . . , k (let t0 = 0), and define

gm(t) = fm(t+ tm) − fm−1(t+ tm), m = 1, . . . , k.

Extend the results of Exercise 12 to show that the solution of

ay ′′ + by ′ + cy = f(t), y(0) = 0, y ′(0) = 0

is

y(t) =

∫t
0
w(t− τ)f0(τ)dτ+

k∑
m=1

u(t− tm)

∫t−tm
0

w(t− tm − τ)gm(τ)dτ.

14. Let {tm}∞m=0 be a sequence of points such that t0 = 0, tm+1 > tm, and limm→∞ tm =∞. For each nonegative integer m let fm be continuous on [tm,∞), and let f be
defined on [0,∞) by

f(t) = fm(t), tm 6 t < tm+1 m = 0, 1, 2 . . . .

Let
gm(t) = fm(t+ tm) − fm−1(t+ tm), m = 1, . . . , k.

Extend the results of Exercise 13 to show that the solution of

ay ′′ + by ′ + cy = f(t), y(0) = 0, y ′(0) = 0
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is

y(t) =

∫t
0
w(t− τ)f0(τ)dτ+

∞∑
m=1

u(t− tm)

∫t−tm
0

w(t− tm − τ)gm(τ)dτ.

HINT: See Exercise30.

5.7 CONSTANT COEFFICIENT EQUATIONS WITH IMPULSES

So far in this chapter, we’ve considered initial value problems for the constant coefficient
equation

ay ′′ + by ′ + cy = f(t),

where f is continuous or piecewise continuous on [0,∞). In this section we consider
initial value problems where f represents a force that’s very large for a short time and
zero otherwise. We say that such forces are impulsive. Impulsive forces occur, for example,
when two objects collide. Since it isn’t feasible to represent such forces as continuous or
piecewise continuous functions, we must construct a different mathematical model to
deal with them.

If f is an integrable function and f(t) = 0 for t outside of the interval [t0, t0 + h], then∫t0+h
t0

f(t)dt is called the total impulse of f. We’re interested in the idealized situation
where h is so small that the total impulse can be assumed to be applied instantaneously
at t = t0. We say in this case that f is an impulse function. In particular, we denote by
δ(t − t0) the impulse function with total impulse equal to one, applied at t = t0. (The
impulse function δ(t) obtained by setting t0 = 0 is the Dirac δ function.) It must be
understood, however, that δ(t − t0) isn’t a function in the standard sense, since our
“definition” implies that δ(t− t0) = 0 if t 6= t0, while∫t0

t0

δ(t− t0)dt = 1.

From calculus we know that no function can have these properties; nevertheless, there’s
a branch of mathematics known as the theory of distributions where the definition can be
made rigorous. Since the theory of distributions is beyond the scope of this book, we’ll
take an intuitive approach to impulse functions.

Our first task is to define what we mean by the solution of the initial value problem

ay ′′ + by ′ + cy = δ(t− t0), y(0) = 0, y ′(0) = 0,

where t0 is a fixed nonnegative number. The next theorem will motivate our definition.

Theorem 5.7.1 Suppose t0 > 0. For each positive number h, let yh be the solution of the initial
value problem

ay ′′h + by ′h + cyh = fh(t), yh(0) = 0, y ′h(0) = 0, (5.7.1)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Dirac.html
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Figure 5.1 y = fh(t)

where

fh(t) =


0, 0 6 t < t0,

1/h, t0 6 t < t0 + h,

0, t > t0 + h,

(5.7.2)

so fh has unit total impulse equal to the area of the shaded rectangle in Figure 5.1. Then

lim
h→0+

yh(t) = u(t− t0)w(t− t0), (5.7.3)

where

w = L−1
(

1
as2 + bs+ c

)
.

Proof Taking Laplace transforms in (5.7.1) yields

(as2 + bs+ c)Yh(s) = Fh(s),

so

Yh(s) =
Fh(s)

as2 + bs+ c
.

The convolution theorem implies that

yh(t) =

∫t
0
w(t− τ)fh(τ)dτ.

Therefore, (5.7.2) implies that

yh(t) =



0, 0 6 t < t0,

1
h

∫t
t0

w(t− τ)dτ, t0 6 t 6 t0 + h,

1
h

∫t0+h
t0

w(t− τ)dτ, t > t0 + h.

(5.7.4)

Since yh(t) = 0 for all h if 0 6 t 6 t0, it follows that

lim
h→0+

yh(t) = 0 if 0 6 t 6 t0. (5.7.5)

We’ll now show that

lim
h→0+

yh(t) = w(t− t0) if t > t0. (5.7.6)

Suppose t is fixed and t > t0. From (5.7.4),

yh(t) =
1
h

∫t0+h
t0

w(t− τ)dτ if h < t− t0. (5.7.7)
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Since
1
h

∫t0+h
t0

dτ = 1, (5.7.8)

we can write

w(t− t0) =
1
h
w(t− t0)

∫t0+h
t0

dτ =
1
h

∫t0+h
t0

w(t− t0)dτ.

From this and (5.7.7),

yh(t) −w(t− t0) =
1
h

∫t0+h
t0

(w(t− τ) −w(t− t0)) dτ.

Therefore

|yh(t) −w(t− t0)| 6
1
h

∫t0+h
t0

|w(t− τ) −w(t− t0)|dτ. (5.7.9)

Now letMh be the maximum value of |w(t− τ) −w(t− t0)| as τ varies over the interval
[t0, t0 + h]. (Remember that t and t0 are fixed.) Then (5.7.8) and (5.7.9) imply that

|yh(t) −w(t− t0)| 6
1
h
Mh

∫t0+h
t0

dτ =Mh. (5.7.10)

But limh→0+Mh = 0, since w is continuous. Therefore (5.7.10) implies (5.7.6). This and
(5.7.5) imply (5.7.3).

Theorem 5.7.1 motivates the next definition.

Definition 5.7.2 If t0 > 0, then the solution of the initial value problem

ay ′′ + by ′ + cy = δ(t− t0), y(0) = 0, y ′(0) = 0, (5.7.11)

is defined to be
y = u(t− t0)w(t− t0),

where

w = L−1
(

1
as2 + bs+ c

)
.

In physical applications where the input f and the output y of a device are related by
the differential equation

ay ′′ + by ′ + cy = f(t),

w is called the impulse response of the device. Note that w is the solution of the initial
value problem

aw ′′ + bw ′ + cw = 0, w(0) = 0, w ′(0) = 1/a, (5.7.12)
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Figure 5.2 An illustration of Theorem 5.7.1

as can be seen by using the Laplace transform to solve this problem. (Verify.) On the
other hand, we can solve (5.7.12) by the methods of Section 5.2 and show that w is
defined on (−∞,∞) by

w =
er2t − er1t

a(r2 − r1)
, w =

1
a
ter1t, or w =

1
aω

eλt sinωt, (5.7.13)

depending upon whether the polynomial p(r) = ar2+br+c has distinct real zeros r1 and
r2, a repeated zero r1, or complex conjugate zeros λ± iω. (In most physical applications,
the zeros of the characteristic polynomial have negative real parts, so limt→∞w(t) = 0.)
This means that y = u(t − t0)w(t − t0) is defined on (−∞,∞) and has the following
properties:

y(t) = 0, t < t0,

ay ′′ + by ′ + cy = 0 on (−∞, t0) and (t0,∞),

and
y ′−(t0) = 0, y ′+(t0) = 1/a (5.7.14)

(remember that y ′−(t0) and y ′+(t0) are derivatives from the right and left, respectively)
and y ′(t0) does not exist. Thus, even though we defined y = u(t − t0)w(t − t0) to be
the solution of (5.7.11), this function doesn’t satisfy the differential equation in (5.7.11) at
t0, since it isn’t differentiable there; in fact (5.7.14) indicates that an impulse causes a
jump discontinuity in velocity. (To see that this is reasonable, think of what happens
when you hit a ball with a bat.) This means that the initial value problem (5.7.11) doesn’t
make sense if t0 = 0, since y ′(0) doesn’t exist in this case. However y = u(t)w(t) can be
defined to be the solution of the modified initial value problem

ay ′′ + by ′ + cy = δ(t), y(0) = 0, y ′−(0) = 0,

where the condition on the derivative at t = 0 has been replaced by a condition on the
derivative from the left.

Figure 5.2 illustrates Theorem 5.7.1 for the case where the impulse response w is the
first expression in (5.7.13) and r1 and r2 are distinct and both negative. The solid curve
in the figure is the graph of w. The dashed curves are solutions of (5.7.1) for various
values of h. As h decreases the graph of yh moves to the left toward the graph of w.

Example 5.7.1 Find the solution of the initial value problem

y ′′ − 2y ′ + y = δ(t− t0), y(0) = 0, y ′(0) = 0, (5.7.15)

where t0 > 0. Then interpret the solution for the case where t0 = 0.

Solution Here

w = L−1
(

1
s2 − 2s+ 1

)
= L−1

(
1

(s− 1)2

)
= te−t,
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Figure 5.3 y = u(t− t0)(t− t0)e
−(t−t0)

so Definition 5.7.2 yields

y = u(t− t0)(t− t0)e
−(t−t0)

as the solution of (5.7.15) if t0 > 0. If t0 = 0, then (5.7.15) doesn’t have a solution;
however, y = u(t)te−t (which we would usually write simply as y = te−t) is the
solution of the modified initial value problem

y ′′ − 2y ′ + y = δ(t), y(0) = 0, y ′−(0) = 0.

The graph of y = u(t− t0)(t− t0)e
−(t−t0) is shown in Figure 5.3

Definition 5.7.2 and the principle of superposition motivate the next definition.

Definition 5.7.3 Suppose α is a nonzero constant and f is piecewise continuous on
[0,∞). If t0 > 0, then the solution of the initial value problem

ay ′′ + by ′ + cy = f(t) + αδ(t− t0), y(0) = k0, y ′(0) = k1

is defined to be
y(t) = ŷ(t) + αu(t− t0)w(t− t0),

where ŷ is the solution of

ay ′′ + by ′ + cy = f(t), y(0) = k0, y ′(0) = k1.

This definition also applies if t0 = 0, provided that the initial condition y ′(0) = k1 is
replaced by y ′−(0) = k1.

Example 5.7.2 Solve the initial value problem

y ′′ + 6y ′ + 5y = 3e−2t + 2δ(t− 1), y(0) = −3, y ′(0) = 2. (5.7.16)

Solution We leave it to you to show that the solution of

y ′′ + 6y ′ + 5y = 3e−2t, y(0) = −3, y ′(0) = 2

is
ŷ = −e−2t +

1
2
e−5t −

5
2
e−t.

Since

w(t) = L−1
(

1
s2 + 6s+ 5

)
= L−1

(
1

(s+ 1)(s+ 5)

)
=

1
4
L−1

(
1

s+ 1
−

1
s+ 5

)
=

e−t − e−5t

4
,



284 Chapter 5 Laplace Transforms

Figure 5.4 Graph of (5.7.17) Figure 5.5 Graph of (5.7.19)

the solution of (5.7.16) is

y = −e−2t +
1
2
e−5t −

5
2
e−t + u(t− 1)

e−(t−1) − e−5(t−1)

2
(5.7.17)

(Figure 5.4) .
Definition 5.7.3 can be extended in the obvious way to cover the case where the forcing

function contains more than one impulse.

Example 5.7.3 Solve the initial value problem

y ′′ + y = 1+ 2δ(t− π) − 3δ(t− 2π), y(0) = −1, y ′(0) = 2. (5.7.18)

Solution We leave it to you to show that

ŷ = 1− 2 cos t+ 2 sin t

is the solution of
y ′′ + y = 1, y(0) = −1, y ′(0) = 2.

Since

w = L−1
(

1
s2 + 1

)
= sin t,

the solution of (5.7.18) is

y = 1− 2 cos t+ 2 sin t+ 2u(t− π) sin(t− π) − 3u(t− 2π) sin(t− 2π)
= 1− 2 cos t+ 2 sin t− 2u(t− π) sin t− 3u(t− 2π) sin t,

or

y =


1− 2 cos t+ 2 sin t, 0 6 t < π,

1− 2 cos t, π 6 t < 2π,

1− 2 cos t− 3 sin t, t > 2π

(5.7.19)

(Figure 5.5).
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5.7 Exercises

In Exercises 1–20 solve the initial value problem. Where indicated by C/G , graph the
solution.

1. y ′′ + 3y ′ + 2y = 6e2t + 2δ(t− 1), y(0) = 2, y ′(0) = −6

2. C/G y ′′ + y ′ − 2y = −10e−t + 5δ(t− 1), y(0) = 7, y ′(0) = −9

3. y ′′ − 4y = 2e−t + 5δ(t− 1), y(0) = −1, y ′(0) = 2

4. C/G y ′′ + y = sin 3t+ 2δ(t− π/2), y(0) = 1, y ′(0) = −1

5. y ′′ + 4y = 4+ δ(t− 3π), y(0) = 0, y ′(0) = 1

6. y ′′ − y = 8+ 2δ(t− 2), y(0) = −1, y ′(0) = 1

7. y ′′ + y ′ = et + 3δ(t− 6), y(0) = −1, y ′(0) = 4

8. y ′′ + 4y = 8e2t + δ(t− π/2), y(0) = 8, y ′(0) = 0

9. C/G y ′′ + 3y ′ + 2y = 1+ δ(t− 1), y(0) = 1, y ′(0) = −1

10. y ′′ + 2y ′ + y = et + 2δ(t− 2), y(0) = −1, y ′(0) = 2

11. C/G y ′′ + 4y = sin t+ δ(t− π/2), y(0) = 0, y ′(0) = 2

12. y ′′ + 2y ′ + 2y = δ(t− π) − 3δ(t− 2π), y(0) = −1, y ′(0) = 2

13. y ′′ + 4y ′ + 13y = δ(t− π/6) + 2δ(t− π/3), y(0) = 1, y ′(0) = 2

14. 2y ′′ − 3y ′ − 2y = 1+ δ(t− 2), y(0) = −1, y ′(0) = 2

15. 4y ′′ − 4y ′ + 5y = 4 sin t− 4 cos t+ δ(t− π/2) − δ(t− π), y(0) = 1, y ′(0) = 1

16. y ′′ + y = cos 2t+ 2δ(t− π/2) − 3δ(t− π), y(0) = 0, y ′(0) = −1

17. C/G y ′′ − y = 4e−t − 5δ(t− 1) + 3δ(t− 2), y(0) = 0, y ′(0) = 0

18. y ′′ + 2y ′ + y = et − δ(t− 1) + 2δ(t− 2), y(0) = 0, y ′(0) = −1

19. y ′′ + y = f(t) + δ(t− 2π), y(0) = 0, y ′(0) = 1, and

f(t) =

{
sin 2t, 0 6 t < π,

0, t > π.

20. y ′′ + 4y = f(t) + δ(t− π) − 3δ(t− 3π/2), y(0) = 1, y ′(0) = −1, and

f(t) =

{
1, 0 6 t < π/2,

2, t > π/2

21. y ′′ + y = δ(t), y(0) = 1, y ′−(0) = −2

22. y ′′ − 4y = 3δ(t), y(0) = −1, y ′−(0) = 7

23. y ′′ + 3y ′ + 2y = −5δ(t), y(0) = 0, y ′−(0) = 0

24. y ′′ + 4y ′ + 4y = −δ(t), y(0) = 1, y ′−(0) = 5
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25. 4y ′′ + 4y ′ + y = 3δ(t), y(0) = 1, y ′−(0) = −6

In Exercises 26-28, solve the initial value problem

ay ′′h + by ′h + cyh =


0, 0 6 t < t0,

1/h, t0 6 t < t0 + h,

0, t > t0 + h,

yh(0) = 0, y ′h(0) = 0,

where t0 > 0 and h > 0. Then find

w = L−1
(

1
as2 + bs+ c

)
and verify Theorem 5.7.1 by graphing w and yh on the same axes, for small positive values of h.

26. L y ′′ + 2y ′ + 2y = fh(t), y(0) = 0, y ′(0) = 0

27. L y ′′ + 2y ′ + y = fh(t), y(0) = 0, y ′(0) = 0

28. L y ′′ + 3y ′ + 2y = fh(t), y(0) = 0, y ′(0) = 0

29. Recall from Section 6.2 that the displacement of an object of massm in a spring–
mass system in free damped oscillation is

my ′′ + cy ′ + ky = 0, y(0) = y0, y ′(0) = v0,

and that y can be written as

y = Re−ct/2m cos(ω1t− φ)

if the motion is underdamped. Suppose y(τ) = 0. Find the impulse that would
have to be applied to the object at t = τ to put it in equilibrium.

30. Solve the initial value problem. Find a formula that does not involve step functions
and represents y on each subinterval of [0,∞) on which the forcing function is
zero.

(a) y ′′ − y =

∞∑
k=1

δ(t− k), y(0) = 0, y ′(0) = 1

(b) y ′′ + y =

∞∑
k=1

δ(t− 2kπ), y(0) = 0, y ′(0) = 1

(c) y ′′ − 3y ′ + 2y =

∞∑
k=1

δ(t− k), y(0) = 0, y ′(0) = 1

(d) y ′′ + y =

∞∑
k=1

δ(t− kπ), y(0) = 0, y ′(0) = 0
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5.8 A BRIEF TABLE OF LAPLACE TRANSFORMS

f(t) F(s)

1
1
s

(s > 0)

tn
n!
sn+1 (s > 0)

(n = integer > 0)

tp, p > −1
Γ(p+ 1)
s(p+1) (s > 0)

eat
1

s− a
(s > a)

tneat
n!

(s− a)n+1 (s > 0)

(n = integer > 0)
cosωt

s

s2 +ω2 (s > 0)

sinωt
ω

s2 +ω2 (s > 0)

eλt cosωt
s− λ

(s− λ)2 +ω2 (s > λ)

eλt sinωt
ω

(s− λ)2 +ω2 (s > λ)

coshbt
s

s2 − b2 (s > |b|)

sinhbt
b

s2 − b2 (s > |b|)

t cosωt
s2 −ω2

(s2 +ω2)2
(s > 0)
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t sinωt
2ωs

(s2 +ω2)2
(s > 0)

sinωt−ωt cosωt
2ω3

(s2 +ω2)2
(s > 0)

ωt− sinωt
ω3

s2(s2 +ω2)2
(s > 0)

1
t
sinωt arctan

(ω
s

)
(s > 0)

eatf(t) F(s− a)

tkf(t) (−1)kF(k)(s)

f(ωt)
1
ω
F
( s
ω

)
, ω > 0

u(t− τ)
e−τs

s
(s > 0)

u(t− τ)f(t− τ) (τ > 0) e−τsF(s)

∫t
o

f(τ)g(t− τ)dτ F(s) ·G(s)

δ(t− a) e−as (s > 0)



CHAPTER 6

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

IN THIS CHAPTER we consider systems of differential equations involving more than
one unknown function. Such systems arise in many physical applications.

SECTION 10.1 presents examples of physical situations that lead to systems of differen-
tial equations.

SECTION 10.2 discusses linear systems of differential equations.

SECTION 10.3 deals with the basic theory of homogeneous linear systems.

SECTIONS 10.4, 10.5, AND 10.6 present the theory of constant coefficient homogeneous
systems.

SECTION 10.7 presents the method of variation of parameters for nonhomogeneous
linear systems.

6.1 INTRODUCTION TO SYSTEMS OF DIFFERENTIAL EQUATIONS

Many physical situations are modelled by systems of n differential equations in n
unknown functions, where n > 2. The next three examples illustrate physical problems
that lead to systems of differential equations. In these examples and throughout this
chapter we’ll denote the independent variable by t.

Example 6.1.1 Tanks T1 and T2 contain 100 gallons and 300 gallons of salt solutions,
respectively. Salt solutions are simultaneously added to both tanks from external sources,
pumped from each tank to the other, and drained from both tanks (Figure 6.1). A solution
with 1 pound of salt per gallon is pumped into T1 from an external source at 5 gal/min,
and a solution with 2 pounds of salt per gallon is pumped into T2 from an external
source at 4 gal/min. The solution from T1 is pumped into T2 at 2 gal/min, and the
solution from T2 is pumped into T1 at 3 gal/min. T1 is drained at 6 gal/min and T2 is

289
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drained at 3 gal/min. Let Q1(t) and Q2(t) be the number of pounds of salt in T1 and
T2, respectively, at time t > 0. Derive a system of differential equations for Q1 and Q2.
Assume that both mixtures are well stirred.

Figure 6.1

Solution As in Section 4.2, let rate in and rate out denote the rates (lb/min) at which salt
enters and leaves a tank; thus,

Q ′1 = (rate in)1 − (rate out)1,

Q ′2 = (rate in)2 − (rate out)2.

Note that the volumes of the solutions in T1 and T2 remain constant at 100 gallons and
300 gallons, respectively.
T1 receives salt from the external source at the rate of

(1 lb/gal) × (5 gal/min) = 5 lb/min,

and from T2 at the rate of

(lb/gal in T2)× (3 gal/min) =
1
300

Q2 × 3 =
1
100

Q2 lb/min.

Therefore
(rate in)1 = 5+

1
100

Q2. (6.1.1)

Solution leaves T1 at the rate of 8 gal/min, since 6 gal/min are drained and 2 gal/min
are pumped to T2; hence,

(rate out)1 = ( lb/gal in T1)× (8 gal/min) =
1

100
Q1 × 8 =

2
25
Q1. (6.1.2)

Eqns. (6.1.1) and (6.1.2) imply that

Q ′1 = 5+
1
100

Q2 −
2
25
Q1. (6.1.3)

T2 receives salt from the external source at the rate of

(2 lb/gal) × (4 gal/min) = 8 lb/min,

and from T1 at the rate of

(lb/gal in T1)× (2 gal/min) =
1
100

Q1 × 2 =
1
50
Q1 lb/min.
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Figure 6.2

Therefore
(rate in)2 = 8+

1
50
Q1. (6.1.4)

Solution leaves T2 at the rate of 6 gal/min, since 3 gal/min are drained and 3 gal/min
are pumped to T1; hence,

(rate out)2 = ( lb/gal in T2)× (6 gal/min) =
1

300
Q2 × 6 =

1
50
Q2. (6.1.5)

Eqns. (6.1.4) and (6.1.5) imply that

Q ′2 = 8+
1
50
Q1 −

1
50
Q2. (6.1.6)

We say that (6.1.3) and (6.1.6) form a system of two first order equations in two unknowns,
and write them together as

Q ′1 = 5−
2
25
Q1 +

1
100

Q2

Q ′2 = 8+
1
50
Q1 −

1
50
Q2.

Example 6.1.2 A mass m1 is suspended from a rigid support on a spring S1 and a
second massm2 is suspended from the first on a spring S2 (Figure 6.2). The springs obey
Hooke’s law, with spring constants k1 and k2. Internal friction causes the springs to
exert damping forces proportional to the rates of change of their lengths, with damping
constants c1 and c2. Let y1 = y1(t) and y2 = y2(t) be the displacements of the two
masses from their equilibrium positions at time t, measured positive upward. Derive a
system of differential equations for y1 and y2, assuming that the masses of the springs
are negligible and that vertical external forces F1 and F2 also act on the objects.

Solution In equilibrium, S1 supports bothm1 andm2 and S2 supports onlym2. There-
fore, if ∆`1 and ∆`2 are the elongations of the springs in equilibrium then

(m1 +m2)g = k1∆`1 and m2g = k2∆`2. (6.1.7)

Let H1 be the Hooke’s law force acting on m1, and let D1 be the damping force on m1.
Similarly, letH2 andD2 be the Hooke’s law and damping forces acting onm2. According
to Newton’s second law of motion,

m1y
′′
1 = −m1g+H1 +D1 + F1,

m2y
′′
2 = −m2g+H2 +D2 + F2.

(6.1.8)

When the displacements are y1 and y2, the change in length of S1 is −y1 + ∆`1 and the
change in length of S2 is −y2 + y1 + ∆`2. Both springs exert Hooke’s law forces onm1,
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while only S2 exerts a Hooke’s law force onm2. These forces are in directions that tend
to restore the springs to their natural lengths. Therefore

H1 = k1(−y1 + ∆`1) − k2(−y2 + y1 + ∆`2) and H2 = k2(−y2 + y1 + ∆`2). (6.1.9)

When the velocities are y ′1 and y ′2, S1 and S2 are changing length at the rates −y ′1 and
−y ′2 + y

′
1, respectively. Both springs exert damping forces on m1, while only S2 exerts a

damping force onm2. Since the force due to damping exerted by a spring is proportional
to the rate of change of length of the spring and in a direction that opposes the change, it
follows that

D1 = −c1y
′
1 + c2(y

′
2 − y

′
1) and D2 = −c2(y

′
2 − y

′
1). (6.1.10)

From (6.1.8), (6.1.9), and (6.1.10),

m1y
′′
1 = −m1g+ k1(−y1 + ∆`1) − k2(−y2 + y1 + ∆`2)

−c1y
′
1 + c2(y

′
2 − y

′
1) + F1

= −(m1g− k1∆`1 + k2∆`2) − k1y1 + k2(y2 − y1)

−c1y
′
1 + c2(y

′
2 − y

′
1) + F1

(6.1.11)

and

m2y
′′
2 = −m2g+ k2(−y2 + y1 + ∆`2) − c2(y

′
2 − y

′
1) + F2

= −(m2g− k2∆`2) − k2(y2 − y1) − c2(y
′
2 − y

′
1) + F2.

(6.1.12)

From (6.1.7),
m1g− k1∆`1 + k2∆`2 = −m2g+ k2∆`2 = 0.

Therefore we can rewrite (6.1.11) and (6.1.12) as

m1y
′′
1 = −(c1 + c2)y

′
1 + c2y

′
2 − (k1 + k2)y1 + k2y2 + F1

m2y
′′
2 = c2y

′
1 − c2y

′
2 + k2y1 − k2y2 + F2.

Example 6.1.3 Let X = X(t) = x(t) i + y(t) j + z(t) k be the position vector at time t of
an object with massm, relative to a rectangular coordinate system with origin at Earth’s
center (Figure 6.3). According to Newton’s law of gravitation, Earth’s gravitational force
F = F(x,y, z) on the object is inversely proportional to the square of the distance of the
object from Earth’s center, and directed toward the center; thus,

F =
K

‖X‖2
(
−

X
‖X‖

)
= −K

x i + y j + z k

(x2 + y2 + z2)3/2
, (6.1.13)

where K is a constant. To determine K, we observe that the magnitude of F is

‖F‖ = K ‖X‖‖X‖3 =
K

‖X‖2 =
K

(x2 + y2 + z2)
.
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Figure 6.3

Let R be Earth’s radius. Since ‖F‖ = mg when the object is at Earth’s surface,

mg =
K

R2 , so K = mgR2.

Therefore we can rewrite (6.1.13) as

F = −mgR2 x i + y j + z k

(x2 + y2 + z2)3/2
.

Now suppose F is the only force acting on the object. According to Newton’s second
law of motion, F = mX ′′; that is,

m(x ′′ i + y ′′ j + z ′′ k) = −mgR2 x i + y j + z k

(x2 + y2 + z2)3/2
.

Cancelling the common factor m and equating components on the two sides of this
equation yields the system

x ′′ = −
gR2x

(x2 + y2 + z2)3/2

y ′′ = −
gR2y

(x2 + y2 + z2)3/2

z ′′ = −
gR2z

(x2 + y2 + z2)3/2
.

(6.1.14)

Rewriting Higher Order Systems as First Order Systems

A system of the form
y ′1 = g1(t,y1,y2, . . . ,yn)
y ′2 = g2(t,y1,y2, . . . ,yn)

...
y ′n = gn(t,y1,y2, . . . ,yn)

(6.1.15)

is called a first order system, since the only derivatives occurring in it are first derivatives.
The derivative of each of the unknowns may depend upon the independent variable
and all the unknowns, but not on the derivatives of other unknowns. When we wish to
emphasize the number of unknown functions in (6.1.15) we will say that (6.1.15) is an
n× n system.

Systems involving higher order derivatives can often be reformulated as first order
systems by introducing additional unknowns. The next two examples illustrate this.

Example 6.1.4 Rewrite the system

m1y
′′
1 = −(c1 + c2)y

′
1 + c2y

′
2 − (k1 + k2)y1 + k2y2 + F1

m2y
′′
2 = c2y

′
1 − c2y

′
2 + k2y1 − k2y2 + F2.

(6.1.16)

derived in Example 6.1.2 as a system of first order equations.
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Solution If we define v1 = y ′1 and v2 = y ′2, then v ′1 = y ′′1 and v ′2 = y ′′2 , so (6.1.16)
becomes

m1v
′
1 = −(c1 + c2)v1 + c2v2 − (k1 + k2)y1 + k2y2 + F1

m2v
′
2 = c2v1 − c2v2 + k2y1 − k2y2 + F2.

Therefore {y1,y2, v1, v2} satisfies the 4× 4 first order system

y ′1 = v1

y ′2 = v2

v ′1 =
1
m1

[−(c1 + c2)v1 + c2v2 − (k1 + k2)y1 + k2y2 + F1]

v ′2 =
1
m2

[c2v1 − c2v2 + k2y1 − k2y2 + F2] .

(6.1.17)

REMARK: The difference in form between (6.1.15) and (6.1.17), due to the way in
which the unknowns are denoted in the two systems, isn’t important; (6.1.17) is a first
order system, in that each equation in (6.1.17) expresses the first derivative of one of
the unknown functions in a way that does not involve derivatives of any of the other
unknowns.

Example 6.1.5 Rewrite the system

x ′′ = f(t, x, x ′,y,y ′,y ′′)
y ′′′ = g(t, x, x ′,y,y ′y ′′)

as a first order system.

Solution We regard x, x ′, y, y ′, and y ′′ as unknown functions, and rename them

x = x1, x ′ = x2, y = y1, y ′ = y2, y ′′ = y3.

These unknowns satisfy the system

x ′1 = x2

x ′2 = f(t, x1, x2,y1,y2,y3)

y ′1 = y2

y ′2 = y3

y ′3 = g(t, x1, x2,y1,y2,y3).

Rewriting Scalar Differential Equations as Systems

In this chapter we’ll refer to differential equations involving only one unknown function
as scalar differential equations. Scalar differential equations can be rewritten as systems
of first order equations by the method illustrated in the next two examples.
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Example 6.1.6 Rewrite the equation

y(4) + 4y ′′′ + 6y ′′ + 4y ′ + y = 0 (6.1.18)

as a 4× 4 first order system.

Solution We regard y, y ′, y ′′, and y ′′′ as unknowns and rename them

y = y1, y ′ = y2, y ′′ = y3, and y ′′′ = y4.

Then y(4) = y ′4, so (6.1.18) can be written as

y ′4 + 4y4 + 6y3 + 4y2 + y1 = 0.

Therefore {y1,y2,y3,y4} satisfies the system

y ′1 = y2

y ′2 = y3

y ′3 = y4

y ′4 = −4y4 − 6y3 − 4y2 − y1.

Example 6.1.7 Rewrite
x ′′′ = f(t, x, x ′, x ′′)

as a system of first order equations.

Solution We regard x, x ′, and x ′′ as unknowns and rename them

x = y1, x ′ = y2, and x ′′ = y3.

Then
y ′1 = x ′ = y2, y ′2 = x ′′ = y3, and y ′3 = x ′′′.

Therefore {y1,y2,y3} satisfies the first order system

y ′1 = y2

y ′2 = y3

y ′3 = f(t,y1,y2,y3).

Since systems of differential equations involving higher derivatives can be rewritten
as first order systems by the method used in Examples 6.1.5 –6.1.7 , we’ll consider only
first order systems.

Numerical Solution of Systems
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The numerical methods that we studied in Chapter 3 can be extended to systems, and
most differential equation software packages include programs to solve systems of
equations. We won’t go into detail on numerical methods for systems; however, for
illustrative purposes we’ll describe the Runge-Kutta method for the numerical solution
of the initial value problem

y ′1 = g1(t,y1,y2), y1(t0) = y10,
y ′2 = g2(t,y1,y2), y2(t0) = y20

at equally spaced points t0, t1, . . . , tn = b in an interval [t0,b]. Thus,

ti = t0 + ih, i = 0, 1, . . . ,n,

where
h =

b− t0
n

.

We’ll denote the approximate values of y1 and y2 at these points by y10,y11, . . . ,y1n
and y20,y21, . . . ,y2n. The Runge-Kutta method computes these approximate values as
follows: given y1i and y2i, compute

I1i = g1(ti,y1i,y2i),
J1i = g2(ti,y1i,y2i),

I2i = g1

(
ti +

h

2
,y1i +

h

2
I1i,y2i +

h

2
J1i

)
,

J2i = g2

(
ti +

h

2
,y1i +

h

2
I1i,y2i +

h

2
J1i

)
,

I3i = g1

(
ti +

h

2
,y1i +

h

2
I2i,y2i +

h

2
J2i

)
,

J3i = g2

(
ti +

h

2
,y1i +

h

2
I2i,y2i +

h

2
J2i

)
,

I4i = g1(ti + h,y1i + hI3i,y2i + hJ3i),
J4i = g2(ti + h,y1i + hI3i,y2i + hJ3i),

and

y1,i+1 = y1i +
h

6
(I1i + 2I2i + 2I3i + I4i),

y2,i+1 = y2i +
h

6
(J1i + 2J2i + 2J3i + J4i)

for i = 0, . . . , n − 1. Under appropriate conditions on g1 and g2, it can be shown that
the global truncation error for the Runge-Kutta method is O(h4), as in the scalar case
considered in Section 3.3.

6.1 Exercises
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1. Tanks T1 and T2 contain 50 gallons and 100 gallons of salt solutions, respectively.
A solution with 2 pounds of salt per gallon is pumped into T1 from an external
source at 1 gal/min, and a solution with 3 pounds of salt per gallon is pumped
into T2 from an external source at 2 gal/min. The solution from T1 is pumped
into T2 at 3 gal/min, and the solution from T2 is pumped into T1 at 4 gal/min. T1
is drained at 2 gal/min and T2 is drained at 1 gal/min. Let Q1(t) and Q2(t) be
the number of pounds of salt in T1 and T2, respectively, at time t > 0. Derive a
system of differential equations for Q1 and Q2. Assume that both mixtures are
well stirred.

2. Two 500 gallon tanks T1 and T2 initially contain 100 gallons each of salt solution.
A solution with 2 pounds of salt per gallon is pumped into T1 from an external
source at 6 gal/min, and a solution with 1 pound of salt per gallon is pumped into
T2 from an external source at 5 gal/min. The solution from T1 is pumped into T2 at
2 gal/min, and the solution from T2 is pumped into T1 at 1 gal/min. Both tanks are
drained at 3 gal/min. Let Q1(t) and Q2(t) be the number of pounds of salt in T1
and T2, respectively, at time t > 0. Derive a system of differential equations for Q1
and Q2 that’s valid until a tank is about to overflow. Assume that both mixtures
are well stirred.

3. A mass m1 is suspended from a rigid support on a spring S1 with spring constant
k1 and damping constant c1. A second massm2 is suspended from the first on a
spring S2 with spring constant k2 and damping constant c2, and a third massm3
is suspended from the second on a spring S3 with spring constant k3 and damping
constant c3. Let y1 = y1(t), y2 = y2(t), and y3 = y3(t) be the displacements of
the three masses from their equilibrium positions at time t, measured positive
upward. Derive a system of differential equations for y1, y2 and y3, assuming that
the masses of the springs are negligible and that vertical external forces F1, F2, and
F3 also act on the masses.

4. Let X = x i+ y j+ z k be the position vector of an object with massm, expressed in
terms of a rectangular coordinate system with origin at Earth’s center (Figure 6.3).
Derive a system of differential equations for x, y, and z, assuming that the object
moves under Earth’s gravitational force (given by Newton’s law of gravitation, as
in Example 6.1.3 ) and a resistive force proportional to the speed of the object. Let
α be the constant of proportionality.

5. Rewrite the given system as a first order system.
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(a)
x ′′′ = f(t, x,y,y ′)
y ′′ = g(t,y,y ′)

(b)
u ′ = f(t,u, v, v ′,w ′)
v ′′ = g(t,u, v, v ′,w)
w ′′ = h(t,u, v, v ′,w,w ′)

(c) y ′′′ = f(t,y,y ′,y ′′) (d) y(4) = f(t,y)

(e)
x ′′ = f(t, x,y)
y ′′ = g(t, x,y)

6. Rewrite the system (6.1.14) of differential equations derived in Example 6.1.3 as a
first order system.

7. Formulate a version of Euler’s method (Section 3.1) for the numerical solution of
the initial value problem

y ′1 = g1(t,y1,y2), y1(t0) = y10,
y ′2 = g2(t,y1,y2), y2(t0) = y20,

on an interval [t0,b].

8. Formulate a version of the improved Euler method (Section 3.2) for the numerical
solution of the initial value problem

y ′1 = g1(t,y1,y2), y1(t0) = y10,
y ′2 = g2(t,y1,y2), y2(t0) = y20,

on an interval [t0,b].

6.2 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

A first order system of differential equations that can be written in the form

y ′1 = a11(t)y1 + a12(t)y2 + · · ·+ a1n(t)yn + f1(t)
y ′2 = a21(t)y1 + a22(t)y2 + · · ·+ a2n(t)yn + f2(t)

...
y ′n = an1(t)y1 + an2(t)y2 + · · ·+ ann(t)yn + fn(t)

(6.2.1)

is called a linear system.
The linear system (6.2.1) can be written in matrix form as

y ′1
y ′2
...
y ′n

 =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

. . .
...

an1(t) an2(t) · · · ann(t)



y1
y2
...
yn

+


f1(t)
f2(t)

...
fn(t)

 ,
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or more briefly as
y ′ = A(t)y + f(t), (6.2.2)

where

y =


y1
y2
...
yn

 , A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

. . .
...

an1(t) an2(t) · · · ann(t)

 , and f(t) =


f1(t)
f2(t)

...
fn(t)

 .

We call A the coefficient matrix of (6.2.2) and f the forcing function. We’ll say that A and
f are continuous if their entries are continuous. If f = 0, then (6.2.2) is homogeneous;
otherwise, (6.2.2) is nonhomogeneous.

An initial value problem for (6.2.2) consists of finding a solution of (6.2.2) that equals
a given constant vector

k =


k1
k2
...
kn

 .

at some initial point t0. We write this initial value problem as

y ′ = A(t)y + f(t), y(t0) = k.

The next theorem gives sufficient conditions for the existence of solutions of initial
value problems for (6.2.2). We omit the proof.

Theorem 6.2.1 Suppose the coefficient matrix A and the forcing function f are continuous on
(a,b), let t0 be in (a,b), and let k be an arbitrary constant n-vector. Then the initial value
problem

y ′ = A(t)y + f(t), y(t0) = k

has a unique solution on (a,b).

Example 6.2.1

(a) Write the system
y ′1 = y1 + 2y2 + 2e4t

y ′2 = 2y1 + y2 + e4t
(6.2.3)

in matrix form and conclude from Theorem 6.2.1 that every initial value problem
for (6.2.3) has a unique solution on (−∞,∞).

(b) Verify that

y =
1
5

[
8
7

]
e4t + c1

[
1
1

]
e3t + c2

[
1
−1

]
e−t (6.2.4)

is a solution of (6.2.3) for all values of the constants c1 and c2.
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(c) Find the solution of the initial value problem

y ′ =
[
1 2
2 1

]
y +

[
2
1

]
e4t, y(0) =

1
5

[
3
22

]
. (6.2.5)

SOLUTION(a) The system (6.2.3) can be written in matrix form as

y ′ =
[
1 2
2 1

]
y +

[
2
1

]
e4t.

An initial value problem for (6.2.3) can be written as

y ′ =
[
1 2
2 1

]
y +

[
2
1

]
e4t, y(t0) =

[
k1
k2

]
.

Since the coefficient matrix and the forcing function are both continuous on (−∞,∞),
Theorem 6.2.1 implies that this problem has a unique solution on (−∞,∞).

SOLUTION(b) If y is given by (6.2.4), then

Ay + f =
1
5

[
1 2
2 1

] [
8
7

]
e4t + c1

[
1 2
2 1

] [
1
1

]
e3t

+c2

[
1 2
2 1

] [
1
−1

]
e−t +

[
2
1

]
e4t

=
1
5

[
22
23

]
e4t + c1

[
3
3

]
e3t + c2

[
−1
1

]
e−t +

[
2
1

]
e4t

=
1
5

[
32
28

]
e4t + 3c1

[
1
1

]
e3t − c2

[
1
−1

]
e−t = y ′.

SOLUTION(c) We must choose c1 and c2 in (6.2.4) so that

1
5

[
8
7

]
+ c1

[
1
1

]
+ c2

[
1
−1

]
=

1
5

[
3
22

]
,

which is equivalent to [
1 1
1 −1

] [
c1
c2

]
=

[
−1
3

]
.

Solving this system yields c1 = 1, c2 = −2, so

y =
1
5

[
8
7

]
e4t +

[
1
1

]
e3t − 2

[
1
−1

]
e−t

is the solution of (6.2.5).
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REMARK: The theory of n× n linear systems of differential equations is analogous to
the theory of the scalar n-th order equation

P0(t)y
(n) + P1(t)y

(n−1) + · · ·+ Pn(t)y = F(t), (6.2.6)

as developed in Sections 9.1. For example, by rewriting (6.2.6) as an equivalent linear
system it can be shown that Theorem 6.2.1 implies Theorem ?? (Exercise 12).
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6.2 Exercises

1. Rewrite the system in matrix form and verify that the given vector function satisfies
the system for any choice of the constants c1 and c2.

(a)
y ′1 = 2y1 + 4y2
y ′2 = 4y1 + 2y2;

y = c1

[
1
1

]
e6t + c2

[
1
−1

]
e−2t

(b)
y ′1 = −2y1 − 2y2
y ′2 = −5y1 + y2;

y = c1

[
1
1

]
e−4t + c2

[
−2
5

]
e3t

(c)
y ′1 = −4y1 − 10y2
y ′2 = 3y1 + 7y2;

y = c1

[
−5
3

]
e2t + c2

[
2
−1

]
et

(d)
y ′1 = 2y1 + y2
y ′2 = y1 + 2y2;

y = c1

[
1
1

]
e3t + c2

[
1
−1

]
et

2. Rewrite the system in matrix form and verify that the given vector function satisfies
the system for any choice of the constants c1, c2, and c3.

(a)
y ′1 = −y1 + 2y2 + 3y3
y ′2 = y2 + 6y3
y ′3 = −2y3;

y = c1

 1
1
0

 et + c2
 1

0
0

 e−t + c3
 1

−2
1

 e−2t

(b)
y ′1 = 2y2 + 2y3
y ′2 = 2y1 + 2y3
y ′3 = 2y1 + 2y2;

y = c1

 −1
0
1

 e−2t + c2

 0
−1
1

 e−2t + c3

 1
1
1

 e4t
(c)

y ′1 = −y1 + 2y2 + 2y3
y ′2 = 2y1 − y2 + 2y3
y ′3 = 2y1 + 2y2 − y3;

y = c1

 −1
0
1

 e−3t + c2

 0
−1
1

 e−3t + c3

 1
1
1

 e3t
(d)

y ′1 = 3y1 − y2 − y3
y ′2 = −2y1 + 3y2 + 2y3
y ′3 = 4y1 − y2 − 2y3;

y = c1

 1
0
1

 e2t + c2
 1

−1
1

 e3t + c3
 1

−3
7

 e−t
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3. Rewrite the initial value problem in matrix form and verify that the given vector
function is a solution.

(a)
y ′1 = y1 + y2
y ′2 = −2y1 + 4y2,

y1(0) = 1
y2(0) = 0; y = 2

[
1
1

]
e2t −

[
1
2

]
e3t

(b)
y ′1 = 5y1 + 3y2
y ′2 = −y1 + y2,

y1(0) = 12
y2(0) = −6; y = 3

[
1
−1

]
e2t + 3

[
3
−1

]
e4t

4. Rewrite the initial value problem in matrix form and verify that the given vector
function is a solution.

(a)
y ′1 = 6y1 + 4y2 + 4y3
y ′2 = −7y1 − 2y2 − y3,
y ′3 = 7y1 + 4y2 + 3y3

,
y1(0) = 3
y2(0) = −6
y3(0) = 4

y =

 1
−1
1

 e6t + 2

 1
−2
1

 e2t +
 0

−1
1

 e−t
(b)

y ′1 = 8y1 + 7y2 + 7y3
y ′2 = −5y1 − 6y2 − 9y3,
y ′3 = 5y1 + 7y2 + 10y3,

y1(0) = 2
y2(0) = −4
y3(0) = 3

y =

 1
−1
1

 e8t +
 0

−1
1

 e3t +
 1

−2
1

 et
5. Rewrite the system in matrix form and verify that the given vector function satisfies

the system for any choice of the constants c1 and c2.

(a)
y ′1 = −3y1 + 2y2 + 3− 2t
y ′2 = −5y1 + 3y2 + 6− 3t

y = c1

[
2 cos t

3 cos t− sin t

]
+ c2

[
2 sin t

3 sin t+ cos t

]
+

[
1
t

]
(b)

y ′1 = 3y1 + y2 − 5et

y ′2 = −y1 + y2 + e
t

y = c1

[
−1
1

]
e2t + c2

[
1+ t
−t

]
e2t +

[
1
3

]
et

(c)
y ′1 = −y1 − 4y2 + 4et + 8tet

y ′2 = −y1 − y2 + e
3t + (4t+ 2)et

y = c1

[
2
1

]
e−3t + c2

[
−2
1

]
et +

[
e3t

2tet

]
(d)

y ′1 = −6y1 − 3y2 + 14e2t + 12et

y ′2 = y1 − 2y2 + 7e2t − 12et

y = c1

[
−3
1

]
e−5t + c2

[
−1
1

]
e−3t +

[
e2t + 3et

2e2t − 3et

]
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6. Convert the linear scalar equation

P0(t)y
(n) + P1(t)y

(n−1) + · · ·+ Pn(t)y(t) = F(t) (A)

into an equivalent n× n system

y ′ = A(t)y + f(t),

and show that A and f are continuous on an interval (a,b) if and only if (A) is
normal on (a,b).

7. A matrix function

Q(t) =


q11(t) q12(t) · · · q1s(t)
q21(t) q22(t) · · · q2s(t)

...
...

. . .
...

qr1(t) qr2(t) · · · qrs(t)


is said to be differentiable if its entries {qij} are differentiable. Then the derivative Q ′

is defined by

Q ′(t) =


q ′11(t) q ′12(t) · · · q ′1s(t)
q ′21(t) q ′22(t) · · · q ′2s(t)

...
...

. . .
...

q ′r1(t) q ′r2(t) · · · q ′rs(t)

 .

(a) Prove: If P and Q are differentiable matrices such that P +Q is defined and if
c1 and c2 are constants, then

(c1P + c2Q) ′ = c1P ′ + c2Q ′.

(b) Prove: If P and Q are differentiable matrices such that PQ is defined, then

(PQ) ′ = P ′Q+ PQ ′.

8. Verify that Y ′ = AY.

(a) Y =

[
e6t e−2t

e6t −e−2t

]
, A =

[
2 4
4 2

]
(b) Y =

[
e−4t −2e3t

e−4t 5e3t

]
, A =

[
−2 −2
−5 1

]
(c) Y =

[
−5e2t 2et

3e2t −et

]
, A =

[
−4 −10
3 7

]
(d) Y =

[
e3t et

e3t −et

]
, A =

[
2 1
1 2

]

(e) Y =

 et e−t e−2t

et 0 −2e−2t

0 0 e−2t

 , A =

 −1 2 3
0 1 6
0 0 −2


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(f) Y =

 −e−2t −e−2t e4t

0 e−2t e4t

e−2t 0 e4t

 , A =

 0 2 2
2 0 2
2 2 0


(g) Y =

 e3t e−3t 0
e3t 0 −e−3t

e3t e−3t e−3t

 , A =

 −9 6 6
−6 3 6
−6 6 3


(h) Y =

 e2t e3t e−t

0 −e3t −3e−t

e2t e3t 7e−t

 , A =

 3 −1 −1
−2 3 2
4 −1 −2


9. Suppose

y1 =

[
y11
y21

]
and y2 =

[
y12
y22

]
are solutions of the homogeneous system

y ′ = A(t)y, (A)

and define

Y =

[
y11 y12
y21 y22

]
.

(a) Show that Y ′ = AY.
(b) Show that if c is a constant vector then y = Yc is a solution of (A).
(c) State generalizations of (a) and (b) for n× n systems.

10. Suppose Y is a differentiable square matrix.

(a) Find a formula for the derivative of Y2.
(b) Find a formula for the derivative of Yn, where n is any positive integer.
(c) State how the results obtained in (a) and (b) are analogous to results from

calculus concerning scalar functions.

11. It can be shown that if Y is a differentiable and invertible square matrix function,
then Y−1 is differentiable.

(a) Show that (Y−1) ′ = −Y−1Y ′Y−1. (Hint: Differentiate the identity Y−1Y = I.)
(b) Find the derivative of Y−n =

(
Y−1)n, where n is a positive integer.

(c) State how the results obtained in (a) and (b) are analogous to results from
calculus concerning scalar functions.

12. Show that Theorem 6.2.1 implies Theorem ??. HINT: Write the scalar equation

P0(x)y
(n) + P1(x)y

(n−1) + · · ·+ Pn(x)y = F(x)

as an n× n system of linear equations.

13. Suppose y is a solution of the n×n system y ′ = A(t)y on (a,b), and that the n×n
matrix P is invertible and differentiable on (a,b). Find a matrix B such that the
function x = Py is a solution of x ′ = Bx on (a,b).

6.3 BASIC THEORY OF HOMOGENEOUS LINEAR SYSTEMS
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In this section we consider homogeneous linear systems y ′ = A(t)y, whereA = A(t) is a
continuous n×nmatrix function on an interval (a,b). The theory of linear homogeneous
systems has much in common with the theory of linear homogeneous scalar equations,
which we considered in Sections 2.1, 5.1, and 9.1.

Whenever we refer to solutions of y ′ = A(t)y we’ll mean solutions on (a,b). Since
y ≡ 0 is obviously a solution of y ′ = A(t)y, we call it the trivial solution. Any other
solution is nontrivial.

If y1, y2, . . . , yn are vector functions defined on an interval (a,b) and c1, c2, . . . , cn are
constants, then

y = c1y1 + c2y2 + · · ·+ cnyn (6.3.1)

is a linear combination of y1, y2, . . . ,yn. It’s easy show that if y1, y2, . . . ,yn are solutions of
y ′ = A(t)y on (a,b), then so is any linear combination of y1, y2, . . . , yn (Exercise 1). We
say that {y1, y2, . . . , yn} is a fundamental set of solutions of y ′ = A(t)y on (a,b) on if every
solution of y ′ = A(t)y on (a,b) can be written as a linear combination of y1, y2, . . . , yn,
as in (6.3.1). In this case we say that (6.3.1) is the general solution of y ′ = A(t)y on (a,b).

It can be shown that if A is continuous on (a,b) then y ′ = A(t)y has infinitely many
fundamental sets of solutions on (a,b) (Exercises 15 and 16). The next definition will
help to characterize fundamental sets of solutions of y ′ = A(t)y.

We say that a set {y1, y2, . . . , yn} of n-vector functions is linearly independent on (a,b) if
the only constants c1, c2, . . . , cn such that

c1y1(t) + c2y2(t) + · · ·+ cnyn(t) = 0, a < t < b, (6.3.2)

are c1 = c2 = · · · = cn = 0. If (6.3.2) holds for some set of constants c1, c2, . . . , cn that
are not all zero, then {y1, y2, . . . , yn} is linearly dependent on (a,b)

The next theorem is analogous to Theorems ?? and ??.

Theorem 6.3.1 Suppose the n × n matrix A = A(t) is continuous on (a,b). Then a set
{y1, y2, . . . , yn} of n solutions of y ′ = A(t)y on (a,b) is a fundamental set if and only if it’s
linearly independent on (a,b).

Example 6.3.1 Show that the vector functions

y1 =

 et

0
e−t

 , y2 =

 0
e3t

1

 , and y3 =

 e2te3t
0


are linearly independent on every interval (a,b).

Solution Suppose

c1

 et

0
e−t

+ c2

 0
e3t

1

+ c3

 e2te3t
0

 =

 0
0
0

 , a < t < b.
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We must show that c1 = c2 = c3 = 0. Rewriting this equation in matrix form yields et 0 e2t

0 e3t e3t

e−t 1 0

 c1c2
c3

 =

 0
0
0

 , a < t < b.

Expanding the determinant of this system in cofactors of the entries of the first row
yields ∣∣∣∣∣∣

et 0 e2t

0 e3t e3t

e−t 1 0

∣∣∣∣∣∣ = et
∣∣∣∣ e3t e3t

1 0

∣∣∣∣− 0
∣∣∣∣ 0 e3t

e−t 0

∣∣∣∣+ e2t ∣∣∣∣ 0 e3t

e−t 1

∣∣∣∣
= et(−e3t) + e2t(−e2t) = −2e4t.

Since this determinant is never zero, c1 = c2 = c3 = 0.
We can use the method in Example 6.3.1 to test n solutions {y1, y2, . . . , yn} of any

n × n system y ′ = A(t)y for linear independence on an interval (a,b) on which A is
continuous. To explain this (and for other purposes later), it’s useful to write a linear
combination of y1, y2, . . . , yn in a different way. We first write the vector functions in
terms of their components as

y1 =


y11
y21

...
yn1

 , y2 =


y12
y22

...
yn2

 , . . . , yn =


y1n
y2n

...
ynn

 .

If
y = c1y1 + c2y2 + · · ·+ cnyn

then

y = c1


y11
y21

...
yn1

+ c2


y12
y22

...
yn2

+ · · ·+ cn


y1n
y2n

...
ynn



=


y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

yn1 yn2 · · · ynn



c1
c2
...
cn

 .

This shows that
c1y1 + c2y2 + · · ·+ cnyn = Yc, (6.3.3)

where

c =


c1
c2
...
cn


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and

Y = [y1 y2 · · · yn] =


y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

yn1 yn2 · · · ynn

 ; (6.3.4)

that is, the columns of Y are the vector functions y1, y2, . . . , yn.
For reference below, note that

Y ′ = [y ′1 y ′2 · · · y ′n]
= [Ay1 Ay2 · · · Ayn]
= A[y1 y2 · · · yn] = AY;

that is, Y satisfies the matrix differential equation

Y ′ = AY.

The determinant of Y,

W =

∣∣∣∣∣∣∣∣∣
y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

yn1 yn2 · · · ynn

∣∣∣∣∣∣∣∣∣ (6.3.5)

is called the Wronskian of {y1, y2, . . . , yn}. It can be shown (Exercises 2 and 3) that this
definition is analogous to definitions of the Wronskian of scalar functions given in
Sections 5.1 and 9.1. The next theorem is analogous to Theorems ?? and ??. The proof is
sketched in Exercise 4 for n = 2 and in Exercise 5 for general n.

Theorem 6.3.2 [Abel’s Formula] Suppose the n× n matrix A = A(t) is continuous on (a,b),
let y1, y2, . . . , yn be solutions of y ′ = A(t)y on (a,b), and let t0 be in (a,b). Then the
Wronskian of {y1, y2, . . . , yn} is given by

W(t) =W(t0) exp
(∫t
t0

[
a11(s) + a22(s) + · · ·+ ann(s)]ds

)
, a < t < b. (6.3.6)

Therefore, eitherW has no zeros in (a,b) orW ≡ 0 on (a,b).

REMARK: The sum of the diagonal entries of a square matrix A is called the trace of A,
denoted by tr(A). Thus, for an n× nmatrix A,

tr(A) = a11 + a22 + · · ·+ ann,

and (6.3.6) can be written as

W(t) =W(t0) exp
(∫t
t0

tr(A(s))ds
)
, a < t < b.

The next theorem is analogous to Theorems ?? and ??.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Wronski.html
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Theorem 6.3.3 Suppose the n × n matrix A = A(t) is continuous on (a,b) and let y1, y2,
. . . ,yn be solutions of y ′ = A(t)y on (a,b). Then the following statements are equivalent; that
is, they are either all true or all false:
(a) The general solution of y ′ = A(t)y on (a,b) is y = c1y1 + c2y2 + · · ·+ cnyn, where c1,

c2, . . . , cn are arbitrary constants.

(b) {y1, y2, . . . , yn} is a fundamental set of solutions of y ′ = A(t)y on (a,b).

(c) {y1, y2, . . . , yn} is linearly independent on (a,b).

(d) The Wronskian of {y1, y2, . . . , yn} is nonzero at some point in (a,b).

(e) The Wronskian of {y1, y2, . . . , yn} is nonzero at all points in (a,b).

We say that Y in (6.3.4) is a fundamental matrix for y ′ = A(t)y if any (and therefore
all) of the statements (a)-(e) of Theorem 6.3.2 are true for the columns of Y. In this case,
(6.3.3) implies that the general solution of y ′ = A(t)y can be written as y = Yc, where c
is an arbitrary constant n-vector.

Example 6.3.2 The vector functions

y1 =

[
−e2t

2e2t

]
and y2 =

[
−e−t

e−t

]
are solutions of the constant coefficient system

y ′ =
[
−4 −3
6 5

]
y (6.3.7)

on (−∞,∞). (Verify.)
(a) Compute the Wronskian of {y1, y2} directly from the definition (6.3.5)

(b) Verify Abel’s formula (6.3.6) for the Wronskian of {y1, y2}.

(c) Find the general solution of (6.3.7).

(d) Solve the initial value problem

y ′ =
[
−4 −3
6 5

]
y, y(0) =

[
4

−5

]
. (6.3.8)

SOLUTION(a) From (6.3.5)

W(t) =

∣∣∣∣ −e2t −e−t

2e2t e−t

∣∣∣∣ = e2te−t [ −1 −1
2 1

]
= et. (6.3.9)

SOLUTION(b) Here

A =

[
−4 −3
6 5

]
,
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so tr(A) = −4+ 5 = 1. If t0 is an arbitrary real number then (6.3.6) implies that

W(t) =W(t0) exp
(∫t
t0

1ds
)

=

∣∣∣∣ −e2t0 −e−t0

2e2t0 e−t0

∣∣∣∣ e(t−t0) = et0et−t0 = et,

which is consistent with (6.3.9).

SOLUTION(c) SinceW(t) 6= 0, Theorem 6.3.3 implies that {y1, y2} is a fundamental set of
solutions of (6.3.7) and

Y =

[
−e2t −e−t

2e2t e−t

]
is a fundamental matrix for (6.3.7). Therefore the general solution of (6.3.7) is

y = c1y1 + c2y2 = c1

[
−e2t

2e2t

]
+ c2

[
−e−t

e−t

]
=

[
−e2t −e−t

2e2t e−t

] [
c1
c2

]
. (6.3.10)

SOLUTION(d) Setting t = 0 in (6.3.10) and imposing the initial condition in (6.3.8) yields

c1

[
−1
2

]
+ c2

[
−1
1

]
=

[
4

−5

]
.

Thus,

−c1 − c2 = 4
2c1 + c2 = −5.

The solution of this system is c1 = −1, c2 = −3. Substituting these values into (6.3.10)
yields

y = −

[
−e2t

2e2t

]
− 3

[
−e−t

e−t

]
=

[
e2t + 3e−t

−2e2t − 3e−t

]
as the solution of (6.3.8).

6.3 Exercises

1. Prove: If y1, y2, . . . , yn are solutions of y ′ = A(t)y on (a,b), then any linear
combination of y1, y2, . . . , yn is also a solution of y ′ = A(t)y on (a,b).

2. In Section 5.1 the Wronskian of two solutions y1 and y2 of the scalar second order
equation

P0(x)y
′′ + P1(x)y

′ + P2(x)y = 0 (A)

was defined to be

W =

∣∣∣∣ y1 y2
y ′1 y ′2

∣∣∣∣ .
(a) Rewrite (A) as a system of first order equations and show that W is the

Wronskian (as defined in this section) of two solutions of this system.
(b) Apply Eqn. (6.3.6) to the system derived in (a), and show that

W(x) =W(x0) exp
{
−

∫x
x0

P1(s)

P0(s)
ds

}
,

which is the form of Abel’s formula given in Theorem 9.1.3.
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3. In Section 9.1 the Wronskian of n solutions y1, y2, . . . , yn of the n−th order
equation

P0(x)y
(n) + P1(x)y

(n−1) + · · ·+ Pn(x)y = 0 (A)

was defined to be

W =

∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y ′1 y ′2 · · · y ′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y(n−1)

n

∣∣∣∣∣∣∣∣∣∣∣∣
.

(a) Rewrite (A) as a system of first order equations and show that W is the
Wronskian (as defined in this section) of n solutions of this system.

(b) Apply Eqn. (6.3.6) to the system derived in (a), and show that

W(x) =W(x0) exp
{
−

∫x
x0

P1(s)

P0(s)
ds

}
,

which is the form of Abel’s formula given in Theorem 9.1.3.

4. Suppose

y1 =

[
y11
y21

]
and y2 =

[
y12
y22

]
are solutions of the 2× 2 system y ′ = Ay on (a,b), and let

Y =

[
y11 y12
y21 y22

]
and W =

∣∣∣∣ y11 y12
y21 y22

∣∣∣∣ ;
thus,W is the Wronskian of {y1, y2}.

(a) Deduce from the definition of determinant that

W ′ =

∣∣∣∣ y ′11 y ′12
y21 y22

∣∣∣∣+ ∣∣∣∣ y11 y12
y ′21 y ′22

∣∣∣∣ .
(b) Use the equation Y ′ = A(t)Y and the definition of matrix multiplication to

show that
[y ′11 y ′12] = a11[y11 y12] + a12[y21 y22]

and
[y ′21 y ′22] = a21[y11 y12] + a22[y21 y22].

(c) Use properties of determinants to deduce from (a) and (a) that∣∣∣∣ y ′11 y ′12
y21 y22

∣∣∣∣ = a11W and
∣∣∣∣ y11 y12
y ′21 y ′22

∣∣∣∣ = a22W.
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(d) Conclude from (c) that
W ′ = (a11 + a22)W,

and use this to show that if a < t0 < b then

W(t) =W(t0) exp
(∫t
t0

[a11(s) + a22(s)] ds

)
a < t < b.

5. Suppose the n× nmatrix A = A(t) is continuous on (a,b). Let

Y =


y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

yn1 yn2 · · · ynn

 ,

where the columns of Y are solutions of y ′ = A(t)y. Let

ri = [yi1 yi2 . . . yin]

be the ith row of Y, and letW be the determinant of Y.

(a) Deduce from the definition of determinant that

W ′ =W1 +W2 + · · ·+Wn,

where, for 1 6 m 6 n, the ith row ofWm is ri if i 6= m, and r ′m if i = m.
(b) Use the equation Y ′ = AY and the definition of matrix multiplication to show

that
r ′m = am1r1 + am2r2 + · · ·+ amnrn.

(c) Use properties of determinants to deduce from (b) that

det(Wm) = ammW.

(d) Conclude from (a) and (c) that

W ′ = (a11 + a22 + · · ·+ ann)W,

and use this to show that if a < t0 < b then

W(t) =W(t0) exp
(∫t
t0

[
a11(s) + a22(s) + · · ·+ ann(s)]ds

)
, a < t < b.

6. Suppose the n× nmatrix A is continuous on (a,b) and t0 is a point in (a,b). Let
Y be a fundamental matrix for y ′ = A(t)y on (a,b).

(a) Show that Y(t0) is invertible.
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(b) Show that if k is an arbitrary n-vector then the solution of the initial value
problem

y ′ = A(t)y, y(t0) = k

is
y = Y(t)Y−1(t0)k.

7. Let

A =

[
2 4
4 2

]
, y1 =

[
e6t

e6t

]
, y2 =

[
e−2t

−e−2t

]
, k =

[
−3
9

]
.

(a) Verify that {y1, y2} is a fundamental set of solutions for y ′ = Ay.
(b) Solve the initial value problem

y ′ = Ay, y(0) = k. (A)

(c) Use the result of Exercise 6(b) to find a formula for the solution of (A) for an
arbitrary initial vector k.

8. Repeat Exercise 7 with

A =

[
−2 −2
−5 1

]
, y1 =

[
e−4t

e−4t

]
, y2 =

[
−2e3t

5e3t

]
, k =

[
10
−4

]
.

9. Repeat Exercise 7 with

A =

[
−4 −10
3 7

]
, y1 =

[
−5e2t

3e2t

]
, y2 =

[
2et

−et

]
, k =

[
−19
11

]
.

10. Repeat Exercise 7 with

A =

[
2 1
1 2

]
, y1 =

[
e3t

e3t

]
, y2 =

[
et

−et

]
, k =

[
2
8

]
.

11. Let

A =

 3 −1 −1
−2 3 2
4 −1 −2

 ,

y1 =

 e2t0
e2t

 , y2 =

 e3t

−e3t

e3t

 , y3 =

 e−t

−3e−t

7e−t

 , k =

 2
−7
20

 .

(a) Verify that {y1, y2, y3} is a fundamental set of solutions for y ′ = Ay.
(b) Solve the initial value problem

y ′ = Ay, y(0) = k. (A)
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(c) Use the result of Exercise 6(b) to find a formula for the solution of (A) for an
arbitrary initial vector k.

12. Repeat Exercise 11 with

A =

 0 2 2
2 0 2
2 2 0

 ,

y1 =

 −e−2t

0
e−2t

 , y2 =

 −e−2t

e−2t

0

 , y3 =

 e4te4t
e4t

 , k =

 0
−9
12

 .

13. Repeat Exercise 11 with

A =

 −1 2 3
0 1 6
0 0 −2

 ,

y1 =

 etet
0

 , y2 =

 e−t0
0

 , y3 =

 e−2t

−2e−2t

e−2t

 , k =

 5
5

−1

 .

14. Suppose Y and Z are fundamental matrices for the n × n system y ′ = A(t)y.
Then some of the four matrices YZ−1, Y−1Z, Z−1Y, ZY−1 are necessarily constant.
Identify them and prove that they are constant.

15. Suppose the columns of an n×nmatrix Y are solutions of the n×n system y ′ = Ay
and C is an n× n constant matrix.

(a) Show that the matrix Z = YC satisfies the differential equation Z ′ = AZ.
(b) Show that Z is a fundamental matrix for y ′ = A(t)y if and only if C is invert-

ible and Y is a fundamental matrix for y ′ = A(t)y.

16. Suppose the n × n matrix A = A(t) is continuous on (a,b) and t0 is in (a,b).
For i = 1, 2, . . . , n, let yi be the solution of the initial value problem y ′i =
A(t)yi, yi(t0) = ei, where

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · en =


0
0
...
1

 ;

that is, the jth component of ei is 1 if j = i, or 0 if j 6= i.
(a) Show that{y1, y2, . . . , yn} is a fundamental set of solutions of y ′ = A(t)y on

(a,b).
(b) Conclude from (a) and Exercise 15 that y ′ = A(t)y has infinitely many funda-

mental sets of solutions on (a,b).
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17. Show that Y is a fundamental matrix for the system y ′ = A(t)y if and only if Y−1

is a fundamental matrix for y ′ = −AT (t)y, where AT denotes the transpose of A.
HINT: See Exercise 11.

18. Let Z be the fundamental matrix for the constant coefficient system y ′ = Ay such
that Z(0) = I.

(a) Show that Z(t)Z(s) = Z(t + s) for all s and t. HINT: For fixed s let Γ1(t) =
Z(t)Z(s) and Γ2(t) = Z(t+ s). Show that Γ1 and Γ2 are both solutions of the matrix
initial value problem Γ ′ = AΓ , Γ(0) = Z(s). Then conclude from Theorem 6.2.1
that Γ1 = Γ2.

(b) Show that (Z(t))−1 = Z(−t).
(c) The matrix Z defined above is sometimes denoted by etA. Discuss the moti-

vation for this notation.

6.4 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS I

We’ll now begin our study of the homogeneous system

y ′ = Ay, (6.4.1)

where A is an n× n constant matrix. Since A is continuous on (−∞,∞), Theorem 6.2.1
implies that all solutions of (6.4.1) are defined on (−∞,∞). Therefore, when we speak
of solutions of y ′ = Ay, we’ll mean solutions on (−∞,∞).

In this section we assume that all the eigenvalues of A are real and that A has a set
of n linearly independent eigenvectors. In the next two sections we consider the cases
where some of the eigenvalues of A are complex, or where A does not have n linearly
independent eigenvectors.

In Example 6.3.2 we showed that the vector functions

y1 =

[
−e2t

2e2t

]
and y2 =

[
−e−t

e−t

]
form a fundamental set of solutions of the system

y ′ =
[
−4 −3
6 5

]
y, (6.4.2)

but we did not show how we obtained y1 and y2 in the first place. To see how these
solutions can be obtained we write (6.4.2) as

y ′1 = −4y1 − 3y2
y ′2 = 6y1 + 5y2

(6.4.3)

and look for solutions of the form

y1 = x1e
λt and y2 = x2e

λt, (6.4.4)

where x1, x2, and λ are constants to be determined. Differentiating (6.4.4) yields

y ′1 = λx1e
λt and y ′2 = λx2e

λt.
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Substituting this and (6.4.4) into (6.4.3) and canceling the common factor eλt yields

−4x1 − 3x2 = λx1
6x1 + 5x2 = λx2.

For a given λ, this is a homogeneous algebraic system, since it can be rewritten as

(−4− λ)x1 − 3x2 = 0
6x1 + (5− λ)x2 = 0. (6.4.5)

The trivial solution x1 = x2 = 0 of this system isn’t useful, since it corresponds to
the trivial solution y1 ≡ y2 ≡ 0 of (6.4.3), which can’t be part of a fundamental set of
solutions of (6.4.2). Therefore we consider only those values of λ for which (6.4.5) has
nontrivial solutions. These are the values of λ for which the determinant of (6.4.5) is
zero; that is, ∣∣∣∣ −4− λ −3

6 5− λ

∣∣∣∣ = (−4− λ)(5− λ) + 18

= λ2 − λ− 2
= (λ− 2)(λ+ 1) = 0,

which has the solutions λ1 = 2 and λ2 = −1.
Taking λ = 2 in (6.4.5) yields

−6x1 − 3x2 = 0
6x1 + 3x2 = 0,

which implies that x1 = −x2/2, where x2 can be chosen arbitrarily. Choosing x2 = 2
yields the solution y1 = −e2t, y2 = 2e2t of (6.4.3). We can write this solution in vector
form as

y1 =

[
−1
2

]
e2t. (6.4.6)

Taking λ = −1 in (6.4.5) yields the system

−3x1 − 3x2 = 0
6x1 + 6x2 = 0,

so x1 = −x2. Taking x2 = 1 here yields the solution y1 = −e−t, y2 = e−t of (6.4.3). We
can write this solution in vector form as

y2 =

[
−1
1

]
e−t. (6.4.7)

In (6.4.6) and (6.4.7) the constant coefficients in the arguments of the exponential func-
tions are the eigenvalues of the coefficient matrix in (6.4.2), and the vector coefficients of
the exponential functions are associated eigenvectors. This illustrates the next theorem.



Section 6.4 Constant Coefficient Homogeneous Systems I 317

Theorem 6.4.1 Suppose the n × n constant matrix A has n real eigenvalues λ1, λ2, . . . , λn
(which need not be distinct) with associated linearly independent eigenvectors x1, x2, . . . , xn.
Then the functions

y1 = x1e
λ1t, y2 = x2e

λ2t, . . . , yn = xneλnt

form a fundamental set of solutions of y ′ = Ay; that is, the general solution of this system is

y = c1x1e
λ1t + c2x2e

λ2t + · · ·+ cnxneλnt.

Proof Differentiating yi = xieλit and recalling that Axi = λixi yields

y ′i = λixie
λit = Axieλit = Ayi.

This shows that yi is a solution of y ′ = Ay.
The Wronskian of {y1, y2, . . . , yn} is

∣∣∣∣∣∣∣∣∣
x11e

λ1t x12e
λ2t · · · x1ne

λnt

x21e
λ1t x22e

λ2t · · · x2ne
λnt

...
...

. . .
...

xn1e
λ1t xn2e

λ2t · · · xnneλxnt

∣∣∣∣∣∣∣∣∣ = e
λ1teλ2t · · · eλnt

∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣∣∣∣∣
.

Since the columns of the determinant on the right are x1, x2, . . . , xn, which are assumed
to be linearly independent, the determinant is nonzero. Therefore Theorem 6.3.3 implies
that {y1, y2, . . . , yn} is a fundamental set of solutions of y ′ = Ay.

Example 6.4.1

(a) Find the general solution of

y ′ =
[
2 4
4 2

]
y. (6.4.8)

(b) Solve the initial value problem

y ′ =
[
2 4
4 2

]
y, y(0) =

[
5

−1

]
. (6.4.9)

SOLUTION(a) The characteristic polynomial of the coefficient matrix A in (6.4.8) is∣∣∣∣ 2− λ 4
4 2− λ

∣∣∣∣ = (λ− 2)2 − 16

= (λ− 2− 4)(λ− 2+ 4)
= (λ− 6)(λ+ 2).
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Hence, λ1 = 6 and λ2 = −2 are eigenvalues of A. To obtain the eigenvectors, we must
solve the system [

2− λ 4
4 2− λ

] [
x1
x2

]
=

[
0
0

]
(6.4.10)

with λ = 6 and λ = −2. Setting λ = 6 in (6.4.10) yields[
−4 4
4 −4

] [
x1
x2

]
=

[
0
0

]
,

which implies that x1 = x2. Taking x2 = 1 yields the eigenvector

x1 =

[
1
1

]
,

so

y1 =

[
1
1

]
e6t

is a solution of (6.4.8). Setting λ = −2 in (6.4.10) yields[
4 4
4 4

] [
x1
x2

]
=

[
0
0

]
,

which implies that x1 = −x2. Taking x2 = 1 yields the eigenvector

x2 =

[
−1
1

]
,

so

y2 =

[
−1
1

]
e−2t

is a solution of (6.4.8). From Theorem 6.4.1, the general solution of (6.4.8) is

y = c1y1 + c2y2 = c1

[
1
1

]
e6t + c2

[
−1
1

]
e−2t. (6.4.11)

SOLUTION(b) To satisfy the initial condition in (6.4.9), we must choose c1 and c2 in
(6.4.11) so that

c1

[
1
1

]
+ c2

[
−1
1

]
=

[
5

−1

]
.

This is equivalent to the system

c1 − c2 = 5
c1 + c2 = −1,
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so c1 = 2, c2 = −3. Therefore the solution of (6.4.9) is

y = 2
[
1
1

]
e6t − 3

[
−1
1

]
e−2t,

or, in terms of components,

y1 = 2e6t + 3e−2t, y2 = 2e6t − 3e−2t.

Example 6.4.2

(a) Find the general solution of

y ′ =

 3 −1 −1
−2 3 2
4 −1 −2

 y. (6.4.12)

(b) Solve the initial value problem

y ′ =

 3 −1 −1
−2 3 2
4 −1 −2

 y, y(0) =

 2
−1
8

 . (6.4.13)

SOLUTION(a) The characteristic polynomial of the coefficient matrix A in (6.4.12) is∣∣∣∣∣∣
3− λ −1 −1
−2 3− λ 2
4 −1 −2− λ

∣∣∣∣∣∣ = −(λ− 2)(λ− 3)(λ+ 1).

Hence, the eigenvalues of A are λ1 = 2, λ2 = 3, and λ3 = −1. To find the eigenvectors,
we must solve the system 3− λ −1 −1

−2 3− λ 2
4 −1 −2− λ

 x1
x2
x3

 =

 0
0
0

 (6.4.14)

with λ = 2, 3, −1. With λ = 2, the augmented matrix of (6.4.14) is
1 −1 −1

... 0

−2 1 2
... 0

4 −1 −4
... 0

 ,

which is row equivalent to 
1 0 −1

... 0

0 1 0
... 0

0 0 0
... 0

 .
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Hence, x1 = x3 and x2 = 0. Taking x3 = 1 yields

y1 =

 1
0
1

 e2t
as a solution of (6.4.12). With λ = 3, the augmented matrix of (6.4.14) is

0 −1 −1
... 0

−2 0 2
... 0

4 −1 −5
... 0

 ,

which is row equivalent to 
1 0 −1

... 0

0 1 1
... 0

0 0 0
... 0

 .

Hence, x1 = x3 and x2 = −x3. Taking x3 = 1 yields

y2 =

 1
−1
1

 e3t
as a solution of (6.4.12). With λ = −1, the augmented matrix of (6.4.14) is

4 −1 −1
... 0

−2 4 2
... 0

4 −1 −1
... 0

 ,

which is row equivalent to 
1 0 −1

7
... 0

0 1 3
7

... 0

0 0 0
... 0

 .

Hence, x1 = x3/7 and x2 = −3x3/7. Taking x3 = 7 yields

y3 =

 1
−3
7

 e−t
as a solution of (6.4.12). By Theorem 6.4.1, the general solution of (6.4.12) is

y = c1

 1
0
1

 e2t + c2
 1

−1
1

 e3t + c3
 1

−3
7

 e−t,
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which can also be written as

y =

 e2t e3t e−t

0 −e3t −3e−t

e2t e3t 7e−t

 c1c2
c3

 . (6.4.15)

SOLUTION(b) To satisfy the initial condition in (6.4.13) we must choose c1, c2, c3 in
(6.4.15) so that  1 1 1

0 −1 −3
1 1 7

 c1c2
c3

 =

 2
−1
8

 .

Solving this system yields c1 = 3, c2 = −2, c3 = 1. Hence, the solution of (6.4.13) is

y =

 e2t e3t e−t

0 −e3t −3e−t

e2t e3t 7e−t

 3
−2
1


= 3

 1
0
1

 e2t − 2

 1
−1
1

 e3t +
 1

−3
7

 e−t.
Example 6.4.3 Find the general solution of

y ′ =

 −3 2 2
2 −3 2
2 2 −3

 y. (6.4.16)

Solution The characteristic polynomial of the coefficient matrix A in (6.4.16) is∣∣∣∣∣∣
−3− λ 2 2

2 −3− λ 2
2 2 −3− λ

∣∣∣∣∣∣ = −(λ− 1)(λ+ 5)2.

Hence, λ1 = 1 is an eigenvalue of multiplicity 1, while λ2 = −5 is an eigenvalue of
multiplicity 2. Eigenvectors associated with λ1 = 1 are solutions of the system with
augmented matrix 

−4 2 2
... 0

2 −4 2
... 0

2 2 −4
... 0

 ,

which is row equivalent to 
1 0 −1

... 0

0 1 −1
... 0

0 0 0
... 0

 .
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Hence, x1 = x2 = x3, and we choose x3 = 1 to obtain the solution

y1 =

 1
1
1

 et (6.4.17)

of (6.4.16). Eigenvectors associated with λ2 = −5 are solutions of the system with
augmented matrix 

2 2 2
... 0

2 2 2
... 0

2 2 2
... 0

 .

Hence, the components of these eigenvectors need only satisfy the single condition

x1 + x2 + x3 = 0.

Since there’s only one equation here, we can choose x2 and x3 arbitrarily. We obtain one
eigenvector by choosing x2 = 0 and x3 = 1, and another by choosing x2 = 1 and x3 = 0.
In both cases x1 = −1. Therefore −1

0
1

 and

 −1
1
0


are linearly independent eigenvectors associated with λ2 = −5, and the corresponding
solutions of (6.4.16) are

y2 =

 −1
0
1

 e−5t and y3 =

 −1
1
0

 e−5t.

Because of this and (6.4.17), Theorem 6.4.1 implies that the general solution of (6.4.16) is

y = c1

 1
1
1

 et + c2
 −1

0
1

 e−5t + c3

 −1
1
0

 e−5t.

Geometric Properties of Solutions when n = 2

We’ll now consider the geometric properties of solutions of a 2× 2 constant coefficient
system [

y ′1
y ′2

]
=

[
a11 a12
a21 a22

] [
y1
y2

]
. (6.4.18)

It is convenient to think of a “y1-y2 plane," where a point is identified by rectangular

coordinates (y1,y2). If y =

[
y1
y2

]
is a non-constant solution of (6.4.18), then the point
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(y1(t),y2(t)) moves along a curveC in the y1-y2 plane as t varies from −∞ to∞. We call
C the trajectory of y. (We also say thatC is a trajectory of the system (6.4.18).) I’s important
to note that C is the trajectory of infinitely many solutions of (6.4.18), since if τ is any real
number, then y(t− τ) is a solution of (6.4.18) (Exercise 28(b)), and (y1(t− τ),y2(t− τ))
also moves along C as t varies from −∞ to∞. Moreover, Exercise 28(c) implies that
distinct trajectories of (6.4.18) can’t intersect, and that two solutions y1 and y2 of (6.4.18)
have the same trajectory if and only if y2(t) = y1(t− τ) for some τ.

From Exercise 28(a), a trajectory of a nontrivial solution of (6.4.18) can’t contain (0, 0),
which we define to be the trajectory of the trivial solution y ≡ 0. More generally,

if y =

[
k1
k2

]
6= 0 is a constant solution of (6.4.18) (which could occur if zero is an

eigenvalue of the matrix of (6.4.18)), we define the trajectory of y to be the single point
(k1,k2).

To be specific, this is the question: What do the trajectories look like, and how are they
traversed? In this section we’ll answer this question, assuming that the matrix

A =

[
a11 a12
a21 a22

]
of (6.4.18) has real eigenvalues λ1 and λ2 with associated linearly independent eigenvec-
tors x1 and x2. Then the general solution of (6.4.18) is

y = c1x1e
λ1t + c2x2e

λ2t. (6.4.19)

We’ll consider other situations in the next two sections.
We leave it to you (Exercise 35) to classify the trajectories of (6.4.18) if zero is an

eigenvalue of A. We’ll confine our attention here to the case where both eigenvalues are
nonzero. In this case the simplest situation is where λ1 = λ2 6= 0, so (6.4.19) becomes

y = (c1x1 + c2x2)e
λ1t.

Since x1 and x2 are linearly independent, an arbitrary vector x can be written as x =
c1x1 + c2x2. Therefore the general solution of (6.4.18) can be written as y = xeλ1t where
x is an arbitrary 2-vector, and the trajectories of nontrivial solutions of (6.4.18) are half-
lines through (but not including) the origin. The direction of motion is away from the
origin if λ1 > 0 (Figure 6.1), toward it if λ1 < 0 (Figure 6.2). (In these and the next figures
an arrow through a point indicates the direction of motion along the trajectory through
the point.)

Figure 6.1 Trajectories of a 2× 2 system
with a repeated positive eigenvalue

Figure 6.2 Trajectories of a 2× 2 system
with a repeated negative eigenvalue

Now suppose λ2 > λ1, and let L1 and L2 denote lines through the origin parallel to x1
and x2, respectively. By a half-line of L1 (or L2), we mean either of the rays obtained by
removing the origin from L1 (or L2).
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Letting c2 = 0 in (6.4.19) yields y = c1x1e
λ1t. If c1 6= 0, the trajectory defined by this

solution is a half-line of L1. The direction of motion is away from the origin if λ1 > 0,
toward the origin if λ1 < 0. Similarly, the trajectory of y = c2x2e

λ2t with c2 6= 0 is a
half-line of L2.

Henceforth, we assume that c1 and c2 in (6.4.19) are both nonzero. In this case, the
trajectory of (6.4.19) can’t intersect L1 or L2, since every point on these lines is on the
trajectory of a solution for which either c1 = 0 or c2 = 0. (Remember: distinct trajectories
can’t intersect!). Therefore the trajectory of (6.4.19) must lie entirely in one of the four
open sectors bounded by L1 and L2, but do not any point on L1 or L2. Since the initial
point (y1(0),y2(0)) defined by

y(0) = c1x1 + c2x2

is on the trajectory, we can determine which sector contains the trajectory from the signs
of c1 and c2, as shown in Figure 6.3.

The direction of y(t) in (6.4.19) is the same as that of

e−λ2ty(t) = c1x1e
−(λ2−λ1)t + c2x2 (6.4.20)

and of
e−λ1ty(t) = c1x1 + c2x2e

(λ2−λ1)t. (6.4.21)

Since the right side of (6.4.20) approaches c2x2 as t→∞, the trajectory is asymptotically
parallel to L2 as t→∞. Since the right side of (6.4.21) approaches c1x1 as t→ −∞, the
trajectory is asymptotically parallel to L1 as t→ −∞.

The shape and direction of traversal of the trajectory of (6.4.19) depend upon whether
λ1 and λ2 are both positive, both negative, or of opposite signs. We’ll now analyze these
three cases.

Henceforth ‖u‖ denote the length of the vector u.
Figure 6.3 Four open sectors bounded by L1

and L2

Figure 6.4 Two positive eigenvalues; motion
away from origin

Case 1: λ2 > λ1 > 0

Figure 6.4 shows some typical trajectories. In this case, limt→−∞ ‖y(t)‖ = 0, so the trajec-
tory is not only asymptotically parallel to L1 as t→ −∞, but is actually asymptotically
tangent to L1 at the origin. On the other hand, limt→∞ ‖y(t)‖ =∞ and

lim
t→∞

∥∥y(t) − c2x2e
λ2t
∥∥ = lim

t→∞ ‖c1x1e
λ1t‖ =∞,

so, although the trajectory is asymptotically parallel to L2 as t → ∞, it’s not asymp-
totically tangent to L2. The direction of motion along each trajectory is away from the
origin.

Case 2: 0 > λ2 > λ1
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Figure 6.5 shows some typical trajectories. In this case, limt→∞ ‖y(t)‖ = 0, so the
trajectory is asymptotically tangent to L2 at the origin as t → ∞. On the other hand,
limt→−∞ ‖y(t)‖ =∞ and

lim
t→−∞

∥∥y(t) − c1x1e
λ1t
∥∥ = lim

t→−∞ ‖c2x2e
λ2t‖ =∞,

so, although the trajectory is asymptotically parallel to L1 as t→ −∞, it’s not asymptoti-
cally tangent to it. The direction of motion along each trajectory is toward the origin.

Figure 6.5 Two negative eigenvalues;
motion toward the origin Figure 6.6 Eigenvalues of different signs

Case 3: λ2 > 0 > λ1

Figure 6.6 shows some typical trajectories. In this case,

lim
t→∞ ‖y(t)‖ =∞ and lim

t→∞
∥∥y(t) − c2x2e

λ2t
∥∥ = lim

t→∞ ‖c1x1e
λ1t‖ = 0,

so the trajectory is asymptotically tangent to L2 as t→∞. Similarly,

lim
t→−∞ ‖y(t)‖ =∞ and lim

t→−∞
∥∥y(t) − c1x1e

λ1t
∥∥ = lim

t→−∞ ‖c2x2e
λ2t‖ = 0,

so the trajectory is asymptotically tangent to L1 as t→ −∞. The direction of motion is
toward the origin on L1 and away from the origin on L2. The direction of motion along
any other trajectory is away from L1, toward L2.

6.4 Exercises

In Exercises 1–15 find the general solution.

1. y ′ =
[
1 2
2 1

]
y

2. y ′ =
1
4

[
−5 3
3 −5

]
y

3. y ′ =
1
5

[
−4 3
−2 −11

]
y 4. y ′ =

[
−1 −4
−1 −1

]
y

5. y ′ =
[

2 −4
−1 −1

]
y 6. y ′ =

[
4 −3
2 −1

]
y

7. y ′ =
[
−6 −3
1 −2

]
y

8. y ′ =

 1 −1 −2
1 −2 −3

−4 1 −1

 y
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9. y ′ =

 −6 −4 −8
−4 0 −4
−8 −4 −6

 y 10. y ′ =

 3 5 8
1 −1 −2

−1 −1 −1

 y

11. y ′ =

 1 −1 2
12 −4 10
−6 1 −7

 y 12. y ′ =

 4 −1 −4
4 −3 −2
1 −1 −1

 y

13. y ′ =

 −2 2 −6
2 6 2

−2 −2 2

 y 14. y ′ =

 3 2 −2
−2 7 −2
−10 10 −5

 y

15. y ′ =

 3 1 −1
3 5 1

−6 2 4

 y

In Exercises 16–27 solve the initial value problem.

16. y ′ =
[
−7 4
−6 7

]
y, y(0) =

[
2
−4

]
17. y ′ =

1
6

[
7 2

−2 2

]
y, y(0) =

[
0
−3

]
18. y ′ =

[
21 −12
24 −15

]
y, y(0) =

[
5
3

]
19. y ′ =

[
−7 4
−6 7

]
y, y(0) =

[
−1
7

]

20. y ′ =
1
6

 1 2 0
4 −1 0
0 0 3

 y, y(0) =

 4
7
1


21. y ′ =

1
3

 2 −2 3
−4 4 3
2 1 0

 y, y(0) =

 1
1
5


22. y ′ =

 6 −3 −8
2 1 −2
3 −3 −5

 y, y(0) =

 0
−1
−1


23. y ′ =

1
3

 2 4 −7
1 5 −5

−4 4 −1

 y, y(0) =

 4
1
3


24. y ′ =

 3 0 1
11 −2 7
1 0 3

 y, y(0) =

 2
7
6


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25. y ′ =

 −2 −5 −1
−4 −1 1
4 5 3

 y, y(0) =

 8
−10
−4


26. y ′ =

 3 −1 0
4 −2 0
4 −4 2

 y, y(0) =

 7
10
2


27. y ′ =

 −2 2 6
2 6 2

−2 −2 2

 y, y(0) =

 6
−10

7


28. Let A be an n× n constant matrix. Then Theorem 6.2.1 implies that the solutions

of
y ′ = Ay (A)

are all defined on (−∞,∞).

(a) Use Theorem 6.2.1 to show that the only solution of (A) that can ever equal
the zero vector is y ≡ 0.

(b) Suppose y1 is a solution of (A) and y2 is defined by y2(t) = y1(t− τ), where τ
is an arbitrary real number. Show that y2 is also a solution of (A).

(c) Suppose y1 and y2 are solutions of (A) and there are real numbers t1 and
t2 such that y1(t1) = y2(t2). Show that y2(t) = y1(t − τ) for all t, where
τ = t2 − t1. HINT: Show that y1(t− τ) and y2(t) are solutions of the same initial
value problem for (A), and apply the uniqueness assertion of Theorem 6.2.1.

In Exercises 29- 34 describe and graph trajectories of the given system.

29. C/G y ′ =
[
1 1
1 −1

]
y

30. C/G y ′ =
[
−4 3
−2 −11

]
y

31. C/G y ′ =
[

9 −3
−1 11

]
y 32. C/G y ′ =

[
−1 −10
−5 4

]
y

33. C/G y ′ =
[
5 −4
1 10

]
y 34. C/G y ′ =

[
−7 1
3 −5

]
y

35. Suppose the eigenvalues of the 2 × 2 matrix A are λ = 0 and µ 6= 0, with corre-
sponding eigenvectors x1 and x2. Let L1 be the line through the origin parallel to
x1.

(a) Show that every point on L1 is the trajectory of a constant solution of y ′ = Ay.
(b) Show that the trajectories of nonconstant solutions of y ′ = Ay are half-lines

parallel to x2 and on either side of L1, and that the direction of motion along
these trajectories is away from L1 if µ > 0, or toward L1 if µ < 0.
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The matrices of the systems in Exercises 36-41 are singular. Describe and graph the trajectories
of nonconstant solutions of the given systems.

36. C/G y ′ =
[
−1 1
1 −1

]
y

37. C/G y ′ =
[
−1 −3
2 6

]
y

38. C/G y ′ =
[

1 −3
−1 3

]
y 39. C/G y ′ =

[
1 −2

−1 2

]
y

40. C/G y ′ =
[
−4 −4
1 1

]
y 41. C/G y ′ =

[
3 −1

−3 1

]
y

42. L Let P = P(t) and Q = Q(t) be the populations of two species at time t, and
assume that each population would grow exponentially if the other didn’t exist;
that is, in the absence of competition,

P ′ = aP and Q ′ = bQ, (A)

where a and b are positive constants. One way to model the effect of competition
is to assume that the growth rate per individual of each population is reduced by
an amount proportional to the other population, so (A) is replaced by

P ′ = aP − αQ

Q ′ = −βP + bQ,

where α and β are positive constants. (Since negative population doesn’t make
sense, this system holds only while P and Q are both positive.) Now suppose
P(0) = P0 > 0 and Q(0) = Q0 > 0.

(a) For several choices of a, b, α, and β, verify experimentally (by graphing
trajectories of (A) in the P-Q plane) that there’s a constant ρ > 0 (depending
upon a, b, α, and β) with the following properties:

(i) If Q0 > ρP0, then P decreases monotonically to zero in finite time,
during which Q remains positive.

(ii) If Q0 < ρP0, then Q decreases monotonically to zero in finite time,
during which P remains positive.

(b) Conclude from (a) that exactly one of the species becomes extinct in finite
time if Q0 6= ρP0. Determine experimentally what happens if Q0 = ρP0.

(c) Confirm your experimental results and determine γ by expressing the eigen-
values and associated eigenvectors of

A =

[
a −α

−β b

]
in terms of a, b, α, and β, and applying the geometric arguments developed
at the end of this section.
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6.5 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS II

We saw in Section 10.4 that if an n× n constant matrix A has n real eigenvalues λ1, λ2,
. . . , λn (which need not be distinct) with associated linearly independent eigenvectors
x1, x2, . . . , xn, then the general solution of y ′ = Ay is

y = c1x1e
λ1t + c2x2e

λ2t + · · ·+ cnxneλnt.

In this section we consider the case where A has n real eigenvalues, but does not have
n linearly independent eigenvectors. It is shown in linear algebra that this occurs if
and only if A has at least one eigenvalue of multiplicity r > 1 such that the associated
eigenspace has dimension less than r. In this case A is said to be defective. Since it’s
beyond the scope of this book to give a complete analysis of systems with defective
coefficient matrices, we will restrict our attention to some commonly occurring special
cases.

Example 6.5.1 Show that the system

y ′ =
[
11 −25
4 −9

]
y (6.5.1)

does not have a fundamental set of solutions of the form {x1e
λ1t, x2e

λ2t}, where λ1 and
λ2 are eigenvalues of the coefficient matrix A of (6.5.1) and x1, and x2 are associated
linearly independent eigenvectors.

Solution The characteristic polynomial of A is∣∣∣∣ 11− λ −25
4 −9− λ

∣∣∣∣ = (λ− 11)(λ+ 9) + 100

= λ2 − 2λ+ 1 = (λ− 1)2.

Hence, λ = 1 is the only eigenvalue ofA. The augmented matrix of the system (A−I)x =
0 is  10 −25

... 0

4 −10
... 0

 ,

which is row equivalent to  1 −
5
2

... 0

0 0
... 0

 .

Hence, x1 = 5x2/2 where x2 is arbitrary. Therefore all eigenvectors of A are scalar multi-

ples of x1 =

[
5
2

]
, so A does not have a set of two linearly independent eigenvectors.
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From Example 6.5.1, we know that all scalar multiples of y1 =

[
5
2

]
et are solutions of

(6.5.1); however, to find the general solution we must find a second solution y2 such that
{y1, y2} is linearly independent. Based on your recollection of the procedure for solving
a constant coefficient scalar equation

ay ′′ + by ′ + cy = 0

in the case where the characteristic polynomial has a repeated root, you might expect to
obtain a second solution of (6.5.1) by multiplying the first solution by t. However, this

yields y2 =

[
5
2

]
tet, which doesn’t work, since

y ′2 =

[
5
2

]
(tet + et), while

[
11 −25
4 −9

]
y2 =

[
5
2

]
tet.

The next theorem shows what to do in this situation.

Theorem 6.5.1 Suppose the n× n matrix A has an eigenvalue λ1 of multiplicity > 2 and the
associated eigenspace has dimension 1; that is, all λ1-eigenvectors of A are scalar multiples of an
eigenvector x. Then there are infinitely many vectors u such that

(A− λ1I)u = x. (6.5.2)

Moreover, if u is any such vector then

y1 = xeλ1t and y2 = ueλ1t + xteλ1t (6.5.3)

are linearly independent solutions of y ′ = Ay.

A complete proof of this theorem is beyond the scope of this book. The difficulty is in
proving that there’s a vector u satisfying (6.5.2), since det(A− λ1I) = 0. We’ll take this
without proof and verify the other assertions of the theorem.

We already know that y1 in (6.5.3) is a solution of y ′ = Ay. To see that y2 is also a
solution, we compute

y ′2 −Ay2 = λ1ueλ1t + xeλ1t + λ1xteλ1t −Aueλ1t −Axteλ1t

= (λ1u + x −Au)eλ1t + (λ1x −Ax)teλ1t.

Since Ax = λ1x, this can be written as

y ′2 −Ay2 = −((A− λ1I)u − x) eλ1t,

and now (6.5.2) implies that y ′2 = Ay2.
To see that y1 and y2 are linearly independent, suppose c1 and c2 are constants such

that
c1y1 + c2y2 = c1xeλ1t + c2(ueλ1t + xteλ1t) = 0. (6.5.4)
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We must show that c1 = c2 = 0. Multiplying (6.5.4) by e−λ1t shows that

c1x + c2(u + xt) = 0. (6.5.5)

By differentiating this with respect to t, we see that c2x = 0, which implies c2 = 0,
because x 6= 0. Substituting c2 = 0 into (6.5.5) yields c1x = 0, which implies that c1 = 0,
again because x 6= 0

Example 6.5.2 Use Theorem 6.5.1 to find the general solution of the system

y ′ =
[
11 −25
4 −9

]
y (6.5.6)

considered in Example 6.5.1.

Solution In Example 6.5.1 we saw that λ1 = 1 is an eigenvalue of multiplicity 2 of the
coefficient matrix A in (6.5.6), and that all of the eigenvectors of A are multiples of

x =

[
5
2

]
.

Therefore

y1 =

[
5
2

]
et

is a solution of (6.5.6). From Theorem 6.5.1, a second solution is given by y2 = uet+xtet,
where (A− I)u = x. The augmented matrix of this system is 10 −25

... 5

4 −10
... 2

 ,

which is row equivalent to  1 −5
2

... 1
2

0 0
... 0

.
Therefore the components of u must satisfy

u1 −
5
2
u2 =

1
2
,

where u2 is arbitrary. We choose u2 = 0, so that u1 = 1/2 and

u =

[ 1
2
0

]
.

Thus,

y2 =

[
1
0

]
et

2
+

[
5
2

]
tet.
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Since y1 and y2 are linearly independent by Theorem 6.5.1, they form a fundamental set
of solutions of (6.5.6). Therefore the general solution of (6.5.6) is

y = c1

[
5
2

]
et + c2

([
1
0

]
et

2
+

[
5
2

]
tet
)
.

Note that choosing the arbitrary constant u2 to be nonzero is equivalent to adding a
scalar multiple of y1 to the second solution y2 (Exercise 33).

Example 6.5.3 Find the general solution of

y ′ =

 3 4 −10
2 1 −2
2 2 −5

 y. (6.5.7)

Solution The characteristic polynomial of the coefficient matrix A in (6.5.7) is∣∣∣∣∣∣
3− λ 4 −10
2 1− λ −2
2 2 −5− λ

∣∣∣∣∣∣ = −(λ− 1)(λ+ 1)2.

Hence, the eigenvalues are λ1 = 1 with multiplicity 1 and λ2 = −1 with multiplicity 2.
Eigenvectors associated with λ1 = 1 must satisfy (A− I)x = 0. The augmented matrix

of this system is 
2 4 −10

... 0

2 0 −2
... 0

2 2 −6
... 0

 ,

which is row equivalent to 
1 0 −1

... 0

0 1 −2
... 0

0 0 0
... 0

 .

Hence, x1 = x3 and x2 = 2x3, where x3 is arbitrary. Choosing x3 = 1 yields the
eigenvector

x1 =

 1
2
1

 .

Therefore

y1 =

 1
2
1

 et
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is a solution of (6.5.7).
Eigenvectors associated with λ2 = −1 satisfy (A+ I)x = 0. The augmented matrix of

this system is 
4 4 −10

... 0

2 2 −2
... 0

2 2 −4
... 0

 ,

which is row equivalent to 
1 1 0

... 0

0 0 1
... 0

0 0 0
... 0

 .

Hence, x3 = 0 and x1 = −x2, where x2 is arbitrary. Choosing x2 = 1 yields the
eigenvector

x2 =

 −1
1
0

 ,

so

y2 =

 −1
1
0

 e−t
is a solution of (6.5.7).

Since all the eigenvectors of A associated with λ2 = −1 are multiples of x2, we must
now use Theorem 6.5.1 to find a third solution of (6.5.7) in the form

y3 = ue−t +

 −1
1
0

 te−t, (6.5.8)

where u is a solution of (A+ I)u = x2. The augmented matrix of this system is
4 4 −10

... −1

2 2 −2
... 1

2 2 −4
... 0

 ,

which is row equivalent to 
1 1 0

... 1

0 0 1
... 1

2

0 0 0
... 0

 .
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Hence, u3 = 1/2 and u1 = 1− u2, where u2 is arbitrary. Choosing u2 = 0 yields

u =

 1
0
1
2

 ,

and substituting this into (6.5.8) yields the solution

y3 =

 2
0
1

 e−t
2

+

 −1
1
0

 te−t
of (6.5.7).

Since the Wronskian of {y1, y2, y3} at t = 0 is∣∣∣∣∣∣
1 −1 1
2 1 0
1 0 1

2

∣∣∣∣∣∣ = 1
2
,

{y1, y2, y3} is a fundamental set of solutions of (6.5.7). Therefore the general solution of
(6.5.7) is

y = c1

 1
2
1

 et + c2
 −1

1
0

 e−t + c3
 2

0
1

 e−t
2

+

 −1
1
0

 te−t
 .

Theorem 6.5.2 Suppose the n× n matrix A has an eigenvalue λ1 of multiplicity > 3 and the
associated eigenspace is one–dimensional; that is, all eigenvectors associated with λ1 are scalar
multiples of the eigenvector x. Then there are infinitely many vectors u such that

(A− λ1I)u = x, (6.5.9)

and, if u is any such vector, there are infinitely many vectors v such that

(A− λ1I)v = u. (6.5.10)

If u satisfies (6.5.9) and v satisfies (6.5.10), then

y1 = xeλ1t,
y2 = ueλ1t + xteλ1t, and

y3 = veλ1t + uteλ1t + x
t2eλ1t

2

are linearly independent solutions of y ′ = Ay.

Again, it’s beyond the scope of this book to prove that there are vectors u and v that
satisfy (6.5.9) and (6.5.10). Theorem 6.5.1 implies that y1 and y2 are solutions of y ′ = Ay.
We leave the rest of the proof to you (Exercise 34).
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Example 6.5.4 Use Theorem 6.5.2 to find the general solution of

y ′ =

 1 1 1
1 3 −1
0 2 2

 y. (6.5.11)

Solution The characteristic polynomial of the coefficient matrix A in (6.5.11) is∣∣∣∣∣∣
1− λ 1 1
1 3− λ −1
0 2 2− λ

∣∣∣∣∣∣ = −(λ− 2)3.

Hence, λ1 = 2 is an eigenvalue of multiplicity 3. The associated eigenvectors satisfy
(A− 2I)x = 0. The augmented matrix of this system is

−1 1 1
... 0

1 1 −1
... 0

0 2 0
... 0

 ,

which is row equivalent to 
1 0 −1

... 0

0 1 0
... 0

0 0 0
... 0

 .

Hence, x1 = x3 and x2 = 0, so the eigenvectors are all scalar multiples of

x1 =

 1
0
1

 .

Therefore

y1 =

 1
0
1

 e2t
is a solution of (6.5.11).

We now find a second solution of (6.5.11) in the form

y2 = ue2t +

 1
0
1

 te2t,
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where u satisfies (A− 2I)u = x1. The augmented matrix of this system is
−1 1 1

... 1

1 1 −1
... 0

0 2 0
... 1

 ,

which is row equivalent to 
1 0 −1

... −1
2

0 1 0
... 1

2

0 0 0
... 0

 .

Letting u3 = 0 yields u1 = −1/2 and u2 = 1/2; hence,

u =
1
2

 −1
1
0


and

y2 =

 −1
1
0

 e2t
2

+

 1
0
1

 te2t
is a solution of (6.5.11).

We now find a third solution of (6.5.11) in the form

y3 = ve2t +

 −1
1
0

 te2t
2

+

 1
0
1

 t2e2t
2

where v satisfies (A− 2I)v = u. The augmented matrix of this system is
−1 1 1

... −1
2

1 1 −1
... 1

2

0 2 0
... 0

 ,

which is row equivalent to 
1 0 −1

... 1
2

0 1 0
... 0

0 0 0
... 0

 .

Letting v3 = 0 yields v1 = 1/2 and v2 = 0; hence,

v =
1
2

 1
0
0

 .
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Therefore

y3 =

 1
0
0

 e2t
2

+

 −1
1
0

 te2t
2

+

 1
0
1

 t2e2t
2

is a solution of (6.5.11). Since y1, y2, and y3 are linearly independent by Theorem 6.5.2,
they form a fundamental set of solutions of (6.5.11). Therefore the general solution of
(6.5.11) is

y = c1

 1
0
1

 e2t + c2
 −1

1
0

 e2t
2

+

 1
0
1

 te2t


+c3

 1
0
0

 e2t
2

+

 −1
1
0

 te2t
2

+

 1
0
1

 t2e2t
2

.

Theorem 6.5.3 Suppose the n× n matrix A has an eigenvalue λ1 of multiplicity > 3 and the
associated eigenspace is two–dimensional; that is, all eigenvectors of A associated with λ1 are
linear combinations of two linearly independent eigenvectors x1 and x2. Then there are constants
α and β (not both zero) such that if

x3 = αx1 + βx2, (6.5.12)

then there are infinitely many vectors u such that

(A− λ1I)u = x3. (6.5.13)

If u satisfies (6.5.13), then

y1 = x1e
λ1t,

y2 = x2e
λ1t, and

y3 = ueλ1t + x3te
λ1t, (6.5.14)

are linearly independent solutions of y ′ = Ay.

We omit the proof of this theorem.
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Example 6.5.5 Use Theorem 6.5.3 to find the general solution of

y ′ =

 0 0 1
−1 1 1
−1 0 2

 y. (6.5.15)

Solution The characteristic polynomial of the coefficient matrix A in (6.5.15) is∣∣∣∣∣∣
−λ 0 1
−1 1− λ 1
−1 0 2− λ

∣∣∣∣∣∣ = −(λ− 1)3.

Hence, λ1 = 1 is an eigenvalue of multiplicity 3. The associated eigenvectors satisfy
(A− I)x = 0. The augmented matrix of this system is

−1 0 1
... 0

−1 0 1
... 0

−1 0 1
... 0

 ,

which is row equivalent to 
1 0 −1

... 0

0 0 0
... 0

0 0 0
... 0

 .

Hence, x1 = x3 and x2 is arbitrary, so the eigenvectors are of the form

x1 =

 x3
x2
x3

 = x3

 1
0
1

+ x2

 0
1
0

 .

Therefore the vectors

x1 =

 1
0
1

 and x2 =

 0
1
0

 (6.5.16)

form a basis for the eigenspace, and

y1 =

 1
0
1

 et and y2 =

 0
1
0

 et
are linearly independent solutions of (6.5.15).

To find a third linearly independent solution of (6.5.15), we must find constants α and
β (not both zero) such that the system

(A− I)u = αx1 + βx2 (6.5.17)
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has a solution u. The augmented matrix of this system is
−1 0 1

... α

−1 0 1
... β

−1 0 1
... α

 ,

which is row equivalent to 
1 0 −1

... −α

0 0 0
... β− α

0 0 0
... 0

 . (6.5.18)

Therefore (6.5.17) has a solution if and only if β = α, where α is arbitrary. If α = β = 1
then (6.5.12) and (6.5.16) yield

x3 = x1 + x2 =

 1
0
1

+

 0
1
0

 =

 1
1
1

 ,

and the augmented matrix (6.5.18) becomes
1 0 −1

... −1

0 0 0
... 0

0 0 0
... 0

 .

This implies that u1 = −1 + u3, while u2 and u3 are arbitrary. Choosing u2 = u3 = 0
yields

u =

 −1
0
0

 .

Therefore (6.5.14) implies that

y3 = uet + x3te
t =

 −1
0
0

 et +
 1

1
1

 tet
is a solution of (6.5.15). Since y1, y2, and y3 are linearly independent by Theorem 6.5.3,
they form a fundamental set of solutions for (6.5.15). Therefore the general solution of
(6.5.15) is

y = c1

 1
0
1

 et + c2
 0

1
0

 et + c3
 −1

0
0

 et +
 1

1
1

 tet
 .
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Geometric Properties of Solutions when n = 2

We’ll now consider the geometric properties of solutions of a 2× 2 constant coefficient
system [

y ′1
y ′2

]
=

[
a11 a12
a21 a22

] [
y1
y2

]
(6.5.19)

under the assumptions of this section; that is, when the matrix

A =

[
a11 a12
a21 a22

]
has a repeated eigenvalue λ1 and the associated eigenspace is one-dimensional. In this
case we know from Theorem 6.5.1 that the general solution of (6.5.19) is

y = c1xeλ1t + c2(ueλ1t + xteλ1t), (6.5.20)

where x is an eigenvector of A and u is any one of the infinitely many solutions of

(A− λ1I)u = x. (6.5.21)

We assume that λ1 6= 0.

Figure 6.1 Positive and negative half-planes

Let L denote the line through the origin parallel to x. By a half-line of L we mean
either of the rays obtained by removing the origin from L. Eqn. (6.5.20) is a parametric
equation of the half-line of L in the direction of x if c1 > 0, or of the half-line of L in the
direction of −x if c1 < 0. The origin is the trajectory of the trivial solution y ≡ 0.

Henceforth, we assume that c2 6= 0. In this case, the trajectory of (6.5.20) can’t intersect
L, since every point of L is on a trajectory obtained by setting c2 = 0. Therefore the
trajectory of (6.5.20) must lie entirely in one of the open half-planes bounded by L,
but does not contain any point on L. Since the initial point (y1(0),y2(0)) defined by
y(0) = c1x1 + c2u is on the trajectory, we can determine which half-plane contains the
trajectory from the sign of c2, as shown in Figure 340. For convenience we’ll call the
half-plane where c2 > 0 the positive half-plane. Similarly, the-half plane where c2 < 0 is
the negative half-plane. You should convince yourself (Exercise 35) that even though there
are infinitely many vectors u that satisfy (6.5.21), they all define the same positive and
negative half-planes. In the figures simply regard u as an arrow pointing to the positive
half-plane, since wen’t attempted to give u its proper length or direction in comparison
with x. For our purposes here, only the relative orientation of x and u is important; that
is, whether the positive half-plane is to the right of an observer facing the direction of x
(as in Figures 6.2 and 6.5), or to the left of the observer (as in Figures 6.3 and 6.4).

Multiplying (6.5.20) by e−λ1t yields

e−λ1ty(t) = c1x + c2u + c2tx.

Since the last term on the right is dominant when |t| is large, this provides the following
information on the direction of y(t):
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(a) Along trajectories in the positive half-plane (c2 > 0), the direction of y(t) approaches
the direction of x as t→∞ and the direction of −x as t→ −∞.

(b) Along trajectories in the negative half-plane (c2 < 0), the direction of y(t) ap-
proaches the direction of −x as t→∞ and the direction of x as t→ −∞.

Since
lim
t→∞ ‖y(t)‖ =∞ and lim

t→−∞ y(t) = 0 if λ1 > 0,

or
lim
t−→∞ ‖y(t)‖ =∞ and lim

t→∞ y(t) = 0 if λ1 < 0,

there are four possible patterns for the trajectories of (6.5.19), depending upon the signs
of c2 and λ1. Figures 6.2-6.5 illustrate these patterns, and reveal the following principle:

If λ1 and c2 have the same sign then the direction of the traectory approaches the direction of
−x as ‖y‖ → 0 and the direction of x as ‖y‖ → ∞. If λ1 and c2 have opposite signs then the
direction of the trajectory approaches the direction of x as ‖y‖ → 0 and the direction of −x as
‖y‖ →∞.
Figure 6.2 Positive eigenvalue; motion away

from the origin
Figure 6.3 Positive eigenvalue; motion away

from the origin

Figure 6.4 Negative eigenvalue; motion
toward the origin

Figure 6.5 Negative eigenvalue; motion
toward the origin
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6.5 Exercises

In Exercises 1–12 find the general solution.

1. y ′ =
[

3 4
−1 7

]
y

2. y ′ =
[
0 −1
1 −2

]
y

3. y ′ =
[
−7 4
−1 −11

]
y 4. y ′ =

[
3 1

−1 1

]
y

5. y ′ =
[

4 12
−3 −8

]
y 6. y ′ =

[
−10 9
−4 2

]
y

7. y ′ =
[
−13 16
−9 11

]
y

8. y ′ =

 0 2 1
−4 6 1
0 4 2

 y

9. y ′ =
1
3

 1 1 −3
−4 −4 3
−2 1 0

 y 10. y ′ =

 −1 1 −1
−2 0 2
−1 3 −1

 y

11. y ′ =

 4 −2 −2
−2 3 −1
2 −1 3

 y 12. y ′ =

 6 −5 3
2 −1 3
2 1 1

 y

In Exercises 13–23 solve the initial value problem.

13. y ′ =
[
−11 8
−2 −3

]
y, y(0) =

[
6
2

]
14. y ′ =

[
15 −9
16 −9

]
y, y(0) =

[
5
8

]
15. y ′ =

[
−3 −4
1 −7

]
y, y(0) =

[
2
3

]
16. y ′ =

[
−7 24
−6 17

]
y, y(0) =

[
3
1

]
17. y ′ =

[
−7 3
−3 −1

]
y, y(0) =

[
0
2

]

18. y ′ =

 −1 1 0
1 −1 −2

−1 −1 −1

 y, y(0) =

 6
5

−7


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19. y ′ =

 −2 2 1
−2 2 1
−3 3 2

 y, y(0) =

 −6
−2
0


20. y ′ =

 −7 −4 4
−1 0 1
−9 −5 6

 y, y(0) =

 −6
9

−1


21. y ′ =

 −1 −4 −1
3 6 1

−3 −2 3

 y, y(0) =

 −2
1
3


22. y ′ =

 4 −8 −4
−3 −1 −3
1 −1 9

 y, y(0) =

 −4
1

−3


23. y ′ =

 −5 −1 11
−7 1 13
−4 0 8

 y, y(0) =

 0
2
2


The coefficient matrices in Exercises 24–32 have eigenvalues of multiplicity 3. Find the general
solution.

24. y ′ =

 5 −1 1
−1 9 −3
−2 2 4

 y
25. y ′ =

 1 10 −12
2 2 3
2 −1 6

 y

26. y ′ =

 −6 −4 −4
2 −1 1
2 3 1

 y 27. y ′ =

 0 2 −2
−1 5 −3
1 1 1

 y

28. y ′ =

 −2 −12 10
2 −24 11
2 −24 8

 y 29. y ′ =

 −1 −12 8
1 −9 4
1 −6 1

 y

30. y ′ =

 −4 0 −1
−1 −3 −1
1 0 −2

 y 31. y ′ =

 −3 −3 4
4 5 −8
2 3 −5

 y

32. y ′ =

 −3 −1 0
1 −1 0

−1 −1 −2

y

33. Under the assumptions of Theorem 6.5.1, suppose u and û are vectors such that

(A− λ1I)u = x and (A− λ1I)û = x,
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and let
y2 = ueλ1t + xteλ1t and ŷ2 = ûeλ1t + xteλ1t.

Show that y2 − ŷ2 is a scalar multiple of y1 = xeλ1t.

34. Under the assumptions of Theorem 6.5.2, let

y1 = xeλ1t,
y2 = ueλ1t + xteλ1t, and

y3 = veλ1t + uteλ1t + x
t2eλ1t

2
.

Complete the proof of Theorem 6.5.2 by showing that y3 is a solution of y ′ = Ay
and that {y1, y2, y3} is linearly independent.

35. Suppose the matrix

A =

[
a11 a12
a21 a22

]
has a repeated eigenvalue λ1 and the associated eigenspace is one-dimensional. Let
x be a λ1-eigenvector of A. Show that if (A− λ1I)u1 = x and (A− λ1I)u2 = x, then
u2−u1 is parallel to x. Conclude from this that all vectors u such that (A−λ1I)u = x
define the same positive and negative half-planes with respect to the line L through
the origin parallel to x.

In Exercises 36- 45 plot trajectories of the given system.

36. C/G y ′ =
[
−3 −1
4 1

]
y

37. C/G y ′ =
[
2 −1
1 0

]
y

38. C/G y ′ =
[
−1 −3
3 5

]
y 39. C/G y ′ =

[
−5 3
−3 1

]
y

40. C/G y ′ =
[
−2 −3
3 4

]
y 41. C/G y ′ =

[
−4 −3
3 2

]
y

42. C/G y ′ =
[
0 −1
1 −2

]
y 43. C/G y ′ =

[
0 1

−1 2

]
y

44. C/G y ′ =
[
−2 1
−1 0

]
y 45. C/G y ′ =

[
0 −4
1 −4

]
y

6.6 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS III
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We now consider the system y ′ = Ay, whereA has a complex eigenvalue λ = α+iβwith
β 6= 0. We continue to assume that A has real entries, so the characteristic polynomial of
A has real coefficients. This implies that λ = α− iβ is also an eigenvalue of A.

An eigenvector x of A associated with λ = α+ iβwill have complex entries, so we’ll
write

x = u + iv

where u and v have real entries; that is, u and v are the real and imaginary parts of x.
Since Ax = λx,

A(u + iv) = (α+ iβ)(u + iv). (6.6.1)

Taking complex conjugates here and recalling that A has real entries yields

A(u − iv) = (α− iβ)(u − iv),

which shows that x = u − iv is an eigenvector associated with λ = α− iβ. The complex
conjugate eigenvalues λ and λ can be separately associated with linearly independent
solutions y ′ = Ay; however, we won’t pursue this approach, since solutions obtained in
this way turn out to be complex–valued. Instead, we’ll obtain solutions of y ′ = Ay in
the form

y = f1u + f2v (6.6.2)

where f1 and f2 are real–valued scalar functions. The next theorem shows how to do
this.

Theorem 6.6.1 Let A be an n × n matrix with real entries. Let λ = α + iβ (β 6= 0) be a
complex eigenvalue of A and let x = u + iv be an associated eigenvector, where u and v have
real components. Then u and v are both nonzero and

y1 = eαt(u cosβt− v sinβt) and y2 = eαt(u sinβt+ v cosβt),

which are the real and imaginary parts of

eαt(cosβt+ i sinβt)(u + iv), (6.6.3)

are linearly independent solutions of y ′ = Ay.

Proof A function of the form (6.6.2) is a solution of y ′ = Ay if and only if

f ′1u + f ′2v = f1Au + f2Av. (6.6.4)

Carrying out the multiplication indicated on the right side of (6.6.1) and collecting the
real and imaginary parts of the result yields

A(u + iv) = (αu − βv) + i(αv + βu).

Equating real and imaginary parts on the two sides of this equation yields

Au = αu − βv
Av = αv + βu.
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We leave it to you (Exercise 25) to show from this that u and v are both nonzero. Substi-
tuting from these equations into (6.6.4) yields

f ′1u + f ′2v = f1(αu − βv) + f2(αv + βu)
= (αf1 + βf2)u + (−βf1 + αf2)v.

This is true if

f ′1 = αf1 + βf2
f ′2 = −βf1 + αf2,

or, equivalently,
f ′1 − αf1 = βf2
f ′2 − αf2 = −βf1.

If we let f1 = g1e
αt and f2 = g2e

αt, where g1 and g2 are to be determined, then the last
two equations become

g ′1 = βg2
g ′2 = −βg1,

which implies that
g ′′1 = βg ′2 = −β2g1,

so
g ′′1 + β2g1 = 0.

The general solution of this equation is

g1 = c1 cosβt+ c2 sinβt.

Moreover, since g2 = g ′1/β,

g2 = −c1 sinβt+ c2 cosβt.

Multiplying g1 and g2 by eαt shows that

f1 = eαt( c1 cosβt+ c2 sinβt),
f2 = eαt(−c1 sinβt+ c2 cosβt).

Substituting these into (6.6.2) shows that

y = eαt [(c1 cosβt+ c2 sinβt)u + (−c1 sinβt+ c2 cosβt)v]
= c1e

αt(u cosβt− v sinβt) + c2eαt(u sinβt+ v cosβt) (6.6.5)

is a solution of y ′ = Ay for any choice of the constants c1 and c2. In particular, by first
taking c1 = 1 and c2 = 0 and then taking c1 = 0 and c2 = 1, we see that y1 and y2
are solutions of y ′ = Ay. We leave it to you to verify that they are, respectively, the
real and imaginary parts of (6.6.3) (Exercise 26), and that they are linearly independent
(Exercise 27).

Example 6.6.1 Find the general solution of

y ′ =
[
4 −5
5 −2

]
y. (6.6.6)
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Solution The characteristic polynomial of the coefficient matrix A in (6.6.6) is∣∣∣∣ 4− λ −5
5 −2− λ

∣∣∣∣ = (λ− 1)2 + 16.

Hence, λ = 1+4i is an eigenvalue ofA. The associated eigenvectors satisfy (A− (1+ 4i) I) x =
0. The augmented matrix of this system is 3− 4i −5

... 0

5 −3− 4i
... 0

 ,

which is row equivalent to  1 −3+4i
5

... 0

0 0
... 0

 .

Therefore x1 = (3+ 4i)x2/5. Taking x2 = 5 yields x1 = 3+ 4i, so

x =

[
3+ 4i

5

]
is an eigenvector. The real and imaginary parts of

et(cos 4t+ i sin 4t)
[
3+ 4i

5

]
are

y1 = et
[
3 cos 4t− 4 sin 4t

5 cos 4t

]
and y2 = et

[
3 sin 4t+ 4 cos 4t

5 sin 4t

]
,

which are linearly independent solutions of (6.6.6). The general solution of (6.6.6) is

y = c1e
t

[
3 cos 4t− 4 sin 4t

5 cos 4t

]
+ c2e

t

[
3 sin 4t+ 4 cos 4t

5 sin 4t

]
.

Example 6.6.2 Find the general solution of

y ′ =
[
−14 39
−6 16

]
y. (6.6.7)

Solution The characteristic polynomial of the coefficient matrix A in (6.6.7) is∣∣∣∣ −14− λ 39
−6 16− λ

∣∣∣∣ = (λ− 1)2 + 9.
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Hence, λ = 1+3i is an eigenvalue ofA. The associated eigenvectors satisfy (A− (1+ 3i)I) x =
0. The augmented augmented matrix of this system is −15− 3i 39

... 0

−6 15− 3i
... 0

 ,

which is row equivalent to  1 −5+i
2

... 0

0 0
... 0

 .

Therefore x1 = (5− i)/2. Taking x2 = 2 yields x1 = 5− i, so

x =

[
5− i
2

]
is an eigenvector. The real and imaginary parts of

et(cos 3t+ i sin 3t)
[
5− i
2

]
are

y1 = et
[
sin 3t+ 5 cos 3t

2 cos 3t

]
and y2 = et

[
− cos 3t+ 5 sin 3t

2 sin 3t

]
,

which are linearly independent solutions of (6.6.7). The general solution of (6.6.7) is

y = c1e
t

[
sin 3t+ 5 cos 3t

2 cos 3t

]
+ c2e

t

[
− cos 3t+ 5 sin 3t

2 sin 3t

]
.

Example 6.6.3 Find the general solution of

y ′ =

 −5 5 4
−8 7 6
1 0 0

 y. (6.6.8)

Solution The characteristic polynomial of the coefficient matrix A in (6.6.8) is∣∣∣∣∣∣
−5− λ 5 4
−8 7− λ 6
1 0 −λ

∣∣∣∣∣∣ = −(λ− 2)(λ2 + 1).

Hence, the eigenvalues of A are λ1 = 2, λ2 = i, and λ3 = −i. The augmented matrix of
(A− 2I)x = 0 is 

−7 5 4
... 0

−8 5 6
... 0

1 0 −2
... 0

 ,
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which is row equivalent to 
1 0 −2

... 0

0 1 −2
... 0

0 0 0
... 0

 .

Therefore x1 = x2 = 2x3. Taking x3 = 1 yields

x1 =

 2
2
1

 ,

so

y1 =

 2
2
1

 e2t
is a solution of (6.6.8).

The augmented matrix of (A− iI)x = 0 is
−5− i 5 4

... 0

−8 7− i 6
... 0

1 0 −i
... 0

 ,

which is row equivalent to 
1 0 −i

... 0

0 1 1− i
... 0

0 0 0
... 0

 .

Therefore x1 = ix3 and x2 = −(1− i)x3. Taking x3 = 1 yields the eigenvector

x2 =

 i

−1+ i
1

 .

The real and imaginary parts of

(cos t+ i sin t)

 i

−1+ i
1


are

y2 =

 − sin t
− cos t− sin t

cos t

 and y3 =

 cos t
cos t− sin t

sin t

 ,
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which are solutions of (6.6.8). Since the Wronskian of {y1, y2, y3} at t = 0 is∣∣∣∣∣∣
2 0 1
2 −1 1
1 1 0

∣∣∣∣∣∣ = 1,

{y1, y2, y3} is a fundamental set of solutions of (6.6.8). The general solution of (6.6.8) is

y = c1

 2
2
1

 e2t + c2
 − sin t

− cos t− sin t
cos t

+ c3

 cos t
cos t− sin t

sin t

 .

Example 6.6.4 Find the general solution of

y ′ =

 1 −1 −2
1 3 2
1 −1 2

 y. (6.6.9)

Solution The characteristic polynomial of the coefficient matrix A in (6.6.9) is∣∣∣∣∣∣
1− λ −1 −2
1 3− λ 2
1 −1 2− λ

∣∣∣∣∣∣ = −(λ− 2)
(
(λ− 2)2 + 4

)
.

Hence, the eigenvalues of A are λ1 = 2, λ2 = 2 + 2i, and λ3 = 2 − 2i. The augmented
matrix of (A− 2I)x = 0 is 

−1 −1 −2
... 0

1 1 2
... 0

1 −1 0
... 0

 ,

which is row equivalent to 
1 0 1

... 0

0 1 1
... 0

0 0 0
... 0

 .

Therefore x1 = x2 = −x3. Taking x3 = 1 yields

x1 =

 −1
−1
1

 ,

so

y1 =

 −1
−1
1

 e2t
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is a solution of (6.6.9).
The augmented matrix of (A− (2+ 2i)I) x = 0 is

−1− 2i −1 −2
... 0

1 1− 2i 2
... 0

1 −1 −2i
... 0

 ,

which is row equivalent to 
1 0 −i

... 0

0 1 i
... 0

0 0 0
... 0

 .

Therefore x1 = ix3 and x2 = −ix3. Taking x3 = 1 yields the eigenvector

x2 =

 i

−i
1


The real and imaginary parts of

e2t(cos 2t+ i sin 2t)

 i

−i
1


are

y2 = e2t

 − sin 2t
sin 2t
cos 2t

 and y2 = e2t

 cos 2t
− cos 2t

sin 2t

 ,

which are solutions of (6.6.9). Since the Wronskian of {y1, y2, y3} at t = 0 is∣∣∣∣∣∣
−1 0 1
−1 0 −1
1 1 0

∣∣∣∣∣∣ = −2,

{y1, y2, y3} is a fundamental set of solutions of (6.6.9). The general solution of (6.6.9) is

y = c1

 −1
−1
1

 e2t + c2e2t
 − sin 2t

sin 2t
cos 2t

+ c3e
2t

 cos 2t
− cos 2t

sin 2t

 .

Geometric Properties of Solutions when n = 2

We’ll now consider the geometric properties of solutions of a 2× 2 constant coefficient
system [

y ′1
y ′2

]
=

[
a11 a12
a21 a22

] [
y1
y2

]
(6.6.10)
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under the assumptions of this section; that is, when the matrix

A =

[
a11 a12
a21 a22

]
has a complex eigenvalue λ = α+ iβ (β 6= 0) and x = u+ iv is an associated eigenvector,
where u and v have real components. To describe the trajectories accurately it’s necessary
to introduce a new rectangular coordinate system in the y1-y2 plane. This raises a point
that hasn’t come up before: It is always possible to choose x so that (u, v) = 0. A special
effort is required to do this, since not every eigenvector has this property. However, if
we know an eigenvector that doesn’t, we can multiply it by a suitable complex constant
to obtain one that does. To see this, note that if x is a λ-eigenvector of A and k is an
arbitrary real number, then

x1 = (1+ ik)x = (1+ ik)(u + iv) = (u − kv) + i(v + ku)

is also a λ-eigenvector of A, since

Ax1 = A((1+ ik)x) = (1+ ik)Ax = (1+ ik)λx = λ((1+ ik)x) = λx1.

The real and imaginary parts of x1 are

u1 = u − kv and v1 = v + ku, (6.6.11)

so
(u1, v1) = (u − kv, v + ku) = −

[
(u, v)k2 + (‖v‖2 − ‖u‖2)k− (u, v)

]
.

Therefore (u1, v1) = 0 if

(u, v)k2 + (‖v‖2 − ‖u‖2)k− (u, v) = 0. (6.6.12)

If (u, v) 6= 0 we can use the quadratic formula to find two real values of k such that
(u1, v1) = 0 (Exercise 28).

Example 6.6.5 In Example 6.6.1 we found the eigenvector

x =

[
3+ 4i

5

]
=

[
3
5

]
+ i

[
4
0

]

for the matrix of the system (6.6.6). Here u =

[
3
5

]
and v =

[
4
0

]
are not orthogonal,

since (u, v) = 12. Since ‖v‖2 − ‖u‖2 = −18, (6.6.12) is equivalent to

2k2 − 3k− 2 = 0.

The zeros of this equation are k1 = 2 and k2 = −1/2. Letting k = 2 in (6.6.11) yields

u1 = u − 2v =

[
−5
5

]
and v1 = v + 2u =

[
10
10

]
,
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and (u1, v1) = 0. Letting k = −1/2 in (6.6.11) yields

u1 = u +
v
2
=

[
5
5

]
and v1 = v −

u
2
=

1
2

[
−5
5

]
,

and again (u1, v1) = 0.

(The numbers don’t always work out as nicely as in this example. You’ll need a
calculator or computer to do Exercises 29-40.)

Henceforth, we’ll assume that (u, v) = 0. Let U and V be unit vectors in the directions
of u and v, respectively; that is, U = u/‖u‖ and V = v/‖v‖. The new rectangular
coordinate system will have the same origin as the y1-y2 system. The coordinates of a
point in this system will be denoted by (z1, z2), where z1 and z2 are the displacements in
the directions of U and V, respectively.

From (6.6.5), the solutions of (6.6.10) are given by

y = eαt [(c1 cosβt+ c2 sinβt)u + (−c1 sinβt+ c2 cosβt)v] . (6.6.13)

For convenience, let’s call the curve traversed by e−αty(t) a shadow trajectory of (6.6.10).
Multiplying (6.6.13) by e−αt yields

e−αty(t) = z1(t)U + z2(t)V,

where

z1(t) = ‖u‖(c1 cosβt+ c2 sinβt)
z2(t) = ‖v‖(−c1 sinβt+ c2 cosβt).

Therefore
(z1(t))

2

‖u‖2 +
(z2(t))

2

‖v‖2 = c21 + c
2
2

(verify!), which means that the shadow trajectories of (6.6.10) are ellipses centered at the
origin, with axes of symmetry parallel to U and V. Since

z ′1 =
β‖u‖
‖v‖ z2 and z ′2 = −

β‖v‖
‖u‖ z1,

the vector from the origin to a point on the shadow ellipse rotates in the same direction
that V would have to be rotated by π/2 radians to bring it into coincidence with U
(Figures 6.1 and 6.2).

Figure 6.1 Shadow trajectories traversed
clockwise

Figure 6.2 Shadow trajectories traversed
counterclockwise

If α = 0, then any trajectory of (6.6.10) is a shadow trajectory of (6.6.10); therefore, if λ
is purely imaginary, then the trajectories of (6.6.10) are ellipses traversed periodically as
indicated in Figures 6.1 and 6.2.

If α > 0, then
lim
t→∞ ‖y(t)‖ =∞ and lim

t→−∞ y(t) = 0,

so the trajectory spirals away from the origin as t varies from −∞ to∞. The direction of
the spiral depends upon the relative orientation of U and V, as shown in Figures 6.3 and
6.4.

If α < 0, then
lim
t→−∞ ‖y(t)‖ =∞ and lim

t→∞ y(t) = 0,

so the trajectory spirals toward the origin as t varies from −∞ to∞. Again, the direction
of the spiral depends upon the relative orientation of U and V, as shown in Figures 6.5
and 6.6.
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Figure 6.3 α > 0; shadow trajectory
spiraling outward

Figure 6.4 α > 0; shadow trajectory
spiraling outward

Figure 6.5 α < 0; shadow trajectory
spiraling inward

Figure 6.6 α < 0; shadow trajectory
spiraling inward

6.6 Exercises

In Exercises 1–16 find the general solution.

1. y ′ =
[
−1 2
−5 5

]
y

2. y ′ =
[
−11 4
−26 9

]
y

3. y ′ =
[

1 2
−4 5

]
y 4. y ′ =

[
5 −6
3 −1

]
y

5. y ′ =

 3 −3 1
0 2 2
5 1 1

 y 6. y ′ =

 −3 3 1
1 −5 −3

−3 7 3

 y

7. y ′ =

 2 1 −1
0 1 1
1 0 1

 y 8. y ′ =

 −3 1 −3
4 −1 2
4 −2 3

 y

9. y ′ =
[

5 −4
10 1

]
y 10. y ′ =

1
3

[
7 −5
2 5

]
y

11. y ′ =
[

3 2
−5 1

]
y 12. y ′ =

[
34 52

−20 −30

]
y

13. y ′ =

 1 1 2
1 0 −1

−1 −2 −1

 y 14. y ′ =

 3 −4 −2
−5 7 −8
−10 13 −8

 y

15. y ′ =

 6 0 −3
−3 3 3
1 −2 6

 y ′ 16. y ′ =

 1 2 −2
0 2 −1
1 0 0

 y ′

In Exercises 17–24 solve the initial value problem.

17. y ′ =
[
4 −6
3 −2

]
y, y(0) =

[
5
2

]
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18. y ′ =
[

7 15
−3 1

]
y, y(0) =

[
5
1

]
19. y ′ =

[
7 −15
3 −5

]
y, y(0) =

[
17
7

]
20. y ′ =

1
6

[
4 −2
5 2

]
y, y(0) =

[
1
−1

]

21. y ′ =

 5 2 −1
−3 2 2
1 3 2

 y, y(0) =

 4
0
6


22. y ′ =

 4 4 0
8 10 −20
2 3 −2

 y, y(0) =

 8
6
5


23. y ′ =

 1 15 −15
−6 18 −22
−3 11 −15

 y, y(0) =

 15
17
10


24. y ′ =

 4 −4 4
−10 3 15

2 −3 1

 y, y(0) =

 16
14
6


25. Suppose an n× nmatrix A with real entries has a complex eigenvalue λ = α+ iβ

(β 6= 0) with associated eigenvector x = u+iv, where u and v have real components.
Show that u and v are both nonzero.

26. Verify that

y1 = eαt(u cosβt− v sinβt) and y2 = eαt(u sinβt+ v cosβt),

are the real and imaginary parts of

eαt(cosβt+ i sinβt)(u + iv).

27. Show that if the vectors u and v are not both 0 and β 6= 0 then the vector functions

y1 = eαt(u cosβt− v sinβt) and y2 = eαt(u sinβt+ v cosβt)

are linearly independent on every interval. HINT: There are two cases to consider: (i)
{u, v} linearly independent, and (ii) {u, v} linearly dependent. In either case, exploit the
the linear independence of {cosβt, sinβt} on every interval.

28. Suppose u =

[
u1
u2

]
and v =

[
v1
v2

]
are not orthogonal; that is, (u, v) 6= 0.

(a) Show that the quadratic equation

(u, v)k2 + (‖v‖2 − ‖u‖2)k− (u, v) = 0

has a positive root k1 and a negative root k2 = −1/k1.
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(b) Let u(1)
1 = u − k1v, v(1)1 = v + k1u, u(2)

1 = u − k2v, and v(2)1 = v + k2u, so that
(u(1)

1 , v(1)1 ) = (u(2)
1 , v(2)1 ) = 0, from the discussion given above. Show that

u(2)
1 =

v(1)1
k1

and v(2)1 = −
u(1)

1
k1

.

(c) Let U1, V1, U2, and V2 be unit vectors in the directions of u(1)
1 , v(1)1 , u(2)

1 , and
v(2)1 , respectively. Conclude from (a) that U2 = V1 and V2 = −U1, and that
therefore the counterclockwise angles from U1 to V1 and from U2 to V2 are
both π/2 or both −π/2.

In Exercises 29-32 find vectors U and V parallel to the axes of symmetry of the trajectories, and
plot some typical trajectories.

29. C/G y ′ =
[
3 −5
5 −3

]
y

30. C/G y ′ =
[
−15 10
−25 15

]
y

31. C/G y ′ =
[
−4 8
−4 4

]
y 32. C/G y ′ =

[
−3 −15
3 3

]
y

In Exercises 33-40 find vectors U and V parallel to the axes of symmetry of the shadow trajectories,
and plot a typical trajectory.

33. C/G y ′ =
[

−5 6
−12 7

]
y

34. C/G y ′ =
[
5 −12
6 −7

]
y

35. C/G y ′ =
[
4 −5
9 −2

]
y 36. C/G y ′ =

[
−4 9
−5 2

]
y

37. C/G y ′ =
[

−1 10
−10 −1

]
y 38. C/G y ′ =

[
−1 −5
20 −1

]
y

39. C/G y ′ =
[

−7 10
−10 9

]
y 40. C/G y ′ =

[
−7 6
−12 5

]
y

6.7 VARIATION OF PARAMETERS FOR NONHOMOGENEOUS LINEAR SYSTEMS

We now consider the nonhomogeneous linear system

y ′ = A(t)y + f(t),

where A is an n× nmatrix function and f is an n-vector forcing function. Associated
with this system is the complementary system y ′ = A(t)y.

The next theorem is analogous to Theorems ?? and ??. It shows how to find the general
solution of y ′ = A(t)y + f(t) if we know a particular solution of y ′ = A(t)y + f(t) and a
fundamental set of solutions of the complementary system. We leave the proof as an
exercise (Exercise 21).
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Theorem 6.7.1 Suppose the n×nmatrix functionA and the n-vector function f are continuous
on (a,b). Let yp be a particular solution of y ′ = A(t)y+ f(t) on (a,b), and let {y1, y2, . . . , yn}
be a fundamental set of solutions of the complementary equation y ′ = A(t)y on (a,b). Then y
is a solution of y ′ = A(t)y + f(t) on (a,b) if and only if

y = yp + c1y1 + c2y2 + · · ·+ cnyn,

where c1, c2, . . . , cn are constants.

Finding a Particular Solution of a Nonhomogeneous System

We now discuss an extension of the method of variation of parameters to linear nonhomo-
geneous systems. This method will produce a particular solution of a nonhomogenous
system y ′ = A(t)y + f(t) provided that we know a fundamental matrix for the com-
plementary system. To derive the method, suppose Y is a fundamental matrix for the
complementary system; that is,

Y =


y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

yn1 yn2 · · · ynn

 ,

where

y1 =


y11
y21

...
yn1

 , y2 =


y12
y22

...
yn2

 , · · · , yn =


y1n
y2n

...
ynn


is a fundamental set of solutions of the complementary system. In Section 10.3 we saw
that Y ′ = A(t)Y. We seek a particular solution of

y ′ = A(t)y + f(t) (6.7.1)

of the form
yp = Yu, (6.7.2)

where u is to be determined. Differentiating (6.7.2) yields

y ′p = Y ′u + Yu ′

= AYu + Yu ′ (since Y ′ = AY)
= Ayp + Yu ′ (since Yu = yp).

Comparing this with (6.7.1) shows that yp = Yu is a solution of (6.7.1) if and only if

Yu ′ = f .



358 Chapter 6 Linear Systems of Differential Equations

Thus, we can find a particular solution yp by solving this equation for u ′, integrating to
obtain u, and computing Yu. We can take all constants of integration to be zero, since
any particular solution will suffice.

Exercise 22 sketches a proof that this method is analogous to the method of variation
of parameters discussed in Sections 5.7 and 9.4 for scalar linear equations.

Example 6.7.1

(a) Find a particular solution of the system

y ′ =
[
1 2
2 1

]
y +

[
2e4t

e4t

]
, (6.7.3)

which we considered in Example 6.2.1.

(b) Find the general solution of (6.7.3).

SOLUTION(a) The complementary system is

y ′ =
[
1 2
2 1

]
y. (6.7.4)

The characteristic polynomial of the coefficient matrix is∣∣∣∣ 1− λ 2
2 1− λ

∣∣∣∣ = (λ+ 1)(λ− 3).

Using the method of Section 10.4, we find that

y1 =

[
e3t

e3t

]
and y2 =

[
e−t

−e−t

]
are linearly independent solutions of (6.7.4). Therefore

Y =

[
e3t e−t

e3t −e−t

]
is a fundamental matrix for (6.7.4). We seek a particular solution yp = Yu of (6.7.3),
where Yu ′ = f ; that is, [

e3t e−t

e3t −e−t

] [
u ′1
u ′2

]
=

[
2e4t

e4t

]
.

The determinant of Y is the Wronskian∣∣∣∣ e3t e−t

e3t −e−t

∣∣∣∣ = −2e2t.
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By Cramer’s rule,

u ′1 = −
1

2e2t

∣∣∣∣ 2e4t e−t

e4t −e−t

∣∣∣∣ =
3e3t

2e2t
=

3
2
et,

u ′2 = −
1

2e2t

∣∣∣∣ e3t 2e4t

e3t e4t

∣∣∣∣ =
e7t

2e2t
=

1
2
e5t.

Therefore

u ′ =
1
2

[
3et

e5t

]
.

Integrating and taking the constants of integration to be zero yields

u =
1
10

[
15et

e5t

]
,

so

yp = Yu =
1
10

[
e3t e−t

e3t −e−t

][
15et

e5t

]
=

1
5

[
8e4t

7e4t

]
is a particular solution of (6.7.3).

SOLUTION(b) From Theorem 6.7.1, the general solution of (6.7.3) is

y = yp + c1y1 + c2y2 =
1
5

[
8e4t

7e4t

]
+ c1

[
e3t

e3t

]
+ c2

[
e−t

−e−t

]
, (6.7.5)

which can also be written as

y =
1
5

[
8e4t

7e4t

]
+

[
e3t e−t

e3t −e−t

]
c,

where c is an arbitrary constant vector.
Writing (6.7.5) in terms of coordinates yields

y1 =
8
5
e4t + c1e

3t + c2e
−t

y2 =
7
5
e4t + c1e

3t − c2e
−t,

so our result is consistent with Example 6.2.1. .
If A isn’t a constant matrix, it’s usually difficult to find a fundamental set of solutions

for the system y ′ = A(t)y. It is beyond the scope of this text to discuss methods for doing
this. Therefore, in the following examples and in the exercises involving systems with
variable coefficient matrices we’ll provide fundamental matrices for the complementary
systems without explaining how they were obtained.
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Example 6.7.2 Find a particular solution of

y ′ =
[

2 2e−2t

2e2t 4

]
y +

[
1
1

]
, (6.7.6)

given that

Y =

[
e4t −1
e6t e2t

]
is a fundamental matrix for the complementary system.

Solution We seek a particular solution yp = Yu of (6.7.6) where Yu ′ = f ; that is,[
e4t −1
e6t e2t

] [
u ′1
u ′2

]
=

[
1
1

]
.

The determinant of Y is the Wronskian∣∣∣∣ e4t −1
e6t e2t

∣∣∣∣ = 2e6t.

By Cramer’s rule,

u ′1 =
1

2e6t

∣∣∣∣ 1 −1
1 e2t

∣∣∣∣ =
e2t + 1
2e6t

=
e−4t + e−6t

2

u ′2 =
1

2e6t

∣∣∣∣ e4t 1
e6t 1

∣∣∣∣ =
e4t − e6t

2e6t
=

e−2t − 1
2

.

Therefore

u ′ =
1
2

[
e−4t + e−6t

e−2t − 1

]
.

Integrating and taking the constants of integration to be zero yields

u = −
1
24

[
3e−4t + 2e−6t

6e−2t + 12t

]
,

so

yp = Yu = −
1
24

[
e4t −1
e6t e2t

] [
3e−4t + 2e−6t

6e−2t + 12t

]
=

1
24

[
4e−2t + 12t− 3
−3e2t(4t+ 1) − 8

]
is a particular solution of (6.7.6).

Example 6.7.3 Find a particular solution of

y ′ = −
2
t2

[
t −3t2

1 −2t

]
y + t2

[
1
1

]
, (6.7.7)

given that

Y =

[
2t 3t2

1 2t

]
is a fundamental matrix for the complementary system on (−∞, 0) and (0,∞).
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Solution We seek a particular solution yp = Yu of (6.7.7) where Yu ′ = f ; that is,[
2t 3t2

1 2t

] [
u ′1
u ′2

]
=

[
t2

t2

]
.

The determinant of Y is the Wronskian∣∣∣∣ 2t 3t2

1 2t

∣∣∣∣ = t2.
By Cramer’s rule,

u ′1 =
1
t2

∣∣∣∣ t2 3t2

t2 2t

∣∣∣∣ =
2t3 − 3t4

t2
= 2t− 3t2,

u ′2 =
1
t2

∣∣∣∣ 2t t2

1 t2

∣∣∣∣ =
2t3 − t2

t2
= 2t− 1.

Therefore

u ′ =
[
2t− 3t2

2t− 1

]
.

Integrating and taking the constants of integration to be zero yields

u =

[
t2 − t3

t2 − t

]
,

so

yp = Yu =

[
2t 3t2

1 2t

] [
t2 − t3

t2 − t

]
=

[
t3(t− 1)
t2(t− 1)

]
is a particular solution of (6.7.7).

Example 6.7.4

(a) Find a particular solution of

y ′ =

 2 −1 −1
1 0 −1
1 −1 0

 y +

 et

0
e−t

 . (6.7.8)

(b) Find the general solution of (6.7.8).

SOLUTION(a) The complementary system for (6.7.8) is

y ′ =

 2 −1 −1
1 0 −1
1 −1 0

 y. (6.7.9)
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The characteristic polynomial of the coefficient matrix is∣∣∣∣∣∣
2− λ −1 −1
1 −λ −1
1 −1 −λ

∣∣∣∣∣∣ = −λ(λ− 1)2.

Using the method of Section 10.4, we find that

y1 =

 1
1
1

 , y2 =

 etet
0

 , and y3 =

 et0
et


are linearly independent solutions of (6.7.9). Therefore

Y =

 1 et et

1 et 0
1 0 et


is a fundamental matrix for (6.7.9). We seek a particular solution yp = Yu of (6.7.8),
where Yu ′ = f ; that is,  1 et et

1 et 0
1 0 et

 u ′1u ′2
u ′3

 =

 et

0
e−t

 .

The determinant of Y is the Wronskian∣∣∣∣∣∣
1 et et

1 et 0
1 0 et

∣∣∣∣∣∣ = −e2t.

Thus, by Cramer’s rule,

u ′1 = −
1
e2t

∣∣∣∣∣∣
et et et

0 et 0
e−t 0 et

∣∣∣∣∣∣ = −
e3t − et

e2t
= e−t − et

u ′2 = −
1
e2t

∣∣∣∣∣∣
1 et et

1 0 0
1 e−t et

∣∣∣∣∣∣ = −
1− e2t

e2t
= 1− e−2t

u ′3 = −
1
e2t

∣∣∣∣∣∣
1 et et

1 et 0
1 0 e−t

∣∣∣∣∣∣ =
e2t

e2t
= 1.

Therefore

u ′ =

 e−t − et1− e−2t

1

 .
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Integrating and taking the constants of integration to be zero yields

u =


−et − e−t

e−2t

2
+ t

t

 ,

so

yp = Yu =

 1 et et

1 et 0
1 0 et




−et − e−t

e−2t

2
+ t

t

 =


et(2t− 1) −

e−t

2

et(t− 1) −
e−t

2
et(t− 1) − e−t


is a particular solution of (6.7.8).

SOLUTION(a) From Theorem 6.7.1 the general solution of (6.7.8) is

y = yp+c1y1+c2y2+c3y3 =


et(2t− 1) −

e−t

2

et(t− 1) −
e−t

2
et(t− 1) − e−t

+c1
 1

1
1

+c2
 etet

0

+c3
 et0
et

 ,

which can be written as

y = yp + Yc =


et(2t− 1) −

e−t

2

et(t− 1) −
e−t

2
et(t− 1) − e−t

+

 1 et et

1 et 0
1 0 et

 c

where c is an arbitrary constant vector.

Example 6.7.5 Find a particular solution of

y ′ =
1
2

 3 e−t −e2t

0 6 0
−e−2t e−3t −1

 y +

 1
et

e−t

 , (6.7.10)

given that

Y =

 et 0 e2t

0 e3t e3t

e−t 1 0


is a fundamental matrix for the complementary system.
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Solution We seek a particular solution of (6.7.10) in the form yp = Yu, where Yu ′ = f ;
that is,  et 0 e2t

0 e3t e3t

e−t 1 0

 u ′1u ′2
u ′3

 =

 1
et

e−t

 .

The determinant of Y is the Wronskian∣∣∣∣∣∣
et 0 e2t

0 e3t e3t

e−t 1 0

∣∣∣∣∣∣ = −2e4t.

By Cramer’s rule,

u ′1 = −
1

2e4t

∣∣∣∣∣∣
1 0 e2t

et e3t e3t

e−t 1 0

∣∣∣∣∣∣ =
e4t

2e4t
=

1
2

u ′2 = −
1

2e4t

∣∣∣∣∣∣
et 1 e2t

0 et e3t

e−t e−t 0

∣∣∣∣∣∣ =
e3t

2e4t
=

1
2
e−t

u ′3 = −
1

2e4t

∣∣∣∣∣∣
et 0 1
0 e3t et

e−t 1 e−t

∣∣∣∣∣∣ = −
e3t − 2e2t

2e4t
=

2e−2t − e−t

2
.

Therefore

u ′ =
1
2

 1
e−t

2e−2t − e−t

 .

Integrating and taking the constants of integration to be zero yields

u =
1
2

 t

−e−t

e−t − e−2t

 ,

so

yp = Yu =
1
2

 et 0 e2t

0 e3t e3t

e−t 1 0

 t

−e−t

e−t − e−2t

 =
1
2

 et(t+ 1) − 1
−et

e−t(t− 1)


is a particular solution of (6.7.10).

6.7 Exercises

In Exercises 1–10 find a particular solution.
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1. y ′ =
[
−1 −4
−1 −1

]
y +

[
21e4t

8e−3t

]
2. y ′ =

1
5

[
−4 3
−2 −11

]
y +

[
50e3t

10e−3t

]

3. y ′ =
[
1 2
2 1

]
y +

[
1
t

]
4. y ′ =

[
−4 −3
6 5

]
y +

[
2

−2et

]

5. y ′ =
[
−6 −3
1 −2

]
y +

[
4e−3t

4e−5t

]
6. y ′ =

[
0 1

−1 0

]
y +

[
1
t

]

7. y ′ =

 3 1 −1
3 5 1

−6 2 4

 y +

 3
6
3

8. y ′ =

 3 −1 −1
−2 3 2
4 −1 −2

 y +

 1
et

et


9. y ′ =

 −3 2 2
2 −3 2
2 2 −3

 y +

 et

e−5t

et


10. y ′ =

1
3

 1 1 −3
−4 −4 3
−2 1 0

 y +

 etet
et


In Exercises 11–20 find a particular solution, given that Y is a fundamental matrix for the
complementary system.

11. y ′ =
1
t

[
1 t

−t 1

]
y + t

[
cos t
sin t

]
; Y = t

[
cos t sin t

− sin t cos t

]
12. y ′ =

1
t

[
1 t

t 1

]
y +

[
t

t2

]
; Y = t

[
et e−t

et −e−t

]
13. y ′ =

1
t2 − 1

[
t −1

−1 t

]
y + t

[
1

−1

]
; Y =

[
t 1
1 t

]
14. y ′ =

1
3

[
1 −2e−t

2et −1

]
y +

[
e2t

e−2t

]
; Y =

[
2 e−t

et 2

]
15. y ′ =

1
2t4

[
3t3 t6

1 −3t3

]
y +

1
t

[
t2

1

]
; Y =

1
t2

[
t3 t4

−1 t

]

16. y ′ =


1

t− 1
−
e−t

t− 1
et

t+ 1
1

t+ 1

 y +

[
t2 − 1
t2 − 1

]
; Y =

[
t e−t

et t

]

17. y ′ =
1
t

 1 1 0
0 2 1

−2 2 2

 y +

 1
2
1

 Y =

 t2 t3 1
t2 2t3 −1
0 2t3 2


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18. y ′ =

 3 et e2t

e−t 2 et

e−2t e−t 1

 y +

 e3t0
0

 ; Y =

 e5t e2t 0
e4t 0 et

e3t −1 −1


19. y ′ =

1
t

 1 t 0
0 1 t

0 −t 1

 y +

 tt
t

 ; Y = t

 1 cos t sin t
0 − sin t cos t
0 − cos t − sin t


20. y ′ = −

1
t

 e−t −t 1− e−t

e−t 1 −t− e−t

e−t −t 1− e−t

 y +
1
t

 et0
et

 ; Y =
1
t

 et e−t t

et −e−t e−t

et e−t 0


21. Prove Theorem 6.7.1.

22. (a) Convert the scalar equation

P0(t)y
(n) + P1(t)y

(n−1) + · · ·+ Pn(t)y = F(t) (A)

into an equivalent n× n system

y ′ = A(t)y + f(t). (B)

(b) Suppose (A) is normal on an interval (a,b) and {y1,y2, . . . ,yn} is a funda-
mental set of solutions of

P0(t)y
(n) + P1(t)y

(n−1) + · · ·+ Pn(t)y = 0 (C)

on (a,b). Find a corresponding fundamental matrix Y for

y ′ = A(t)y (D)

on (a,b) such that
y = c1y1 + c2y2 + · · ·+ cnyn

is a solution of (C) if and only if y = Yc with

c =


c1
c2
...
cn


is a solution of (D).

(c) Let yp = u1y1 + u1y2 + · · ·+ unyn be a particular solution of (A), obtained
by the method of variation of parameters for scalar equations as given in
Section 9.4, and define

u =


u1
u2
...
un

 .

Show that yp = Yu is a solution of (B).
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(d) Let yp = Yu be a particular solution of (B), obtained by the method of variation
of parameters for systems as given in this section. Show that yp = u1y1 +
u1y2 + · · ·+ unyn is a solution of (A).

23. Suppose the n× nmatrix function A and the n–vector function f are continuous
on (a,b). Let t0 be in (a,b), let k be an arbitrary constant vector, and let Y be a
fundamental matrix for the homogeneous system y ′ = A(t)y. Use variation of
parameters to show that the solution of the initial value problem

y ′ = A(t)y + f(t), y(t0) = k

is

y(t) = Y(t)
(
Y−1(t0)k +

∫t
t0

Y−1(s)f(s)ds
)
.



APPENDIX A

ANSWERS

Section 1.2 Answers, pp. 20–21

1.2.1 (p. 20) (a) 3 (b) 2 (c) 1 (d) 2

1.2.3 (p. 20) (a) y = −
x2

2
+ c (b) y = x cos x− sin x+ c

(c) y =
x2

2
ln x−

x2

4
+ c (d) y = −x cos x+ 2 sin x+ c1 + c2x

(e) y = (2x− 4)ex + c1 + c2x (f) y =
x3

3
− sin x+ ex + c1 + c2x

(g) y = sin x+ c1 + c2x+ c3x2 (h) y = −
x5

60
+ ex + c1 + c2x+ c3x

2

(i) y =
7
64
e4x + c1 + c2x+ c3x

2

1.2.4 (p. 20) (a) y = −(x− 1)ex (b) y = 1−
1
2
cos x2 (c) y = 3− ln(

√
2 cos x)

(d) y = −
47
15

−
37
5
(x− 2) +

x5

30
(e) y =

1
4
xe2x −

1
4
e2x +

29
4

(f) y = x sin x+ 2 cos x− 3x− 1 (g) y = (x2 − 6x+ 12)ex +
x2

2
− 8x− 11

(h) y =
x3

3
+

cos 2x
6

+
7
4
x2 − 6x+

7
8

(i) y =
x4

12
+
x3

6
+

1
2
(x− 2)2 −

26
3
(x− 2) −

5
3

1.2.7 (p. 20) (a) 576 ft (b) 10 s 1.2.8 (p. 20) (b) y = 0 1.2.10 (p. 21) (a) (−2c− 2,∞)
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(−∞,∞)

Section 2.1 Answers, pp. 48–??

2.1.1 (p. 48) y = e−ax 2.1.2 (p. 48) y = ce−x
3

2.1.3 (p. 48) y = ce−(lnx)2/2

2.1.4 (p. 48) y =
c

x3 2.1.5 (p. 48) y = ce1/x 2.1.6 (p. 48) y =
e−(x−1)

x
2.1.7 (p. 48)

y =
e

x ln x
2.1.8 (p. 48) y =

π

x sin x
2.1.9 (p. 48) y = 2(1+ x2) 2.1.10 (p. 48) y = 3x−k

2.1.11 (p. 48) y = c(coskx)1/k 2.1.12 (p. 48) y =
1
3
+ ce−3x 2.1.13 (p. 48) y =

2
x
+
c

x
ex

2.1.14 (p. 48) y = e−x
2
(
x2

2
+ c

)
2.1.15 (p. 48) y = −

e−x + c

1+ x2 2.1.16 (p. 48) y =
7 ln |x|
x

+
3
2
x+

c

x

2.1.17 (p. 48) y = (x− 1)−4(ln |x− 1|− cos x+ c) 2.1.18 (p. 48) y = e−x
2
(
x3

4
+
c

x

)
2.1.19 (p. 48) y =

2 ln |x|
x2 +

1
2
+
c

x2 2.1.20 (p. 48) y = (x+c) cos x 2.1.21 (p. 48) y =
c− cos x
(1+ x)2

2.1.22 (p. 49) y = −
1
2
(x− 2)3

(x− 1)
+ c

(x− 2)5

(x− 1)
2.1.23 (p. 49) y = (x+ c)e− sin2 x

2.1.24 (p. 49) y =
ex

x2 −
ex

x3 +
c

x2 . y =
e3x − e−7x

10
2.1.26 (p. 49)

2x+ 1
(1+ x2)2

2.1.27 (p. 49) y =
1
x2 ln

(
1+ x2

2

)
2.1.29 (p. 49) y =

2 ln |x|
x

+
x

2
−

1
2x

2.1.28 (p. 49)

y =
1
2
(sin x+ csc x) 2.1.29 (p. 49) y =

2 ln |x|
x

+
x

2
−

1
2x

2.1.30 (p. 49) y = (x−1)−3 [ln(1− x) − cos x]

2.1.31 (p. 49) y = 2x2 +
1
x2 (0,∞) 2.1.32 (p. 49) y = x2(1−ln x) 2.1.33 (p. 49) y =

1
2
+

5
2
e−x

2

2.1.34 (p. 49) y =
ln |x− 1|+ tan x+ 1

(x− 1)3
2.1.35 (p. 49) y =

ln |x|+ x2 + 1
(x+ 2)4

2.1.36 (p. 49) y = (x2 − 1)
(
1
2
ln |x2 − 1|− 4

)
2.1.37 (p. 49) y = −(x2 − 5)

(
7+ ln |x2 − 5|

)
2.1.38 (p. 49) y = e−x

2
(
3+
∫x
0
t2et

2
dt

)
2.1.39 (p. 49) y =

1
x

(
2+
∫x
1

sin t
t
dt

)
2.1.40 (p. 49) y = e−x

∫x
1

tan t
t
dt

2.1.41 (p. 49) y =
1

1+ x2

(
1+
∫x
0

et

1+ t2
dt

)
2.1.42 (p. 50) y =

1
x

(
2e−(x−1) + e−x

∫x
1
etet

2
dt

)
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2.1.43 (p. 50) G =
r

λ
+
(
G0 −

r

λ

)
e−λt limt→∞G(t) = r

λ
2.1.45 (p. 50) (a) y = y0e

−a(x−x0) + e−ax
∫x
x0

eatf(t)dt

2.1.48 (p. ??) (a) y = tan−1
(
1
3
+ ce3x

)
(b) y = ±

[
ln
(
1
x
+
c

x2

)]1/2

(c) y = exp
(
x2 +

c

x2

)
(d) y = −1+

x

c+ 3 ln |x|

Section 2.2 Answers, pp. 58–??

2.2.1 (p. 58) y = 2±
√

2(x3 + x2 + x+ c)

2.2.2 (p. 58) ln(| siny|) = cos x+ c; y ≡ kπ, k = integer

2.2.3 (p. 58) y =
c

x− c
y ≡ −1 2.2.4 (p. 58)

(lny)2

2
= −

x3

3
+ c

2.2.5 (p. 58) y3 + 3 siny+ ln |y|+ ln(1+ x2) + tan−1 x = c; y ≡ 0

2.2.6 (p. 59) y = ±
(
1+

(
x

1+ cx

)2
)1/2

; y ≡ ±1

2.2.7 (p. 59) y = tan
(
x3

3
+ c

)
2.2.8 (p. 59) y =

c√
1+ x2

2.2.9 (p. 59) y =
2− ce(x−1)2/2

1− ce(x−1)2/2 ; y ≡ 1

2.2.10 (p. 59) y = 1+
(
3x2 + 9x+ c)1/3

2.2.11 (p. 59) y = 2+
√

2
3
x3 + 3x2 + 4x−

11
3

2.2.12 (p. 59) y =
e−(x2−4)/2

2− e−(x2−4)/2

2.2.13 (p. 59) y3+2y2+x2+sin x = 3 2.2.14 (p. 59) (y+ 1)(y− 1)−3(y− 2)2 = −256(x+ 1)−6

2.2.15 (p. 59) y = −1 + 3e−x2
2.2.16 (p. 59) y =

1√
2e−2x2

− 1
2.2.17 (p. 59) y ≡

−1; (−∞,∞)

2.2.18 (p. 59) y =
4− e−x2

2− e−x2 ; (−∞,∞) 2.2.19 (p. 59) y =
−1+

√
4x2 − 15
2

;
(√

15
2

,∞)
2.2.20 (p. 59) y =

2
1+ e−2x (−∞,∞) 2.2.21 (p. 59) y = −

√
25− x2; (−5, 5)

2.2.22 (p. 59) y ≡ 2, (−∞,∞) 2.2.23 (p. 59) y = 3
(
x+ 1
2x− 4

)1/3

; (−∞, 2)

2.2.24 (p. 59) y =
x+ c

1− cx
2.2.25 (p. 59) y = −x cos c+

√
1− x2 sin c; y ≡ 1;y ≡ −1
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2.2.26 (p. 59) y = −x + 3π/2 2.2.28 (p. 60) P =
P0

αP0 + (1− αP0)e−at
; limt→∞ P(t) =

1/α

2.2.29 (p. 60) I =
SI0

I0 + (S− I0)e−rSt

2.2.30 (p. 60) If q = rS then I =
I0

1+ rI0t
and limt→∞ I(t) = 0. If q 6= Rs, then

I =
αI0

I0 + (α− I0)e−rαt
. If q < rs, then limt→∞ I(t) = α = S−

q

r

if q > rS, then limt→∞ I(t) = 0 2.2.34 (p. 60) f = ap, where a=constant

2.2.35 (p. ??) y = e−x
(
−1±

√
2x2 + c

)
2.2.36 (p. ??) y = x2

(
−1+

√
x2 + c

)
2.2.37 (p. ??) y = ex

(
−1+ (3xex + c)1/3

)
2.2.38 (p. ??) y = e2x(1±

√
c− x2) 2.2.39 (p. ??) (a) y1 = 1/x; g(x) = h(x)

(b) y1 = x; g(x) = h(x)/x2 (c) y1 = e−x; g(x) = exh(x)

(d) y1 = x−r; g(x) = xr−1h(x) (e) y1 = 1/v(x); g(x) = v(x)h(x)

Section 2.3 Answers, pp. 65–??

2.3.1 (p. 65) (a), (b) x0 6= kπ (k = integer) 2.3.2 (p. 65) (a), (b) (x0,y0) 6= (0, 0)

2.3.3 (p. 66) (a), (b) x0y0 6= (2k + 1)π2 (k= integer) 2.3.4 (p. 66) (a), (b) x0y0 > 0 and

x0y0 6= 1

2.3.5 (p. 66) (a) all (x0,y0) (b) (x0,y0) with y0 6= 0 2.3.6 (p. 66) (a), (b) all (x0,y0)

2.3.7 (p. 66) (a), (b) all (x0,y0) 2.3.8 (p. 66) (a), (b) (x0,y0) such that x0 6= 4y0

2.3.9 (p. 66) (a) all (x0,y0) (b) all (x0,y0) 6= (0, 0) 2.3.10 (p. 66) (a) all (x0,y0)

(b) all (x0,y0) with y0 6= ±1 2.3.11 (p. 66) (a), (b) all (x0,y0)
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2.3.12 (p. 66) (a), (b) all (x0,y0) such that x0 + y0 > 0

2.3.13 (p. 66) (a), (b) all (x0,y0) with x0 6= 1, y0 6= (2k+ 1)
π

2
(k = integer)

2.3.16 (p. ??) y =

(
3
5
x+ 1

)5/3

, −∞ < x <∞, is a solution.

Also,

y =

{
0, −∞ < x 6 −5

3(3
5x+ 1

)5/3 , −5
3 < x <∞

is a solution, For every a >
5
3

, the following function is also a solution:

y =


(3

5(x+ a)
)5/3 , −∞ < x < −a,

0, −a 6 x 6 −5
3(3

5x+ 1
)5/3 , −5

3 < x <∞.

2.3.17 (p. ??) (a) all (x0,y0) (b) all (x0,y0) with y0 6= 1

2.3.18 (p. ??) y1 ≡ 1; y2 = 1+ |x|3; y3 = 1− |x|3; y4 = 1+ x3; y5 = 1− x3

y6 =

{
1+ x3, x > 0,

1, x < 0 ; y7 =

{
1− x3, x > 0,

1, x < 0 ;

y8 =

{
1, x > 0,

1+ x3, x < 0 ; y9 =

{
1, x > 0,

1− x3, x < 0

2.3.19 (p. ??) y = 1+ (x2 + 4)3/2, −∞ < x <∞
2.3.20 (p. ??) (a) The solution is unique on (0,∞). It is given by

y =

{
1, 0 < x 6

√
5,

1− (x2 − 5)3/2,
√
5 < x <∞

(b)

y =

{
1, −∞ < x 6

√
5,

1− (x2 − 5)3/2,
√
5 < x <∞
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is a solution of (A) on (−∞,∞). If α > 0, then

y =


1+ (x2 − α2)3/2, −∞ < x < −α,

1, −α 6 x 6
√
5,

1− (x2 − 5)3/2,
√
5 < x <∞,

and

y =


1− (x2 − α2)3/2, −∞ < x < −α,

1, −α 6 x 6
√
5,

1− (x2 − 5)3/2,
√
5 < x <∞,

are also solutions of (A) on (−∞,∞).

Section 2.4 Answers, pp. 72–??

2.4.1 (p. 72) y =
1

1− cex
2.4.2 (p. 72) y = x2/7(c− ln |x|)1/7 2.4.3 (p. 72) y = e2/x(c−

1/x)2

2.4.4 (p. 72) y = ±
√
2x+ c
1+ x2 2.4.5 (p. 72) y = ±(1− x2 + ce−x

2
)−1/2

2.4.6 (p. 72) y =

[
x

3(1− x) + ce−x

]1/3

2.4.7 (p. 72) y =
2
√
2√

1− 4x
2.4.8 (p. 72) y =[

1−
3
2
e−(x2−1)/4

]−2

2.4.9 (p. 72) y =
1

x(11− 3x)1/3
2.4.10 (p. 72) y = (2ex − 1)2

2.4.11 (p. 72) y = (2e12x − 1− 12x)1/3 2.4.12 (p. 72) y =

[
5x

2(1+ 4x5)

]1/2

2.4.13 (p. 72) y = (4ex/2 − x− 2)2

2.4.14 (p. 72) P =
P0e

at

1+ aP0
∫t

0 α(τ)e
aτ dτ

; limt→∞ P(t) =


∞ if L = 0,
0 if L =∞,

1/aL if 0 < L <∞.

2.4.15 (p. 72) y = x(ln |x|+ c) 2.4.16 (p. 72) y =
cx2

1− cx
y = −x

2.4.17 (p. 72) y = ±x(4 ln |x|+ c)1/4 2.4.18 (p. 72) y = x sin−1(ln |x|+ c)

2.4.19 (p. 73) y = x tan(ln |x|+ c) 2.4.20 (p. 73) y = ±x
√
cx2 − 1

2.4.21 (p. 73) y = ±x ln(ln |x|+ c) 2.4.22 (p. 73) y = −
2x

2 ln |x|+ 1
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2.4.23 (p. 73) y = x(3 ln x + 27)1/3 2.4.24 (p. 73) y =
1
x

(
9− x4

2

)1/2

2.4.25 (p. 73)

y = −x

2.4.26 (p. 73) y = −
x(4x− 3)
(2x− 3)

2.4.27 (p. 73) y = x
√
4x6 − 1 2.4.28 (p. 73) tan−1 y

x
−

1
2
ln(x2 + y2) = c

2.4.29 (p. 73) (x+y) ln |x|+y(1− ln |y|)+ cx = 0 2.4.30 (p. 73) (y+x)3 = 3x3(ln |x|+ c)

2.4.31 (p. 73) (y+ x) = c(y− x)3; y = x; y = −x

2.4.32 (p. 73) y2(y− 3x) = c; y ≡ 0; y = 3x

2.4.33 (p. 73) (x−y)3(x+y) = cy2x4; y = 0; y = x; y = −x 2.4.34 (p. 73)
y

x
+
y3

x3 =

ln |x|+ c

2.4.40 (p. ??) Choose X0 and Y0 so that

aX0 + bY0 = α
cX0 + dY0 = β.

2.4.41 (p. ??) (y+ 2x+ 1)4(2y− 6x− 3) = c; y = 3x+ 3/2; y = −2x− 1

2.4.42 (p. ??) (y+ x− 1)(y− x− 5)3 = c; y = x+ 5; y = −x+ 1

2.4.43 (p. ??) ln |y − x − 6| −
2(x+ 2)
y− x− 6

= c; y = x + 6 2.4.44 (p. ??) (y1 = x1/3)

y = x1/3(ln |x|+ c)1/3

2.4.45 (p. ??) y1 = x3; y = ±x3
√
cx6 − 1 2.4.46 (p. ??) y1 = x2; y =

x2(1+ cx4)

1− cx4 y =

−x2

2.4.47 (p. ??) y1 = ex; y = −
ex(1− 2cex)

1− cex
; y = −2ex

2.4.48 (p. ??) y1 = tan x; y = tan x tan(ln | tan x|+ c)

2.4.49 (p. ??) y1 = ln x; y =
2 ln x

(
1+ c(ln x)4

)
1− c(ln x)4

; y = −2 ln x
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2.4.50 (p. ??) y1 = x1/2; y = x1/2(−2±
√

ln |x|+ c)

2.4.51 (p. ??) y1 = ex
2
; y = ex

2
(−1±

√
2x2 + c) 2.4.52 (p. ??) y =

−3+
√
1+ 60x

2x

2.4.53 (p. ??) y =
−5+

√
1+ 48x

2x2 2.4.56 (p. ??) y = 1+
1

x+ 1+ cex

2.4.57 (p. ??) y = ex −
1

1+ ce−x
2.4.58 (p. ??) y = 1 −

1
x(1− cx)

2.4.59 (p. ??) y =

x−
2x

x2 + c

Section 2.5 Answers, pp. 80–??

2.5.1 (p. 80) 2x3y2 = c 2.5.2 (p. 80) 3y sin x+ 2x2ex + 3y = c 2.5.3 (p. 80) Not exact

2.5.4 (p. 80) x2 − 2xy2 + 4y3 = c 2.5.5 (p. 80) x+ y = c 2.5.6 (p. 80) Not exact

2.5.7 (p. 80) 2y2 cos x+ 3xy3 − x2 = c 2.5.8 (p. 81) Not exact

2.5.9 (p. 81) x3 + x2y+ 4xy2 + 9y2 = c 2.5.10 (p. 81) Not exact 2.5.11 (p. 81) ln |xy|+

x2 + y2 = c

2.5.12 (p. 81) Not exact 2.5.13 (p. 81) x2 + y2 = c 2.5.14 (p. 81) x2y2ex + 2y+ 3x2 = c

2.5.15 (p. 81) x3ex
2+y − 4y3 + 2x2 = c 2.5.16 (p. 81) x4exy + 3xy = c

2.5.17 (p. 81) x3 cos xy+ 4y2 + 2x2 = c 2.5.18 (p. 81) y =
x+
√
2x2 + 3x− 1
x2

2.5.19 (p. 81) y = sin x−
√

1−
tan x
2

2.5.20 (p. 81) y =

(
ex − 1
ex + 1

)1/3

2.5.21 (p. 81) y = 1+ 2 tan x 2.5.22 (p. 81) y =
x2 − x+ 6

(x+ 2)(x− 3)

2.5.23 (p. 81)
7x2

2
+ 4xy+

3y2

2
= c 2.5.24 (p. 81) (x4y2 + 1)ex + y2 = c

2.5.29 (p. ??) (a)M(x,y) = 2xy+f(x) (b)M(x,y) = 2(sin x+x cos x)(y siny+cosy)+f(x)

(c)M(x,y) = yex − ey cos x+ f(x)

2.5.30 (p. ??) (a) N(x,y) =
x4y

2
+ x2 + 6xy+ g(y) (b) N(x,y) =

x

y
+ 2y sin x+ g(y)
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(c) N(x,y) = x(siny+ y cosy) + g(y)

2.5.33 (p. ??) B = C 2.5.34 (p. ??) B = 2D, E = 2C

2.5.37 (p. ??) (a) 2x2 + x4y4 + y2 = c (b) x3 + 3xy2 = c (c) x3 + y2 + 2xy = c

2.5.38 (p. ??) y = −1−
1
x2 2.5.39 (p. ??) y = x3

(
−3(x2 + 1) +

√
9x4 + 34x2 + 21
2

)

2.5.40 (p. ??) y = −e−x
2

(
2x+

√
9− 5x2

3

)
.

2.5.44 (p. ??) (a) G(x,y) = 2xy+ c (b) G(x,y) = ex siny+ c

(c) G(x,y) = 3x2y− y3 + c (d) G(x,y) = − sin x sinhy+ c

(e) G(x,y) = cos x sinhy+ c

Section 2.6 Answers, pp. 86–??

2.6.3 (p. 86) µ(x) = 1/x2; y = cx and µ(y) = 1/y2; x = cy

2.6.4 (p. 86) µ(x) = x−3/2; x3/2y = c 2.6.5 (p. 86) µ(y) = 1/y3; y3e2x = c

2.6.6 (p. 86) µ(x) = e5x/2; e5x/2(xy+1) = c 2.6.7 (p. 86) µ(x) = ex; ex(xy+y+x) = c

2.6.8 (p. 86) µ(x) = x; x2y2(9x+4y) = c 2.6.9 (p. 86) µ(y) = y2; y3(3x2y+2x+1) = c

2.6.10 (p. 86) µ(y) = yey; ey(xy3+1) = c 2.6.11 (p. 87) µ(y) = y2; y3(3x4+8x3y+y) =

c

2.6.12 (p. 87) µ(x) = xex; x2y(x+ 1)ex = c

2.6.13 (p. 87) µ(x) = (x3 − 1)−4/3; xy(x3 − 1)−1/3 = c and x ≡ 1

2.6.14 (p. 87) µ(y) = ey; ey(sin x cosy + y − 1) = c 2.6.15 (p. ??) µ(y) = e−y
2
;

xye−y
2
(x + y) = c 2.6.16 (p. ??)

xy

siny
= c and y = kπ (k = integer) 2.6.17 (p. ??)
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µ(x,y) = x4y3; x5y4 ln x = c 2.6.18 (p. ??) µ(x,y) = 1/xy; |x|α|y|βeγxeδy = c and

x ≡ 0, y ≡ 0

2.6.19 (p. ??) µ(x,y) = x−2y−3; 3x2y2 + y = 1+ cxy2 and x ≡ 0, y ≡ 0

2.6.20 (p. ??) µ(x,y) = x−2y−1; −
2
x
+ y3 + 3 ln |y| = c and x ≡ 0, y ≡ 0

2.6.21 (p. ??) µ(x,y) = eaxeby; eaxeby cos xy = c

2.6.22 (p. ??) µ(x,y) = x−4y−3 (and others) xy = c 2.6.23 (p. ??) µ(x,y) = xey;

x2yey sin x = c

2.6.24 (p. ??) µ(x) = 1/x2;
x3y3

3
−
y

x
= c 2.6.25 (p. ??) µ(x) = x+1; y(x+1)2(x+y) = c

2.6.26 (p. ??) µ(x,y) = x2y2; x3y3(3x+ 2y2) = c

2.6.27 (p. ??) µ(x,y) = x−2y−2; 3x2y = cxy+ 2 and x ≡ 0, y ≡ 0

Section 3.1 Answers, pp. 103–106

3.1.1 (p. 103) y1 = 1.450000000, y2 = 2.085625000, y3 = 3.079099746

3.1.2 (p. 103) y1 = 1.200000000, y2 = 1.440415946, y3 = 1.729880994

3.1.3 (p. 103) y1 = 1.900000000, y2 = 1.781375000, y3 = 1.646612970

3.1.4 (p. 104) y1 = 2.962500000, y2 = 2.922635828, y3 = 2.880205639

3.1.5 (p. 104) y1 = 2.513274123, y2 = 1.814517822, y3 = 1.216364496

3.1.6 (p. 104) x h = 0.1 h = 0.05 h = 0.025 Exact
1.0 48.298147362 51.492825643 53.076673685 54.647937102

3.1.7 (p. 104) x h = 0.1 h = 0.05 h = 0.025 Exact
2.0 1.390242009 1.370996758 1.361921132 1.353193719

3.1.8 (p. 104) x h = 0.05 h = 0.025 h = 0.0125 Exact
1.50 7.886170437 8.852463793 9.548039907 10.500000000
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3.1.9 (p. 105)
x h = 0.1 h = 0.05 h = 0.025 h = 0.1 h = 0.05 h = 0.025

3.0 1.469458241 1.462514486 1.459217010 0.3210 0.1537 0.0753
Approximate Solutions Residuals

3.1.10 (p. 105)
x h = 0.1 h = 0.05 h = 0.025 h = 0.1 h = 0.05 h = 0.025

2.0 0.473456737 0.483227470 0.487986391 -0.3129 -0.1563 -0.0781
Approximate Solutions Residuals

3.1.11 (p. 105) x h = 0.1 h = 0.05 h = 0.025 “Exact”
1.0 0.691066797 0.676269516 0.668327471 0.659957689

3.1.12 (p. 105) x h = 0.1 h = 0.05 h = 0.025 “Exact”
2.0 -0.772381768 -0.761510960 -0.756179726 -0.750912371

3.1.13 (p. 105)
Euler’s method

x h = 0.1 h = 0.05 h = 0.025 Exact
1.0 0.538871178 0.593002325 0.620131525 0.647231889

Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 Exact

1.0 0.647231889 0.647231889 0.647231889 0.647231889

Applying variation of parameters to the given initial value problem yields

y = ue−3x, where (A) u ′ = 7, u(0) = 6. Since u ′′ = 0, Euler’s method

yields the exact solution of (A). Therefore the Euler semilinear method pro-

duces the exact solution of the given problem

.

3.1.14 (p. 105)
Euler’s method

x h = 0.1 h = 0.05 h = 0.025 “Exact”
3.0 12.804226135 13.912944662 14.559623055 15.282004826

Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact”

3.0 15.354122287 15.317257705 15.299429421 15.282004826

3.1.15 (p. 105)
Euler’s method

x h = 0.2 h = 0.1 h = 0.05 “Exact”
2.0 0.867565004 0.885719263 0.895024772 0.904276722
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Euler semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact”

2.0 0.569670789 0.720861858 0.808438261 0.904276722

3.1.16 (p. 105)
Euler’s method

x h = 0.2 h = 0.1 h = 0.05 “Exact”
3.0 0.922094379 0.945604800 0.956752868 0.967523153

Euler semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact”

3.0 0.993954754 0.980751307 0.974140320 0.967523153

3.1.17 (p. 105)
Euler’s method

x h = 0.0500 h = 0.0250 h = 0.0125 “Exact”
1.50 0.319892131 0.330797109 0.337020123 0.343780513

Euler semilinear method
x h = 0.0500 h = 0.0250 h = 0.0125 “Exact”

1.50 0.305596953 0.323340268 0.333204519 0.343780513

3.1.18 (p. 105)
Euler’s method

x h = 0.2 h = 0.1 h = 0.05 “Exact”
2.0 0.754572560 0.743869878 0.738303914 0.732638628

Euler semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact”

2.0 0.722610454 0.727742966 0.730220211 0.732638628

3.1.19 (p. 105)
Euler’s method

x h = 0.0500 h = 0.0250 h = 0.0125 “Exact”
1.50 2.175959970 2.210259554 2.227207500 2.244023982

Euler semilinear method
x h = 0.0500 h = 0.0250 h = 0.0125 “Exact”

1.50 2.117953342 2.179844585 2.211647904 2.244023982

3.1.20 (p. 106)
Euler’s method

x h = 0.1 h = 0.05 h = 0.025 “Exact”
1.0 0.032105117 0.043997045 0.050159310 0.056415515

Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact”

1.0 0.056020154 0.056243980 0.056336491 0.056415515

3.1.21 (p. 106)
Euler’s method

x h = 0.1 h = 0.05 h = 0.025 “Exact”
1.0 28.987816656 38.426957516 45.367269688 54.729594761
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Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact”

1.0 54.709134946 54.724150485 54.728228015 54.729594761

3.1.22 (p. 106)
Euler’s method

x h = 0.1 h = 0.05 h = 0.025 “Exact”
3.0 1.361427907 1.361320824 1.361332589 1.361383810

Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact”

3.0 1.291345518 1.326535737 1.344004102 1.361383810

Section 3.2 Answers, pp. 118–106

3.2.1 (p. 118) y1 = 1.542812500, y2 = 2.421622101, y3 = 4.208020541
3.2.2 (p. 118) y1 = 1.220207973, y2 = 1.489578775 y3 = 1.819337186
3.2.3 (p. 118) y1 = 1.890687500, y2 = 1.763784003, y3 = 1.622698378
3.2.4 (p. 118) y1 = 2.961317914 y2 = 2.920132727 y3 = 2.876213748.
3.2.5 (p. 118) y1 = 2.478055238, y2 = 1.844042564, y3 = 1.313882333

3.2.6 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 Exact

1.0 56.134480009 55.003390448 54.734674836 54.647937102

3.2.7 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 Exact

2.0 1.353501839 1.353288493 1.353219485 1.353193719

3.2.8 (p. 118)
x h = 0.05 h = 0.025 h = 0.0125 Exact

1.50 10.141969585 10.396770409 10.472502111 10.500000000

3.2.9 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 h = 0.1 h = 0.05 h = 0.025

3.0 1.455674816 1.455935127 1.456001289 -0.00818 -0.00207 -0.000518
Approximate Solutions Residuals

3.2.10 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 h = 0.1 h = 0.05 h = 0.025

2.0 0.492862999 0.492709931 0.492674855 0.00335 0.000777 0.000187
Approximate Solutions Residuals

3.2.11 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 0.660268159 0.660028505 0.659974464 0.659957689

3.2.12 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

2.0 -0.749751364 -0.750637632 -0.750845571 -0.750912371

3.2.13 (p. 118) Applying variation of parameters to the given initial value problem

y = ue−3x, where (A) u ′ = 1 − 2x, u(0) = 2. Since u ′′′ = 0, the improved Euler
method yields the exact solution of (A). Therefore the improved Euler semilinear
method produces the exact solution of the given problem.
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Improved Euler method
x h = 0.1 h = 0.05 h = 0.025 Exact

1.0 0.105660401 0.100924399 0.099893685 0.099574137

Improved Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 Exact

1.0 0.099574137 0.099574137 0.099574137 0.099574137

3.2.14 (p. 118)
Improved Euler method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
3.0 15.107600968 15.234856000 15.269755072 15.282004826

Improved Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

3.0 15.285231726 15.282812424 15.282206780 15.282004826

3.2.15 (p. 118)
Improved Euler method

x h = 0.2 h = 0.1 h = 0.05 “Exact"
2.0 0.924335375 0.907866081 0.905058201 0.904276722

Improved Euler semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact"

2.0 0.969670789 0.920861858 0.908438261 0.904276722

3.2.16 (p. 118)
Improved Euler method

x h = 0.2 h = 0.1 h = 0.05 “Exact"
3.0 0.967473721 0.967510790 0.967520062 0.967523153

Improved Euler semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact"

3.0 0.967473721 0.967510790 0.967520062 0.967523153

3.2.17 (p. 118)
Improved Euler method

x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"
1.50 0.349176060 0.345171664 0.344131282 0.343780513

Improved Euler semilinear method
x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"

1.50 0.349350206 0.345216894 0.344142832 0.343780513

3.2.18 (p. 118)
Improved Euler method

x h = 0.2 h = 0.1 h = 0.05 “Exact"
2.0 0.732679223 0.732721613 0.732667905 0.732638628

Improved Euler semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact"

2.0 0.732166678 0.732521078 0.732609267 0.732638628



382 Answers to Selected Exercises

3.2.19 (p. 118)
Improved Euler method

x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"
1.50 2.247880315 2.244975181 2.244260143 2.244023982

Improved Euler semilinear method
x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"

1.50 2.248603585 2.245169707 2.244310465 2.244023982

3.2.20 (p. 118)
Improved Euler method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
1.0 0.059071894 0.056999028 0.056553023 0.056415515

Improved Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 0.056295914 0.056385765 0.056408124 0.056415515

3.2.21 (p. 118)
Improved Euler method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
1.0 50.534556346 53.483947013 54.391544440 54.729594761

Improved Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 54.709041434 54.724083572 54.728191366 54.729594761

3.2.22 (p. 118)
Improved Euler method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
3.0 1.361395309 1.361379259 1.361382239 1.361383810

Improved Euler semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

3.0 1.375699933 1.364730937 1.362193997 1.361383810

3.2.23 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 Exact

2.0 1.349489056 1.352345900 1.352990822 1.353193719

3.2.24 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 Exact

2.0 1.350890736 1.352667599 1.353067951 1.353193719

3.2.25 (p. 118)
x h = 0.05 h = 0.025 h = 0.0125 Exact

1.50 10.133021311 10.391655098 10.470731411 10.500000000

3.2.26 (p. 118)
x h = 0.05 h = 0.025 h = 0.0125 Exact

1.50 10.136329642 10.393419681 10.470731411 10.500000000

3.2.27 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 0.660846835 0.660189749 0.660016904 0.659957689



Answers to Selected Exercises 383

3.2.28 (p. 118)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 0.660658411 0.660136630 0.660002840 0.659957689

3.2.29 (p. 119)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

2.0 -0.750626284 -0.750844513 -0.750895864 -0.751331499

3.2.30 (p. 119)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

2.0 -0.750335016 -0.750775571 -0.750879100 -0.751331499

Section 3.3 Answers, pp. 126–127

3.3.1 (p. 126) y1 = 1.550598190, y2 = 2.469649729 3.3.2 (p. 126) y1 = 1.221551366, y2 =
1.492920208
3.3.3 (p. 126) y1 = 1.890339767, y2 = 1.763094323 3.3.4 (p. 126) y1 = 2.961316248 y2 =
2.920128958.
3.3.5 (p. 126) y1 = 2.475605264, y2 = 1.825992433

3.3.6 (p. 126)
x h = 0.1 h = 0.05 h = 0.025 Exact

1.0 54.654509699 54.648344019 54.647962328 54.647937102

3.3.7 (p. 126)
x h = 0.1 h = 0.05 h = 0.025 Exact

2.0 1.353191745 1.353193606 1.353193712 1.353193719

3.3.8 (p. 126)
x h = 0.05 h = 0.025 h = 0.0125 Exact

1.50 10.498658198 10.499906266 10.499993820 10.500000000

3.3.9 (p. 126)
x h = 0.1 h = 0.05 h = 0.025 h = 0.1 h = 0.05 h = 0.025

3.0 1.456023907 1.456023403 1.456023379 0.0000124 0.000000611 0.0000000333
Approximate Solutions Residuals

3.3.10 (p. 126)
x h = 0.1 h = 0.05 h = 0.025 h = 0.1 h = 0.05 h = 0.025

2.0 0.492663789 0.492663738 0.492663736 0.000000902 0.0000000508 0.00000000302
Approximate Solutions Residuals

3.3.11 (p. 126)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 0.659957046 0.659957646 0.659957686 0.659957689

3.3.12 (p. 126)
x h = 0.1 h = 0.05 h = 0.025 “Exact"

2.0 -0.750911103 -0.750912294 -0.750912367 -0.750912371

3.3.13 (p. 126) Applying variation of parameters to the given initial value problem yields

y = ue−3x, where (A) u ′ = 1 − 4x + 3x2 − 4x3, u(0) = −3. Since u(5) = 0, the
Runge-Kutta method yields the exact solution of (A). Therefore the Euler semilinear
method produces the exact solution of the given problem.
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Runge-Kutta method
x h = 0.1 h = 0.05 h = 0.025 Exact

0.0 -3.000000000 -3.000000000 -3.000000000 -3.000000000
0.1 -2.162598011 -2.162526572 -2.162522707 -2.162522468
0.2 -1.577172164 -1.577070939 -1.577065457 -1.577065117
0.3 -1.163350794 -1.163242678 -1.163236817 -1.163236453
0.4 -0.868030294 -0.867927182 -0.867921588 -0.867921241
0.5 -0.655542739 -0.655450183 -0.655445157 -0.655444845
0.6 -0.501535352 -0.501455325 -0.501450977 -0.501450707
0.7 -0.389127673 -0.389060213 -0.389056546 -0.389056318
0.8 -0.306468018 -0.306412184 -0.306409148 -0.306408959
0.9 -0.245153433 -0.245107859 -0.245105379 -0.245105226
1.0 -0.199187198 -0.199150401 -0.199148398 -0.199148273

Runge-Kutta semilinear method
x h = 0.1 h = 0.05 h = 0.025 Exact

0.0 -3.000000000 -3.000000000 -3.000000000 -3.000000000
0.1 -2.162522468 -2.162522468 -2.162522468 -2.162522468
0.2 -1.577065117 -1.577065117 -1.577065117 -1.577065117
0.3 -1.163236453 -1.163236453 -1.163236453 -1.163236453
0.4 -0.867921241 -0.867921241 -0.867921241 -0.867921241
0.5 -0.655444845 -0.655444845 -0.655444845 -0.655444845
0.6 -0.501450707 -0.501450707 -0.501450707 -0.501450707
0.7 -0.389056318 -0.389056318 -0.389056318 -0.389056318
0.8 -0.306408959 -0.306408959 -0.306408959 -0.306408959
0.9 -0.245105226 -0.245105226 -0.245105226 -0.245105226
1.0 -0.199148273 -0.199148273 -0.199148273 -0.199148273

3.3.14 (p. 126)
Runge-Kutta method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
3.0 15.281660036 15.281981407 15.282003300 15.282004826

Runge-Kutta semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

3.0 15.282005990 15.282004899 15.282004831 15.282004826

3.3.15 (p. 127)
Runge-Kutta method

x h = 0.2 h = 0.1 h = 0.05 “Exact"
2.0 0.904678156 0.904295772 0.904277759 0.904276722

Runge-Kutta semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact"

2.0 0.904592215 0.904297062 0.904278004 0.904276722

3.3.16 (p. 127)
Runge-Kutta method

x h = 0.2 h = 0.1 h = 0.05 “Exact"
3.0 0.967523147 0.967523152 0.967523153 0.967523153
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Runge-Kutta semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact"

3.0 0.967523147 0.967523152 0.967523153 0.967523153

3.3.17 (p. 127)
Runge-Kutta method

x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"
1.50 0.343839158 0.343784814 0.343780796 0.343780513

Runge-Kutta semilinear method
x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"

1.00 0.000000000 0.000000000 0.000000000 0.000000000
1.05 0.028121022 0.028121010 0.028121010 0.028121010
1.10 0.055393494 0.055393466 0.055393465 0.055393464
1.15 0.082164048 0.082163994 0.082163990 0.082163990
1.20 0.108862698 0.108862597 0.108862591 0.108862590
1.25 0.136058715 0.136058528 0.136058517 0.136058516
1.30 0.164564862 0.164564496 0.164564473 0.164564471
1.35 0.195651074 0.195650271 0.195650219 0.195650216
1.40 0.231542288 0.231540164 0.231540027 0.231540017
1.45 0.276818775 0.276811011 0.276810491 0.276810456
1.50 0.343839124 0.343784811 0.343780796 0.343780513

3.3.18 (p. 127)
Runge-Kutta method

x h = 0.2 h = 0.1 h = 0.05 “Exact"
2.0 0.732633229 0.732638318 0.732638609 0.732638628

Runge-Kutta semilinear method
x h = 0.2 h = 0.1 h = 0.05 “Exact"

2.0 0.732639212 0.732638663 0.732638630 0.732638628

3.3.19 (p. 127)
Runge-Kutta method

x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"
1.50 2.244025683 2.244024088 2.244023989 2.244023982

Runge-Kutta semilinear method
x h = 0.0500 h = 0.0250 h = 0.0125 “Exact"

1.50 2.244025081 2.244024051 2.244023987 2.244023982

3.3.20 (p. 127)
Runge-Kutta method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
1.0 0.056426886 0.056416137 0.056415552 0.056415515

Runge-Kutta semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 0.056415185 0.056415495 0.056415514 0.056415515

3.3.21 (p. 127)
Runge-Kutta method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
1.0 54.695901186 54.727111858 54.729426250 54.729594761



386 Answers to Selected Exercises

Runge-Kutta semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

1.0 54.729099966 54.729561720 54.729592658 54.729594761

3.3.22 (p. 127)
Runge-Kutta method

x h = 0.1 h = 0.05 h = 0.025 “Exact"
3.0 1.361384082 1.361383812 1.361383809 1.361383810

Runge-Kutta semilinear method
x h = 0.1 h = 0.05 h = 0.025 “Exact"

3.0 1.361456502 1.361388196 1.361384079 1.361383810

3.3.24 (p. 127)
x h = .1 h = .05 h = .025 Exact

2.00 -1.000000000 -1.000000000 -1.000000000 -1.000000000

3.3.25 (p. 127)
x h = .1 h = .05 h = .025 “Exact"

1.00 1.000000000 1.000000000 1.000000000 1.000000000

3.3.26 (p. 127)
x h = .1 h = .05 h = .025 Exact

1.50 4.142171279 4.142170553 4.142170508 4.142170505

3.3.27 (p. 127)
x h = .1 h = .05 h = .025 Exact

3.0 16.666666988 16.666666687 16.666666668 16.666666667

Section 4.1 Answers, pp. 191–??

4.1.1 (p. 191) Q = 20e−(t ln 2)/3200 g 4.1.2 (p. 191) 2 ln10
ln 2 days 4.1.3 (p. 191) τ = 10

ln 2
ln 4/3

minutes

4.1.4 (p. 191) τ
ln(p0/p1)

ln 2
4.1.5 (p. 191)

tp

tq
=

lnp
lnq

4.1.6 (p. 191) k =
1

t2 − t1
ln
Q1

Q2
4.1.7 (p. 191)

20 g

4.1.8 (p. 191)
50 ln 2

3
yrs 4.1.9 (p. 191)

25
2

ln 2%

4.1.10 (p. 192) (a) = 20 ln 3 yr (b). Q0 = 100000e−.5 4.1.11 (p. 192) (a)Q(t) = 5000−4750e−t/10
(b) 5000 lbs
4.1.12 (p. 192)

1
25

yrs; 4.1.13 (p. 192) V = V0e
t ln 10/2 4 hours

4.1.14 (p. 192)
1500 ln 4

3
ln 2

yrs; 2−4/3Q0 4.1.15 (p. 192) W(t) = 20− 19e−t/20; limt→∞W(t) = 20
ounces
4.1.16 (p. ??) S(t) = 10(1 + e−t/10); limt→∞ S(t) = 10 g 4.1.17 (p. ??) 10 gallons
4.1.18 (p. ??) V(t) = 15000 + 10000et/20 4.1.19 (p. ??) W(t) = 4 × 106(t + 1)2 dollars t years

from now

4.1.20 (p. ??) p =
100

25 − 24e−t/2
4.1.21 (p. ??) (a) P(t) = 1000e.06t + 50

e.06t − 1
e.06/52 − 1

(b) 5.64×10−4

4.1.22 (p. ??) (a) P ′ = rP − 12M (b) P =
12M
r

(1 − ert) + P0e
rt (c)M ≈ rP0

12(1 − e−rN)
(d) For (i) approximateM = $402.25, exactM = $402.80
for (ii) approximateM = $1206.05, exactM = $1206.93.
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4.1.23 (p. ??) (a) T(α) = −
1
r

ln
(
1 −

(
1 − e−rN)/α

))
years

S(α) =
P0

(1 − e−rN)

[
rN+ α ln

(
1 − (1 − e−rN)/α

)]
(b) T(1.05) = 13.69 yrs, S(1.05) = $3579.94 T(1.10) = 12.61 yrs,

S(1.10) = $6476.63 T(1.15) = 11.70 yrs, S(1.15) = $8874.98.

4.1.24 (p. ??) P0 =


S0(1 − e(a−r)T )

r− a
if a 6= r,

S0T if a = r.
Section 4.2 Answers, pp. 202–??

4.2.1 (p. 202) ≈ 15.15◦F 4.2.2 (p. 202) T = −10 + 110e−t ln
11
9 4.2.3 (p. 202) ≈ 24.33◦F

4.2.4 (p. 202) (a) 91.30◦F (b) 8.99 minutes after being placed outside (c) never
4.2.5 (p. 202) (a) 12:11:32 (b) 12:47:33 4.2.6 (p. 202) (85/3)◦C 4.2.7 (p. 202) 32◦F 4.2.8 (p. 202)
Q(t) = 40(1 − e−3t/40)
4.2.9 (p. 203) Q(t) = 30 − 20e−t/10 4.2.10 (p. 203) K(t) = .3 − .2e−t/20 4.2.11 (p. 203) Q(50) =
47.5 (pounds)

4.2.12 (p. 203) 50 gallons 4.2.13 (p. 203) minq2 = q1/c 4.2.14 (p. 203) Q = t+ 300 −
234× 105

(t+ 300)2
, 0 6 t 6 300

4.2.15 (p. 203) (a) Q ′ +
2
25
Q = 6 − 2e−t/25 (b) Q = 75 − 50e−t/25 − 25e−2t/25 (c) 75

4.2.16 (p. 203) (a) T = Tm + (T0 − Tm)e−kt +
k(S0 − Tm)

(k− km)

(
e−kmt − e−kt

)
(b) T = Tm + k(S0 − Tm)te−kt + (T0 − Tm)e−kt (c) limt→∞ T(t) = limt→∞ S(t) = Tm

4.2.17 (p. 203) (a) T ′ = −k

(
1 +

a

am

)
T + k

(
Tm0 +

a

am
T0

)
(b) T =

aT0 + amTm0

a+ am
+
am(T0 − Tm0)

a+ am
e−k(1+a/am)t,

Tm =
aT0 + amTm0

a+ am
+
a(Tm0 − T0)

a+ am
e−k(1+a/am)t; (c) limt→∞ T(t) = limt→∞ Tm(t) =

aT0 + amTm0

a+ am

4.2.18 (p. 203) V =
a

b

V0

V0 − (V0 − a/b) e−at
, limt→∞ V(t) = a/b

4.2.19 (p. 203) c1 = c
(
1 − e−rt/W

)
, c2 = c

(
1 − e−rt/W −

r

W
te−rt/W

)
.

4.2.20 (p. ??) (a) cn = c

1 − e−rt/W
n−1∑
j=0

1
j!

(
rt

W

)j (b) c (c) 0

4.2.21 (p. ??) Let c∞ =
c1W1 + c2W2

W1 +W2
, α =

c2W
2
2 − c1W

2
1

W1 +W2
, and β =

W1 +W2

W1W2
. Then:

(a) c1(t) = c∞ +
α

W1
e−rβt, c2(t) = c∞ −

α

W2
e−rβt

(b) limt→∞ c1(t) = limt→∞ c2(t) = c∞
Section 4.3 Answers, pp. 207–208

4.3.1 (p. 207) v = −
384
5

(
1 − e−5t/12

)
; −

384
5

ft/s 4.3.2 (p. 207) k = 12; v = −16(1 − e−2t)

4.3.3 (p. 207) v = 25(1 − e−t);25 ft/s 4.3.4 (p. 207) v = 20 − 27e−t/40 4.3.5 (p. 207) ≈ 17.10 ft

4.3.6 (p. 207) v = −
40(13 + 3e−4t/5)

13 − 3e−4t/5 ; -40 ft/s 4.3.7 (p. 207) v = −128(1 − e−t/4)

4.3.9 (p. 207) T =
m

k
ln
(

1 +
v0k

mg

)
; ym = y0 +

m

k

[
v0 −

mg

k
ln
(

1 +
v0k

mg

)]
4.3.10 (p. 207) v = −

64(1 − e−t)

1 + e−t
; -64 ft/s
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4.3.11 (p. 207) v = α
v0(1 + e−βt) − α(1 − e−βt)

α(1 + e−βt) − v0(1 − e−βt)
; −α, where α =

√
mg

k
and β = 2

√
kg

m
.

4.3.12 (p. 207) T =

√
m

kg
tan−1

(
v0

√
k

mg

)
v = −

√
mg

k
;

1 − e−2
√
gk
m

(t−T)

1 + e−2
√
gk
m

(t−T)

4.3.13 (p. 208) s ′ = mg−
as

s+ 1
; a0 = mg. 4.3.14 (p. 208) (a)ms ′ = mg− f(s)

4.3.15 (p. 208) (a) v ′ = −9.8 + v4/81 (b) vT ≈ −5.308 m/s
4.3.16 (p. 208) (a) v ′ = −32+8

√
|v|; vT = −16 ft/s (b) From Exercise 4.3.14(c), vT is the negative

number such that −32 + 8
√
|vT | = 0; thus, vT = −16 ft/s.

4.3.17 (p. 208) ≈ 6.76 miles/s 4.3.18 (p. 208) ≈ 1.47 miles/s 4.3.20 (p. 208) α =
gR2

(ym + R)2

Section 4.4 Answers, pp. 213–??

4.4.1 (p. 213) y = 0 is a stable equilibrium; trajectories are v2 +
y4

4
= c

4.4.2 (p. 213) y = 0 is an unstable equilibrium; trajectories are v2 +
2y3

3
= c

4.4.3 (p. 213) y = 0 is a stable equilibrium; trajectories are v2 +
2|y|3

3
= c

4.4.4 (p. 213) y = 0 is a stable equilibrium; trajectories are v2 − e−y(y+ 1) = c
4.4.5 (p. 213) equilibria: 0 (stable) and −2, 2 (unstable); trajectories: 2v2 − y4 + 8y2 = c;

separatrix: 2v2 − y4 + 8y2 = 16
4.4.6 (p. 213) equilibria: 0 (unstable) and −2, 2 (stable); trajectories: 2v2 + y4 − 8y2 = c;

separatrix: 2v2 + y4 − 8y2 = 0
4.4.7 (p. 213) equilibria: 0,−2, 2 (stable), −1, 1 (unstable); trajectories:

6v2 + y2(2y4 − 15y2 + 24) = c; separatrix: 6v2 + y2(2y4 − 15y2 + 24) = 11
4.4.8 (p. 213) equilibria: 0, 2 (stable) and −2, 1 (unstable);

trajectories: 30v2 + y2(12y3 − 15y2 − 80y+ 120) = c;
separatrices: 30v2 + y2(12y3 − 15y2 − 80y+ 120) = 496 and
30v2 + y2(12y3 − 15y2 − 80y+ 120) = 37

4.4.9 (p. 214) No equilibria if a < 0; 0 is unstable if a = 0;
√
a is stable and

−
√
a is unstable if a > 0.

* 4.4.10 (p. 214) 0 is a stable equilibrium if a 6 0; −
√
a and

√
a are stable and 0 is unstable if

a > 0.
4.4.11 (p. 214) 0 is unstable if a 6 0; −

√
a and

√
a are unstable and 0 is stable if a > 0.

4.4.12 (p. 214) 0 is stable if a 6 0; 0 is stable and −
√
a and

√
a are unstable if a 6 0.

4.4.22 (p. ??) An equilibrium solution y of y ′′ + p(y) = 0 is unstable if there’s an ε > 0
such that, for every δ > 0, there’s a solution of (A) with

√
(y(0) − y)2 + v2(0) < δ,

but
√
(y(t) − y)2 + v2(t) > ε for some t > 0.

Section 4.5 Answers, pp. ??–??

4.5.1 (p. ??) y ′ = −
2xy

x2 + 3y2 4.5.2 (p. ??) y ′ = −
y2

(xy− 1)
4.5.3 (p. ??) y ′ = −

y(x2 + y2 − 2x2 ln |xy|)

x(x2 + y2 − 2y2 ln |xy|)
.

4.5.4 (p. ??) xy ′ − y = −
x1/2

2
4.5.5 (p. ??) y ′ + 2xy = 4xex2 4.5.6 (p. ??) xy ′ + y = 4x3

4.5.7 (p. ??) y ′ − y = cos x− sin x 4.5.8 (p. ??) (1 + x2)y ′ − 2xy = (1 − x)2ex

4.5.10 (p. ??) y ′g − yg ′ = f ′g − fg ′. 4.5.11 (p. ??) (x − x0)y
′ = y − y0 4.5.12 (p. ??) y ′(y2 −

x2 + 1) + 2xy = 0 4.5.13 (p. ??) 2x(y− 1)y ′ − y2 + x2 + 2y = 0
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4.5.14 (p. ??) (a) y = −81 + 18x, (9, 81) y = −1 + 2x, (1, 1)
(b) y = −121 + 22x, (11, 121) y = −1 + 2x, (1, 1)
(c) y = −100 − 20x, (−10, 100) y = −4 − 4x, (−2, 4)
(d) y = −25 − 10x, (−5, 25) y = −1 − 2x, (−1, 1)

4.5.15 (p. ??) (e) y =
5 + 3x

4
, (−3/5, 4/5) y = −

5 − 4x
3

, (4/5,−3/5)

4.5.17 (p. ??) (a) y = −
1
2
(1 + x), (1,−1); y =

5
2
+
x

10
, (25, 5)

(b) y =
1
4
(4 + x), (4, 2) y = −

1
4
(4 + x), (4,−2);

(c) y =
1
2
(1 + x), (1, 1) y =

7
2
+
x

14
, (49, 7)

(d) y = −
1
2
(1 + x), (1,−1) y = −

5
2
−
x

10
, (25,−5)

4.5.18 (p. ??) y = 2x2 4.5.19 (p. ??) y =
cx√

|x2 − 1|
4.5.20 (p. ??) y = y1 + c(x− x1)

4.5.21 (p. ??) y = −
x3

2
−
x

2
4.5.22 (p. ??) y = −x ln |x|+ cx 4.5.23 (p. ??) y =

√
2x+ 4

4.5.24 (p. ??) y =
√
x2 − 3 4.5.25 (p. ??) y = kx2 4.5.26 (p. ??) (y− x)3(y+ x) = k

4.5.27 (p. ??) y2 = −x+ k 4.5.28 (p. ??) y2 = −
1
2

ln(1 + 2x2) + k

4.5.29 (p. ??) y2 = −2x− ln(x− 1)2 + k 4.5.30 (p. ??) y = 1 +

√
9 − x2

2
; those with c > 0

4.5.33 (p. ??) tan−1 y

x
−

1
2

ln(x2 + y2) = k 4.5.34 (p. ??)
1
2

ln(x2 + y2) + (tanα) tan−1 y

x
= k

Section 5.1 Answers, pp. ??–??

5.1.1 (p. ??) (c) y = −2e2x + e5x (d) y = (5k0 − k1)
e2x

3
+ (k1 − 2k0)

e5x

3
.

5.1.2 (p. ??) (c) y = ex(3 cos x− 5 sin x) (d) y = ex (k0 cos x+ (k1 − k0) sin x)
5.1.3 (p. ??) (c) y = ex(7 − 3x) (d) y = ex (k0 + (k1 − k0)x)

5.1.4 (p. ??) (a) y =
c1

x− 1
+

c2

x+ 1
(b) y =

2
x− 1

−
3

x+ 1
; (−1, 1)

5.1.5 (p. ??) (a) ex (b) e2x cos x (c) x2 + 2x− 2 (d) −
5
6
x−5/6 (e) −

1
x2 (f) (x ln |x|)2 (g)

e2x

2
√
x

5.1.6 (p. ??) 0 5.1.7 (p. ??) W(x) = (1 − x2)−1 5.1.8 (p. ??) W(x) =
1
x

5.1.10 (p. ??) y2 = e−x

5.1.11 (p. ??) y2 = xe3x 5.1.12 (p. ??) y2 = xeax 5.1.13 (p. ??) y2 =
1
x

5.1.14 (p. ??) y2 = x ln x

5.1.15 (p. ??) y2 = xa ln x 5.1.16 (p. ??) y2 = x1/2e−2x 5.1.17 (p. ??) y2 = x 5.1.18 (p. ??)

y2 = x sin x 5.1.19 (p. ??) y2 = x1/2 cos x 5.1.20 (p. ??) y2 = xe−x 5.1.21 (p. ??) y2 =
1

x2 − 4
5.1.22 (p. ??) y2 = e2x

5.1.23 (p. ??) y2 = x2 5.1.35 (p. ??) (a) y ′′ − 2y ′ + 5y = 0 (b) (2x − 1)y ′′ − 4xy ′ + 4y = 0 (c)
x2y ′′ − xy ′ + y = 0

(d) x2y ′′ + xy ′ + y = 0 (e) y ′′ − y = 0 (f) xy ′′ − y ′ = 0
5.1.37 (p. ??) (c) y = k0y1 + k1y2 5.1.38 (p. ??) y1 = 1, y2 = x− x0; y = k0 + k1(x− x0)
5.1.39 (p. ??) y1 = cosh(x− x0), y2 = sinh(x− x0); y = k0 cosh(x− x0) + k1 sinh(x− x0)

5.1.40 (p. ??) y1 = cosω(x− x0), y2 =
1
ω

sinω(x− x0) y = k0 cosω(x− x0) +
k1

ω
sinω(x− x0)
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5.1.41 (p. ??) y1 =
1

1 − x2 , y2 =
x

1 − x2 y =
k0 + k1x

1 − x2

5.1.42 (p. ??) (c) k0 = k1 = 0; y =

{
c1x

2 + c2x
3, x > 0,

c1x
2 + c3x

3, x < 0
(d) (0,∞) if x0 > 0, (−∞, 0) if x0 < 0

5.1.43 (p. ??) (c) k0 = 0, k1 arbitrary y = k1x+ c2x
2

5.1.44 (p. ??) (c) k0 = k1 = 0 y =

{
a1x

3 + a2x
4, x > 0,

b1x
3 + b2x

4, x < 0
(d) (0,∞) if x0 > 0, (−∞, 0) if x0 < 0

Section 5.2 Answers, pp. ??–??

5.2.1 (p. ??) y = c1e
−6x + c2e

x 5.2.2 (p. ??) y = e2x(c1 cos x + c2 sin x) 5.2.3 (p. ??) y =
c1e

−7x + c2e
−x

5.2.4 (p. ??) y = e2x(c1 + c2x) 5.2.5 (p. ??) y = e−x(c1 cos 3x+ c2 sin 3x)
5.2.6 (p. ??) y = e−3x(c1 cos x + c2 sin x) 5.2.7 (p. ??) y = e4x(c1 + c2x) 5.2.8 (p. ??) y =
c1 + c2e

−x

5.2.9 (p. ??) y = ex(c1 cos
√

2x+ c2 sin
√

2x) 5.2.10 (p. ??) y = e−3x(c1 cos 2x+ c2 sin 2x)

5.2.11 (p. ??) y = e−x/2
(
c1 cos

3x
2

+ c2 sin
3x
2

)
5.2.12 (p. ??) y = c1e

−x/5 + c2e
x/2

5.2.13 (p. ??) y = e−7x(2 cos x − 3 sin x) 5.2.14 (p. ??) y = 4ex/2 + 6e−x/3 5.2.15 (p. ??) y =
3ex/3 − 4e−x/2

5.2.16 (p. ??) y =
e−x/2

3
+

3e3x/2

4
5.2.17 (p. ??) y = e3x/2(3 − 2x) 5.2.18 (p. ??) y = 3e−4x −

4e−3x

5.2.19 (p. ??) y = 2xe3x 5.2.20 (p. ??) y = ex/6(3+2x) 5.2.21 (p. ??) y = e−2x
(

3 cos
√

6x+
2
√

6
3

sin
√

6x
)

5.2.23 (p. ??) y = 2e−(x−1) − 3e−2(x−1) 5.2.24 (p. ??) y =
1
3
e−(x−2) −

2
3
e7(x−2)

5.2.25 (p. ??) y = e7(x−1) (2 − 3(x− 1)) 5.2.26 (p. ??) y = e−(x−2)/3 (2 − 4(x− 2))

5.2.27 (p. ??) y = 2 cos
2
3

(
x−

π

4

)
− 3 sin

2
3

(
x−

π

4

)
5.2.28 (p. ??) y = 2 cos

√
3
(
x−

π

3

)
−

1√
3

sin
√

3
(
x−

π

3

)
5.2.30 (p. ??) y =

k0

r2 − r1

(
r2e

r1(x−x0) − r1e
r2(x−x0)

)
+

k1

r2 − r1

(
er2(x−x0) − er1(x−x0)

)
5.2.31 (p. ??) y = er1(x−x0) [k0 + (k1 − r1k0)(x− x0)]

5.2.32 (p. ??) y = eλ(x−x0)

[
k0 cosω(x− x0) +

(
k1 − λk0

ω

)
sinω(x− x0)

]
Section 5.3 Answers, pp. ??–??

5.3.1 (p. ??) yp = −1 + 2x+ 3x2; y = −1 + 2x+ 3x2 + c1e
−6x + c2e

x

5.3.2 (p. ??) yp = 1 + x; y = 1 + x+ e2x(c1 cos x+ c2 sin x)
5.3.3 (p. ??) yp = −x+ x3; y = −x+ x3 + c1e

−7x + c2e
−x

5.3.4 (p. ??) yp = 1 − x2; y = 1 − x2 + e2x(c1 + c2x)
5.3.5 (p. ??) yp = 2x+ x3; y = 2x+ x3 + e−x(c1 cos 3x+ c2 sin 3x);

y = 2x+ x3 + e−x(2 cos 3x+ 3 sin 3x)
5.3.6 (p. ??) yp = 1 + 2x; y = 1 + 2x+ e−3x(c1 cos x+ c2 sin x); y = 1 + 2x+ e−3x(cos x− sin x)

5.3.8 (p. ??) yp =
2
x

5.3.9 (p. ??) yp = 4x1/2 5.3.10 (p. ??) yp =
x3

2
5.3.11 (p. ??) yp =

1
x3

5.3.12 (p. ??) yp = 9x1/3 5.3.13 (p. ??) yp =
2x4

13
5.3.16 (p. ??) yp =

e3x

3
; y =

e3x

3
+ c1e

−6x +

c2e
x 5.3.17 (p. ??) yp = e2x; y = e2x(1 + c1 cos x+ c2 sin x)
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5.3.18 (p. ??) y = −2e−2x; y = −2e−2x + c1e
−7x + c2e

−x; y = −2e−2x − e−7x + e−x

5.3.19 (p. ??) yp = ex; y = ex + e2x(c1 + c2x); y = ex + e2x(1 − 3x)

5.3.20 (p. ??) yp =
4
45
ex/2; y =

4
45
ex/2 + e−x(c1 cos 3x+ c2 sin 3x)

5.3.21 (p. ??) yp = e−3x; y = e−3x(1 + c1 cos x+ c2 sin x)
5.3.24 (p. ??) yp = cos x− sin x; y = cos x− sin x+ e4x(c1 + c2x)
5.3.25 (p. ??) yp = cos 2x− 2 sin 2x; y = cos 2x− 2 sin 2x+ c1 + c2e−x
5.3.26 (p. ??) yp = cos 3x; y = cos 3x+ ex(c1 cos

√
2x+ c2 sin

√
2x)

5.3.27 (p. ??) yp = cos x+ sin x; y = cos x+ sin x+ e−3x(c1 cos 2x+ c2 sin 2x)
5.3.28 (p. ??) yp = −2 cos 2x+ sin 2x; y = −2 cos 2x+ sin 2x+ c1e−4x + c2e

−3x

y = −2 cos 2x+ sin 2x+ 2e−4x − 3e−3x

5.3.29 (p. ??) yp = cos 3x− sin 3x; y = cos 3x− sin 3x+ e3x(c1 + c2x)
y = cos 3x− sin 3x+ e3x(1 + 2x)

5.3.30 (p. ??) y =
1

ω2
0 −ω

2 (M cosωx+N sinωx) + c1 cosω0x+ c2 sinω0x

5.3.33 (p. ??) yp = −1 + 2x+ 3x2 +
e3x

3
; y = −1 + 2x+ 3x2 +

e3x

3
+ c1e

−6x + c2e
x

5.3.34 (p. ??) yp = 1 + x+ e2x; y = 1 + x+ e2x(1 + c1 cos x+ c2 sin x)
5.3.35 (p. ??) yp = −x+ x3 − 2e−2x; y = −x+ x3 − 2e−2x + c1e

−7x + c2e
−x

5.3.36 (p. ??) yp = 1 − x2 + ex; y = 1 − x2 + ex + e2x(c1 + c2x)

5.3.37 (p. ??) yp = 2x+ x3 +
4
45
ex/2; y = 2x+ x3 +

4
45
ex/2 + e−x(c1 cos 3x+ c2 sin 3x)

5.3.38 (p. ??) yp = 1 + 2x+ e−3x; y = 1 + 2x+ e−3x(1 + c1 cos x+ c2 sin x)

Section 5.4 Answers, pp. ??–??

5.4.1 (p. ??) yp = e3x
(
−

1
4
+
x

2

)
5.4.2 (p. ??) yp = e−3x

(
1 −

x

4

)
5.4.3 (p. ??) yp = ex

(
2 −

3x
4

)
5.4.4 (p. ??) yp = e2x(1 − 3x + x2) 5.4.5 (p. ??) yp = e−x(1 + x2) 5.4.6 (p. ??) yp = ex(−2 +
x+ 2x2)

5.4.7 (p. ??) yp = xe−x
(

1
6
+
x

2

)
5.4.8 (p. ??) yp = xex(1+2x) 5.4.9 (p. ??) yp = xe3x

(
−1 +

x

2

)
5.4.10 (p. ??) yp = xe2x(−2 + x) 5.4.11 (p. ??) yp = x2e−x

(
1 +

x

2

)
5.4.12 (p. ??) yp =

x2ex
(

1
2
− x

)
5.4.13 (p. ??) yp =

x2e2x

2
(1 − x+ x2) 5.4.14 (p. ??) yp =

x2e−x/3

27
(3 − 2x+ x2)

5.4.15 (p. ??) y =
e3x

4
(−1 + 2x) + c1ex + c2e2x 5.4.16 (p. ??) y = ex(1 − 2x) + c1e2x + c2e4x

5.4.17 (p. ??) y =
e2x

5
(1 − x) + e−3x(c1 + c2x) 5.4.18 (p. ??) y = xex(1 − 2x) + c1ex + c2e−3x

5.4.19 (p. ??) y = ex
[
x2(1 − 2x) + c1 + c2x

]
5.4.20 (p. ??) y = −e2x(1 + x) + 2e−x − e5x

5.4.21 (p. ??) y = xe2x + 3ex − e−4x 5.4.22 (p. ??) y = e−x(2 + x− 2x2) − e−3x

5.4.23 (p. ??) y = e−2x(3 − x) − 2e5x 5.4.24 (p. ??) yp = −
ex

3
(1 − x) + e−x(3 + 2x)

5.4.25 (p. ??) yp = ex(3 + 7x) + xe3x 5.4.26 (p. ??) yp = x3e4x + 1 + 2x+ x2

5.4.27 (p. ??) yp = xe2x(1 − 2x) + xex 5.4.28 (p. ??) yp = ex(1 + x) + x2e−x

5.4.29 (p. ??) yp = x2e−x + e3x(1 − x2) 5.4.31 (p. ??) yp = 2e2x 5.4.32 (p. ??) yp = 5xe4x

5.4.33 (p. ??) yp = x2e4x 5.4.34 (p. ??) yp = −
e3x

4
(1 + 2x − 2x2) 5.4.35 (p. ??) yp = xe3x(4 −

x+ 2x2)
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5.4.36 (p. ??) yp = x2e−x/2(−1 + 2x+ 3x2)

5.4.37 (p. ??) (a) y = e−x
(

4
3
x3/2 + c1x+ c2

)
(b) y = e−3x

[
x2

4
(2 ln x− 3) + c1x+ c2

]
(c) y = e2x [(x+ 1) ln |x+ 1|+ c1x+ c2] (d) y = e−x/2

(
x ln |x|+

x3

6
+ c1x+ c2

)
5.4.39 (p. ??) (a) ex(3 + x) + c (b) −e−x(1 + x)2 + c (c) −

e−2x

8
(3 + 6x+ 6x2 + 4x3) + c

(d) ex(1 + x2) + c (e) e3x(−6 + 4x+ 9x2) + c (f) −e−x(1 − 2x3 + 3x4) + c

5.4.40 (p. ??)
(−1)kk!eαx

αk+1

k∑
r=0

(−αx)r

r!
+ c

Section 5.5 Answers, pp. ??–??

5.5.1 (p. ??) yp = cos x+ 2 sin x 5.5.2 (p. ??) yp = cos x+ (2 − 2x) sin x
5.5.3 (p. ??) yp = ex(−2 cos x+ 3 sin x)

5.5.4 (p. ??) yp =
e2x

2
(cos 2x− sin 2x) 5.5.5 (p. ??) yp = −ex(x cos x− sin x)

5.5.6 (p. ??) yp = e−2x(1 − 2x)(cos 3x− sin 3x) 5.5.7 (p. ??) yp = x(cos 2x− 3 sin 2x)
5.5.8 (p. ??) yp = −x [(2 − x) cos x+ (3 − 2x) sin x] 5.5.9 (p. ??) yp = x

[
x cos

(x
2

)
− 3 sin

(x
2

)]
5.5.10 (p. ??) yp = xe−x(3 cos x+4 sin x) 5.5.11 (p. ??) yp = xex [(−1 + x) cos 2x+ (1 + x) sin 2x]
5.5.12 (p. ??) yp = −(14 − 10x) cos x− (2 + 8x− 4x2) sin x.

5.5.13 (p. ??) yp = (1 + 2x+ x2) cos x+ (1 + 3x2) sin x 5.5.14 (p. ??) yp =
x2

2
(cos 2x− sin 2x)

5.5.15 (p. ??) yp = ex(x2 cos x+ 2 sin x) 5.5.16 (p. ??) yp = ex(1 − x2)(cos x+ sin x)
5.5.17 (p. ??) yp = ex(x2−x3)(cos x+sin x) 5.5.18 (p. ??) yp = e−x [(1 + 2x) cos x− (1 − 3x) sin x]
5.5.19 (p. ??) yp = x(2 cos 3x− sin 3x) 5.5.20 (p. ??) yp = −x3 cos x+ (x+ 2x2) sin x
5.5.21 (p. ??) yp = −e−x

[
(x+ x2) cos x− (1 + 2x) sin x

]
5.5.22 (p. ??) y = ex(2 cos x+3 sin x)+3ex−e6x 5.5.23 (p. ??) y = ex [(1 + 2x) cos x+ (1 − 3x) sin x]
5.5.24 (p. ??) y = ex(cos x−2 sin x)+e−3x(cos x+sin x) 5.5.25 (p. ??) y = e3x [(2 + 2x) cos x− (1 + 3x) sin x]

5.5.26 (p. ??) y = e3x [(2 + 3x) cos x+ (4 − x) sin x]+3ex−5e2x 5.5.27 (p. ??) yp = xe3x −
ex

5
(cos x− 2 sin x)

5.5.28 (p. ??) yp = x(cos x+ 2 sin x) −
ex

2
(1 − x) +

e−x

2
5.5.29 (p. ??) yp = −

xex

2
(2 + x) + 2xe2x +

1
10

(3 cos x+ sin x)

5.5.30 (p. ??) yp = xex(cos x+ x sin x) +
e−x

25
(4 + 5x) + 1 + x+

x2

2

5.5.31 (p. ??) yp =
x2e2x

6
(3 + x) − e2x(cos x− sin x) + 3e3x +

1
4
(2 + x)

5.5.32 (p. ??) y = (1 − 2x+ 3x2)e2x + 4 cos x+ 3 sin x 5.5.33 (p. ??) y = xe−2x cos x+ 3 cos 2x

5.5.34 (p. ??) y = −
3
8

cos 2x+
1
4

sin 2x+ e−x −
13
8
e−2x −

3
4
xe−2x

5.5.40 (p. ??) (a) 2x cos x− (2 − x2) sin x+ c (b) −
ex

2
[
(1 − x2) cos x− (1 − x)2 sin x

]
+ c

(c) −
e−x

25
[(4 + 10x) cos 2x− (3 − 5x) sin 2x] + c

(d) −
e−x

2
[
(1 + x)2 cos x− (1 − x2) sin x

]
+ c

(e) −
ex

2
[
x(3 − 3x+ x2) cos x− (3 − 3x+ x3) sin x

]
+ c

(f) −ex [(1 − 2x) cos x+ (1 + x) sin x] + c (g) e−x [x cos x+ x(1 + x) sin x] + c
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Section 5.6 Answers, pp. ??–??

5.6.1 (p. ??) y = 1 − 2x+ c1e−x + c2xex; {e−x, xex} 5.6.2 (p. ??) y =
4

3x2 + c1x+
c2

x
; {x, 1/x}

5.6.3 (p. ??) y =
x(ln |x|)2

2
+ c1x+ c2x ln |x|; {x, x ln |x|}

5.6.4 (p. ??) y = (e2x + ex) ln(1 + e−x) + c1e
2x + c2e

x; {e2x, ex}

5.6.5 (p. ??) y = ex
(

4
5
x7/2 + c1 + c2x

)
; {ex, xex}

5.6.6 (p. ??) y = ex(2x3/2 + x1/2 ln x+ c1x1/2 + c2x
−1/2); {x1/2ex, x−1/2e−x}

5.6.7 (p. ??) y = ex(x sin x+ cos x ln | cos x|+ c1 cos x+ c2 sin x); {ex cos x, ex sin x}
5.6.8 (p. ??) y = e−x

2
(2e−2x + c1 + c2x); {e−x

2 , xe−x2
}

5.6.9 (p. ??) y = 2x+ 1 + c1x
2 +

c2

x2 ; {x2, 1/x2}

5.6.10 (p. ??) y =
xe2x

9
+ xe−x(c1 + c2x); {xe−x, x2e−x}

5.6.11 (p. ??) y = xex
(x

3
+ c1 +

c2

x2

)
; {xex, ex/x}

5.6.12 (p. ??) y = −
(2x− 1)2ex

8
+ c1e

x + c2xe
−x; {ex, xe−x}

5.6.13 (p. ??) y = x4 + c1x
2 + c2x

2 ln |x|; {x2, x2 ln |x|}
5.6.14 (p. ??) y = e−x(x3/2 + c1 + c2x

1/2); {e−x, x1/2e−x}

5.6.15 (p. ??) y = ex(x + c1 + c2x
2); {ex, x2ex} 5.6.16 (p. ??) y = x1/2

(
e2x

2
+ c1 + c2e

x

)
;

{x1/2, x1/2ex}
5.6.17 (p. ??) y = −2x2 ln x+ c1x2 + c2x

4; {x2, x4} 5.6.18 (p. ??) {ex, ex/x} 5.6.19 (p. ??) {x2, x3}

5.6.20 (p. ??) {ln |x|, x ln |x|} 5.6.21 (p. ??) {sin
√
x, cos

√
x} 5.6.22 (p. ??) {ex, x3ex} 5.6.23 (p. ??)

{xa, xa ln x}
5.6.24 (p. ??) {x sin x, x cos x} 5.6.25 (p. ??) {e2x, x2e2x} 5.6.26 (p. ??) {x1/2, x1/2 cos x}
5.6.27 (p. ??) {x1/2e2x, x1/2e−2x} 5.6.28 (p. ??) {1/x, e2x} 5.6.29 (p. ??) {ex, x2} 5.6.30 (p. ??)
{e2x, x2e2x} 5.6.31 (p. ??) y = x4 + 6x2 − 8x2 ln |x|

5.6.32 (p. ??) y = 2e2x − xe−x 5.6.33 (p. ??) y =
(x+ 1)

4
[
−ex(3 − 2x) + 7e−x

]
5.6.34 (p. ??) y =

x2

4
+ x 5.6.35 (p. ??) y =

(x+ 2)2

6(x− 2)
+

2x
x2 − 4

5.6.38 (p. ??) (a) y =
−kc1 sinkx+ kc2 coskx
c1 coskx+ c2 sinkx

(b) y =
c1 + 2c2ex

c1 + c2ex

(c) y =
−6c1 + c2e7x

c1 + c2e7x
(d) y = −

7c1 + c2e6x

c1 + c2e6x

(e) y = −
(7c1 − c2) cos x+ (c1 + 7c2) sin x

c1 cos x+ c2 sin x

(f) y =
−2c1 + 3c2e5x/6

6(c1 + c2e5x/6)
(g) y =

c1 + c2(x+ 6)
6(c1 + c2x)

5.6.39 (p. ??) (a) y =
c1 + c2e

x(1 + x)

x(c1 + c2ex)
(b) y =

−2c1x+ c2(1 − 2x2)

c1 + c2x

(c) y =
−c1 + c2e

2x(x+ 1)
c1 + c2xe2x

(d) y =
2c1 + c2e−3x(1 − x)

c1 + c2xe−3x

(e) y =
(2c2x− c1) cos x− (2c1x+ c2) sin x

2x(c1 cos x+ c2 sin x)
(f) y =

c1 + 7c2x6

x(c1 + c2x6)
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Section 5.7 Answers, pp. ??–??

5.7.1 (p. ??) yp =
− cos 3x ln | sec 3x+ tan 3x|

9
5.7.2 (p. ??) yp = −

sin 2x ln | cos 2x|
4

+
x cos 2x

2
5.7.3 (p. ??) yp = 4ex(1 + ex) ln(1 + e−x) 5.7.4 (p. ??) yp = 3ex(cos x ln | cos x|+ x sin x)

5.7.5 (p. ??) yp =
8
5
x7/2ex 5.7.6 (p. ??) yp = ex ln(1 − e−2x) − e−x ln(e2x − 1) 5.7.7 (p. ??)

yp =
2(x2 − 3)

3

5.7.8 (p. ??) yp =
e2x

x
5.7.9 (p. ??) yp = x1/2ex ln x 5.7.10 (p. ??) yp = e−x(x+2)

5.7.11 (p. ??) yp = −4x5/2 5.7.12 (p. ??) yp = −2x2 sin x − 2x cos x 5.7.13 (p. ??) yp =

−
xe−x(x+ 1)

2

5.7.14 (p. ??) yp = −

√
x cos

√
x

2
5.7.15 (p. ??) yp =

3x4ex

2
5.7.16 (p. ??) yp = xa+1

5.7.17 (p. ??) yp =
x2 sin x

2
5.7.18 (p. ??) yp = −2x2 5.7.19 (p. ??) yp = −e−x sin x

5.7.20 (p. ??) yp = −

√
x

2
5.7.21 (p. ??) yp =

x3/2

4
5.7.22 (p. ??) yp = −3x2

5.7.23 (p. ??) yp =
x3ex

2
5.7.24 (p. ??) yp = −

4x3/2

15
5.7.25 (p. ??) yp = x3ex 5.7.26 (p. ??)

yp = xex

5.7.27 (p. ??) yp = x2 5.7.28 (p. ??) yp = xex(x− 2) 5.7.29 (p. ??) yp =
√
xex(x− 1)/4

5.7.30 (p. ??) y =
e2x(3x2 − 2x+ 6)

6
+
xe−x

3
5.7.31 (p. ??) y = (x− 1)2 ln(1− x) + 2x2 − 5x+ 3

5.7.32 (p. ??) y = (x2 − 1)ex − 5(x − 1) 5.7.33 (p. ??) y =
x(x2 + 6)
3(x2 − 1)

5.7.34 (p. ??) y =

−
x2

2
+ x+

1
2x2 5.7.35 (p. ??) y =

x2(4x+ 9)
6(x+ 1)

5.7.38 (p. ??) (a) y = k0 cosh x+ k1 sinh x+
∫x
0

sinh(x− t)f(t)dt

(b) y ′ = k0 sinh x+ k1 cosh x+
∫x
0

cosh(x− t)f(t)dt

5.7.39 (p. ??) (a) y(x) = k0 cos x+ k1 sin x+
∫x
0

sin(x− t)f(t)dt

(b) y ′(x) = −k0 sin x+ k1 cos x+
∫x
0 cos(x− t)f(t)dt

Section 6.1 Answers, pp. ??–??

6.1.1 (p. ??) y = 3 cos 4
√

6t−
1

2
√

6
sin 4
√

6t ft 6.1.2 (p. ??) y = −
1
4

cos 8
√

5t−
1

4
√

5
sin 8
√

5t ft

6.1.3 (p. ??) y = 1.5 cos 14
√

10t cm

6.1.4 (p. ??) y =
1
4

cos 8t−
1
16

sin 8t ft; R =

√
17

16
ft; ω0 = 8 rad/s; T = π/4 s;

φ ≈ −.245 rad ≈ −14.04◦;

6.1.5 (p. ??) y = 10 cos 14t+
25
14

sin 14t cm; R =
5
14
√

809 cm; ω0 = 14 rad/s; T = π/7 s;
φ ≈ .177 rad ≈ 10.12◦

6.1.6 (p. ??) y = −
1
4

cos
√

70 t+
2√
70

sin
√

70 tm; R =
1
4

√
67
35

m ω0 =
√

70 rad/s;

T = 2π/
√

70 s; φ ≈ 2.38 rad ≈ 136.28◦
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6.1.7 (p. ??) y =
2
3

cos 16t−
1
4

sin 16t ft 6.1.8 (p. ??) y =
1
2

cos 8t−
3
8

sin 8t ft 6.1.9 (p. ??) .72 m

6.1.10 (p. ??) y =
1
3

sin t+
1
2

cos 2t+
5
6

sin 2t ft 6.1.11 (p. ??) y =
16
5

(
4 sin

t

4
− sin t

)
6.1.12 (p. ??) y = −

1
16

sin 8t+
1
3

cos 4
√

2t−
1

8
√

2
sin 4
√

2t

6.1.13 (p. ??) y = −t cos 8t−
1
6

cos 8t+
1
8

sin 8t ft 6.1.14 (p. ??) T = 4
√

2 s

6.1.15 (p. ??) ω = 8 rad/s y = −
t

16
(− cos 8t+ 2 sin 8t) +

1
128

sin 8t ft

6.1.16 (p. ??) ω = 4
√

6 rad/s; y = −
t√
6

[
8
3

cos 4
√

6t+ 4 sin 4
√

6t
]
+

1
9

sin 4
√

6t ft

6.1.17 (p. ??) y =
t

2
cos 2t−

t

4
sin 2t+ 3 cos 2t+ 2 sin 2tm

6.1.18 (p. ??) y = y0 cosω0t+
v0

ω0
sinω0t; R =

1
ω0

√
(ω0y0)2 + (v0)2;

cosφ =
y0ω0√

(ω0y0)2 + (v0)2
; sinφ =

v0√
(ω0y0)2 + (v0)2

6.1.19 (p. ??) The object with the longer period weighs four times as much as the other.
6.1.20 (p. ??) T2 =

√
2T1, where T1 is the period of the smaller object.

6.1.21 (p. ??) k1 = 9k2, where k1 is the spring constant of the system with the shorter period.

Section 6.2 Answers, pp. ??–??

6.2.1 (p. ??) y =
e−2t

2
(3 cos 2t− sin 2t) ft;

√
5
2
e−2t ft

6.2.2 (p. ??) y = −e−t
(

3 cos 3t+
1
3

sin 3t
)

ft
√

82
3
e−t ft

6.2.3 (p. ??) y = e−16t
(

1
4
+ 10t

)
ft 6.2.4 (p. ??) y = −

e−3t

4
(5 cos t+ 63 sin t) ft

6.2.5 (p. ??) 0 6 c < 8 lb-sec/ft 6.2.6 (p. ??) y =
1
2
e−3t

(
cos
√

91t+
11√
91

sin
√

91t
)

ft

6.2.7 (p. ??) y = −
e−4t

3
(2 + 8t) ft 6.2.8 (p. ??) y = e−10t

(
9 cos 4

√
6t+

45
2
√

6
sin 4
√

6t
)

cm

6.2.9 (p. ??) y = e−3t/2
(

3
2

cos
√

41
2
t+

9
2
√

41
sin
√

41
2
t

)
ft

6.2.10 (p. ??) y = e−
3
2 t

(
1
2

cos
√

119
2

t−
9

2
√

119
sin
√

119
2

t

)
ft

6.2.11 (p. ??) y = e−8t
(

1
4

cos 8
√

2t−
1

4
√

2
sin 8
√

2t
)

ft

6.2.12 (p. ??) y = e−t
(
−

1
3

cos 3
√

11t+
14

9
√

11
sin 3
√

11t
)

ft

6.2.13 (p. ??) yp =
22
61

cos 2t+
2
61

sin 2t ft 6.2.14 (p. ??) y = −
2
3
(e−8t − 2e−4t)

6.2.15 (p. ??) y = e−2t
(

1
10

cos 4t−
1
5

sin 4t
)

m 6.2.16 (p. ??) y = e−3t(10 cos t− 70 sin t) cm

6.2.17 (p. ??) yp = −
2
15

cos 3t+
1
15

sin 3t ft

6.2.18 (p. ??) yp =
11
100

cos 4t+
27
100

sin 4t cm 6.2.19 (p. ??) yp =
42
73

cos t+
39
73

sin t ft
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6.2.20 (p. ??) y = −
1
2

cos 2t+
1
4

sin 2tm 6.2.21 (p. ??) yp =
1
cω0

(−β cosω0t+ α sinω0t)

6.2.24 (p. ??) y = e−ct/2m
(
y0 cosω1t+

1
ω1

(v0 +
cy0

2m
) sinω1t

)
6.2.25 (p. ??) y =

r2y0 − v0
r2 − r1

er1t +
v0 − r1y0

r2 − r1
er2t 6.2.26 (p. ??) y = er1t(y0 + (v0 − r1y0)t)

Section 6.3 Answers, pp. ??–??

6.3.1 (p. ??) I = e−15t
(

2 cos 5
√

15t−
6√
31

sin 5
√

31t
)

6.3.2 (p. ??) I = e−20t(2 cos 40t− 101 sin 40t) 6.3.3 (p. ??) I = −
200
3
e−10t sin 30t

6.3.4 (p. ??) I = −10e−30t(cos 40t+ 18 sin 40t) 6.3.5 (p. ??) I = −e−40t(2 cos 30t− 86 sin 30t)

6.3.6 (p. ??) Ip = −
1
3
(cos 10t+ 2 sin 10t) 6.3.7 (p. ??) Ip =

20
37

(cos 25t− 6 sin 25t)

6.3.8 (p. ??) Ip =
3
13

(8 cos 50t− sin 50t) 6.3.9 (p. ??) Ip =
20
123

(17 sin 100t− 11 cos 100t)

6.3.10 (p. ??) Ip = −
45
52

(cos 30t+ 8 sin 30t)

6.3.12 (p. ??) ω0 = 1/
√
LC maximum amplitude =

√
U2 + V2/R

Section 6.4 Answers, pp. ??–??

6.4.1 (p. ??) If e = 1, then Y2 = ρ(ρ− 2X); if e 6= 1
(
X+

eρ

1 − e2

)2

+
Y2

1 − e2
=

ρ2

(1 − e2)2
if ;

e < 1 let X0 = −
eρ

1 − e2
, a =

ρ

1 − e2
, b =

ρ√
1 − e2

.

6.4.2 (p. ??) Let h = r20θ
′
0; then ρ =

h2

k
, e =

[(
ρ

r0
− 1
)2

+

(
ρr ′0
h

)2
]1/2

. If e = 0, then

θ0 is undefined, but also irrelevant if e 6= 0 then φ = θ0 − α, where −π 6 α < π,

cosα =
1
e

(
ρ

r0
− 1
)

and sinα =
ρr ′0
eh

.

6.4.3 (p. ??) (a) e =
γ2 − γ1

γ1 + γ2
(b) r0 = Rγ1, r ′0 = 0, θ0 arbitrary, θ ′0 =

[
2gγ2

Rγ3
1(γ1 + γ2)

]1/2
6.4.4 (p. ??) f(r) = −mh2

(
6c
r4

+
1
r3

)
6.4.5 (p. ??) f(r) = −

mh2(γ2 + 1)
r3

6.4.6 (p. ??) (a)
d2u

dθ2 +

(
1 −

k

h2

)
u = 0, u(θ0) =

1
r0

,
du(θ0)

dθ
= −

r ′0
h

. (b) with γ =∣∣∣∣1 −
k

h2

∣∣∣∣1/2: (i) r = r0

(
coshγ(θ− θ0) −

r0r
′
0

γh
sinhγ(θ− θ0)

)−1

(ii) r = r0

(
1 −

r0r
′
0

h
(θ− θ0)

)−1

;

(iii) r = r0

(
cosγ(θ− θ0) −

r0r
′
0

γh
sinγ(θ− θ0)

)−1

Section 7.1 Answers, pp. ??–??

7.1.1 (p. ??) (a) R = 2; I = (−1, 3); (b) R = 1/2; I = (3/2, 5/2) (c) R = 0; (d) R = 16;
I = (−14, 18) (e) R =∞; I = (−∞,∞) (f) R = 4/3; I = (−25/3,−17/3)

7.1.3 (p. ??) (a) R = 1; I = (0, 2) (b) R =
√

2; I = (−2 −
√

2,−2 +
√

2); (c) R =∞;
I = (−∞,∞) (d) R = 0 (e) R =

√
3; I = (−

√
3,
√

3) (f) R = 1 I = (0, 2)
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7.1.5 (p. ??) (a) R = 3; I = (0, 6) (b) R = 1; I = (−1, 1) (c) R = 1/
√

3
I = (3 − 1/

√
3, 3 + 1/

√
3) (d) R =∞; I = (−∞,∞) (e) R = 0 (f) R = 2;

I = (−1, 3)
7.1.11 (p. ??) bn = 2(n+ 2)(n+ 1)an+2 + (n+ 1)nan+1 + (n+ 3)an
7.1.12 (p. ??) b0 = 2a2−2a0 bn = (n+2)(n+1)an+2+[3n(n−1)−2]an+3(n−1)an−1, n > 1
7.1.13 (p. ??) bn = (n+ 2)(n+ 1)an+2 + 2(n+ 1)an+1 + (2n2 − 5n+ 4)an
7.1.14 (p. ??) bn = (n+ 2)(n+ 1)an+2 + 2(n+ 1)an+1 + (n2 − 2n+ 3)an
7.1.15 (p. ??) bn = (n+ 2)(n+ 1)an+2 + (3n2 − 5n+ 4)an
7.1.16 (p. ??) b0 = −2a2 + 2a1 + a0,

bn = −(n+ 2)(n+ 1)an+2 + (n+ 1)(n+ 2)an+1 + (2n+ 1)an + an−1, n > 2
7.1.17 (p. ??) b0 = 8a2 + 4a1 − 6a0,

bn = 4(n+ 2)(n+ 1)an+2 + 4(n+ 1)2an+1 + (n2 + n− 6)an − 3an−1, n > 1
7.1.21 (p. ??) b0 = (r+ 1)(r+ 2)a0,

bn = (n+ r+ 1)(n+ r+ 2)an − (n+ r− 2)2an−1, n > 1.
7.1.22 (p. ??) b0 = (r− 2)(r+ 2)a0,

bn = (n+ r− 2)(n+ r+ 2)an + (n+ r+ 2)(n+ r− 3)an−1, n > 14
7.1.23 (p. ??) b0 = (r− 1)2a0, b1 = r2a1 + (r+ 2)(r+ 3)a0,

bn = (n+ r− 1)2an + (n+ r+ 1)(n+ r+ 2)an−1 + (n+ r− 1)an−2, n > 2
7.1.24 (p. ??) b0 = r(r+ 1)a0, b1 = (r+ 1)(r+ 2)a1 + 3(r+ 1)(r+ 2)a0,

bn = (n+ r)(n+ r+ 1)an + 3(n+ r)(n+ r+ 1)an−1 + (n+ r)an−2, n > 2
7.1.25 (p. ??) b0 = (r+ 2)(r+ 1)a0 b1 = (r+ 3)(r+ 2)a1,

bn = (n+ r+ 2)(n+ r+ 1)an + 2(n+ r− 1)(n+ r− 3)an−2, n > 2
7.1.26 (p. ??) b0 = 2(r+ 1)(r+ 3)a0, b1 = 2(r+ 2)(r+ 4)a1,

bn = 2(n+ r+ 1)(n+ r+ 3)an + (n+ r− 3)(n+ r)an−2, n > 2

Section 7.2 Answers, pp. ??–??

7.2.1 (p. ??) y = a0

∞∑
m=0

(−1)m(2m+ 1)x2m + a1

∞∑
m=0

(−1)m(m+ 1)x2m+1

7.2.2 (p. ??) y = a0

∞∑
m=0

(−1)m+1 x2m

2m− 1
+ a1x

7.2.3 (p. ??) y = a0(1 − 10x2 + 5x4) + a1

(
x− 2x3 +

1
5
x5
)

7.2.4 (p. ??) y = a0

∞∑
m=0

(m+ 1)(2m+ 1)x2m +
a1

3

∞∑
m=0

(m+ 1)(2m+ 3)x2m+1

7.2.5 (p. ??) y = a0

∞∑
m=0

(−1)m

m−1∏
j=0

4j+ 1
2j+ 1

 x2m + a1

∞∑
m=0

(−1)m

m−1∏
j=0

(4j+ 3)

 x2m+1

2mm!

7.2.6 (p. ??) y = a0

∞∑
m=0

(−1)m

m−1∏
j=0

(4j+ 1)2

2j+ 1

 x2m

8mm!
+ a1

∞∑
m=0

(−1)m

m−1∏
j=0

(4j+ 3)2

2j+ 3

 x2m+1

8mm!

7.2.7 (p. ??) y = a0

∞∑
m=0

2mm!∏m−1
j=0 (2j+ 1)

x2m + a1

∞∑
m=0

∏m−1
j=0 (2j+ 3)

2mm!
x2m+1

7.2.8 (p. ??) y = a0

(
1 − 14x2 +

35
3
x4
)
+ a1

(
x− 3x3 +

3
5
x5 +

1
35
x7
)

7.2.9 (p. ??) (a) y = a0

∞∑
m=0

(−1)m
x2m∏m−1

j=0 (2j+ 1)
+ a1

∞∑
m=0

(−1)m
x2m+1

2mm!
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7.2.10 (p. ??) (a) y = a0

∞∑
m=0

(−1)m

m−1∏
j=0

4j+ 3
2j+ 1

 x2m

2mm!
+ a1

∞∑
m=0

(−1)m

m−1∏
j=0

4j+ 5
2j+ 3

 x2m+1

2mm!

7.2.11 (p. ??) y = 2 − x− x2 +
1
3
x3 +

5
12
x4 −

1
6
x5 −

17
72
x6 +

13
126

x7 + · · ·

7.2.12 (p. ??) y = 1 − x+ 3x2 −
5
2
x3 + 5x4 −

21
8
x5 + 3x6 −

11
16
x7 + · · ·

7.2.13 (p. ??) y = 2 − x− 2x2 +
1
3
x3 + 3x4 −

5
6
x5 −

49
5
x6 +

45
14
x7 + · · ·

7.2.16 (p. ??) y = a0

∞∑
m=0

(x− 3)2m

(2m)!
+ a1

∞∑
m=0

(x− 3)2m+1

(2m+ 1)!

7.2.17 (p. ??) y = a0

∞∑
m=0

(x− 3)2m

2mm!
+ a1

∞∑
m=0

(x− 3)2m+1∏m−1
j=0 (2j+ 3)

7.2.18 (p. ??) y = a0

∞∑
m=0

m−1∏
j=0

(2j+ 3)

 (x− 1)2m

m!
+ a1

∞∑
m=0

4m(m+ 1)!∏m−1
j=0 (2j+ 3)

(x− 1)2m+1

7.2.19 (p. ??) y = a0

(
1 − 6(x− 2)2 +

4
3
(x− 2)4 +

8
135

(x− 2)6
)
+ a1

(
(x− 2) −

10
9
(x− 2)3

)
7.2.20 (p. ??) y = a0

∞∑
m=0

(−1)m

m−1∏
j=0

(2j+ 1)

 3m

4mm!
(x+ 1)2m + a1

∞∑
m=0

(−1)m
3mm!∏m−1

j=0 (2j+ 3)
(x+ 1)2m+1

7.2.21 (p. ??) y = −1 + 2x+
3
8
x2 −

1
3
x3 −

3
128

x4 −
1

1024
x6 + · · ·

7.2.22 (p. ??) y = −2 + 3(x− 3) + 3(x− 3)2 − 2(x− 3)3 −
5
4
(x− 3)4 +

3
5
(x− 3)5 +

7
24

(x− 3)6 −
4
35

(x− 3)7 + · · ·

7.2.23 (p. ??) y = −1 + (x− 1) + 3(x− 1)2 −
5
2
(x− 1)3 −

27
4
(x− 1)4 +

21
4
(x− 1)5 +

27
2
(x− 1)6 −

81
8
(x− 1)7 + · · ·

7.2.24 (p. ??) y = 4 − 6(x− 3) − 2(x− 3)2 + (x− 3)3 +
3
2
(x− 3)4 −

5
4
(x− 3)5 −

49
20

(x− 3)6 +
135
56

(x− 3)7 + · · ·

7.2.25 (p. ??) y = 3 − 4(x− 4) + 15(x− 4)2 − 4(x− 4)3 +
15
4
(x− 4)4 −

1
5
(x− 4)5

7.2.26 (p. ??) y = 3 − 3(x+ 1) − 30(x+ 1)2 +
20
3
(x+ 1)3 + 20(x+ 1)4 −

4
3
(x+ 1)5 −

8
9
(x+ 1)6

7.2.27 (p. ??) (a)y = a0

∞∑
m=0

(−1)mx2m + a1

∞∑
m=0

(−1)mx2m+1 (b)y =
a0 + a1x

1 + x2

7.2.33 (p. ??) y = a0

∞∑
m=0

x3m

3mm!
∏m−1
j=0 (3j+ 2)

+ a1

∞∑
m=0

x3m+1

3mm!
∏m−1
j=0 (3j+ 4)

7.2.34 (p. ??) y = a0

∞∑
m=0

(
2
3

)m m−1∏
j=0

(3j+ 2)

 x3m

m!
+ a1

∞∑
m=0

6mm!∏m−1
j=0 (3j+ 4)

x3m+1

7.2.35 (p. ??) y = a0

∞∑
m=0

(−1)m
3mm!∏m−1

j=0 (3j+ 2)
x3m + a1

∞∑
m=0

(−1)m

m−1∏
j=0

(3j+ 4)

 x3m+1

3mm!

7.2.36 (p. ??) y = a0(1 − 4x3 + 4x6) + a1

∞∑
m=0

2m

m−1∏
j=0

3j− 5
3j+ 4

 x3m+1

7.2.37 (p. ??) y = a0

(
1 +

21
2
x3 +

42
5
x6 +

7
20
x9
)
+ a1

(
x+ 4x4 +

10
7
x7
)
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7.2.39 (p. ??) y = a0

∞∑
m=0

(−2)m

m−1∏
j=0

5j+ 1
5j+ 4

 x5m + a1

∞∑
m=0

(
−

2
5

)m m−1∏
j=0

(5j+ 2)

 x5m+1

m!

7.2.40 (p. ??) y = a0

∞∑
m=0

(−1)m
x4m

4mm!
∏m−1
j=0 (4j+ 3)

+ a1

∞∑
m=0

(−1)m
x4m+1

4mm!
∏m−1
j=0 (4j+ 5)

7.2.41 (p. ??) y = a0

∞∑
m=0

(−1)m
x7m∏m−1

j=0 (7j+ 6)
+ a1

∞∑
m=0

(−1)m
x7m+1

7mm!

7.2.42 (p. ??) y = a0

(
1 −

9
7
x8
)
+ a1

(
x−

7
9
x9
)

7.2.43 (p. ??) y = a0

∞∑
m=0

x6m + a1

∞∑
m=0

x6m+1

7.2.44 (p. ??) y = a0

∞∑
m=0

(−1)m
x6m∏m−1

j=0 (6j+ 5)
+ a1

∞∑
m=0

(−1)m
x6m+1

6mm!

Section 7.3 Answers, pp. ??–??

7.3.1 (p. ??) y = 2 − 3x− 2x2 +
7
2
x3 −

55
12
x4 +

59
8
x5 −

83
6
x6 +

9547
336

x7 + · · ·
7.3.2 (p. ??) y = −1 + 2x− 4x3 + 4x4 + 4x5 − 12x6 + 4x7 + · · ·
7.3.3 (p. ??) y = 1 + x2 −

2
3
x3 +

11
6
x4 −

9
5
x5 +

329
90
x6 −

1301
315

x7 + · · ·

7.3.4 (p. ??) y = x− x2 −
7
2
x3 +

15
2
x4 +

45
8
x5 −

261
8
x6 +

207
16
x7 + · · ·

7.3.5 (p. ??) y = 4 + 3x−
15
4
x2 +

1
4
x3 +

11
16
x4 −

5
16
x5 +

1
20
x6 +

1
120

x7 + · · ·

7.3.6 (p. ??) y = 7 + 3x−
16
3
x2 +

13
3
x3 −

23
9
x4 +

10
9
x5 −

7
27
x6 −

1
9
x7 + · · ·

7.3.7 (p. ??) y = 2 + 5x−
7
4
x2 −

3
16
x3 +

37
192

x4 −
7

192
x5 −

1
1920

x6 +
19

11520
x7 + · · ·

7.3.8 (p. ??) y = 1 − (x− 1) +
4
3
(x− 1)3 −

4
3
(x− 1)4 −

4
5
(x− 1)5 +

136
45

(x− 1)6 −
104
63

(x− 1)7 + · · ·

7.3.9 (p. ??) y = 1 − (x+ 1) + 4(x+ 1)2 −
13
3
(x+ 1)3 +

77
6
(x+ 1)4 −

278
15

(x+ 1)5 +
1942
45

(x+ 1)6 −
23332
315

(x+ 1)7 + · · ·

7.3.10 (p. ??) y = 2 − (x− 1) −
1
2
(x− 1)2 +

5
3
(x− 1)3 −

19
12

(x− 1)4 +
7
30

(x− 1)5 +
59
45

(x− 1)6 −
1091
630

(x− 1)7 + · · ·

7.3.11 (p. ??) y = −2 + 3(x+ 1) −
1
2
(x+ 1)2 −

2
3
(x+ 1)3 +

5
8
(x+ 1)4 −

11
30

(x+ 1)5 +
29
144

(x+ 1)6 −
101
840

(x+ 1)7 + · · ·

7.3.12 (p. ??) y = 1 − 2(x− 1) − 3(x− 1)2 + 8(x− 1)3 − 4(x− 1)4 −
42
5
(x− 1)5 + 19(x− 1)6 −

604
35

(x− 1)7 + · · ·

7.3.19 (p. ??) y = 2 − 7x− 4x2 −
17
6
x3 −

3
4
x4 −

9
40
x5 + · · ·

7.3.20 (p. ??) y = 1 − 2(x− 1) +
1
2
(x− 1)2 −

1
6
(x− 1)3 +

5
36

(x− 1)4 −
73

1080
(x− 1)5 + · · ·

7.3.21 (p. ??) y = 2 − (x+ 2) −
7
2
(x+ 2)2 +

4
3
(x+ 2)3 −

1
24

(x+ 2)4 +
1
60

(x+ 2)5 + · · ·

7.3.22 (p. ??) y = 2 − 2(x+ 3) − (x+ 3)2 + (x+ 3)3 −
11
12

(x+ 3)4 +
67
60

(x+ 3)5 + · · ·

7.3.23 (p. ??) y = −1 + 2x+
1
3
x3 −

5
12
x4 +

2
5
x5 + · · ·

7.3.24 (p. ??) y = 2 − 3(x+ 1) +
7
2
(x+ 1)2 − 5(x+ 1)3 +

197
24

(x+ 1)4 −
287
20

(x+ 1)5 + · · ·

7.3.25 (p. ??) y = −2 + 3(x+ 2) −
9
2
(x+ 2)2 +

11
6
(x+ 2)3 +

5
24

(x+ 2)4 +
7
20

(x+ 2)5 + · · ·
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7.3.26 (p. ??) y = 2 − 4(x− 2) −
1
2
(x− 2)2 +

2
9
(x− 2)3 +

49
432

(x− 2)4 +
23

1080
(x− 2)5 + · · ·

7.3.27 (p. ??) y = 1 + 2(x+ 4) −
1
6
(x+ 4)2 −

10
27

(x+ 4)3 +
19
648

(x+ 4)4 +
13
324

(x+ 4)5 + · · ·

7.3.28 (p. ??) y = −1 + 2(x+ 1) −
1
4
(x+ 1)2 +

1
2
(x+ 1)3 −

65
96

(x+ 1)4 +
67
80

(x+ 1)5 + · · ·
7.3.31 (p. ??) (a) y =

c1

1 + x
+

c2

1 + 2x
(b) y =

c1

1 − 2x
+

c2

1 − 3x
(c) y =

c1

1 − 2x
+

c2x

(1 − 2x)2

(d) y =
c1

2 + x
+

c2x

(2 + x)2
(e) y =

c1

2 + x
+

c2

2 + 3x

7.3.32 (p. ??) y = 1 − 2x−
3
2
x2 +

5
3
x3 +

17
24
x4 −

11
20
x5 + · · ·

7.3.33 (p. ??) y = 1 − 2x−
5
2
x2 +

2
3
x3 −

3
8
x4 +

1
3
x5 + · · ·

7.3.34 (p. ??) y = 6 − 2x+ 9x2 +
2
3
x3 −

23
4
x4 −

3
10
x5 + · · ·

7.3.35 (p. ??) y = 2 − 5x+ 2x2 −
10
3
x3 +

3
2
x4 −

25
12
x5 + · · ·

7.3.36 (p. ??) y = 3 + 6x− 3x2 + x3 − 2x4 −
17
20
x5 + · · ·

7.3.37 (p. ??) y = 3 − 2x− 3x2 +
3
2
x3 +

3
2
x4 −

49
80
x5 + · · ·

7.3.38 (p. ??) y = −2 + 3x+
4
3
x2 − x3 −

19
54
x4 +

13
60
x5 + · · ·

7.3.39 (p. ??) y1 =

∞∑
m=0

(−1)mx2m

m!
= e−x

2
, y2 =

∞∑
m=0

(−1)mx2m+1

m!
= xe−x

2

7.3.40 (p. ??) y = −2 + 3x+ x2 −
1
6
x3 −

3
4
x4 +

31
120

x5 + · · ·

7.3.41 (p. ??) y = 2 + 3x−
7
2
x2 −

5
6
x3 +

41
24
x4 +

41
120

x5 + · · ·

7.3.42 (p. ??) y = −3 + 5x− 5x2 +
23
6
x3 −

23
12
x4 +

11
30
x5 + · · ·

7.3.43 (p. ??) y = −2 + 3(x− 1) +
3
2
(x− 1)2 −

17
12

(x− 1)3 −
1
12

(x− 1)4 +
1
8
(x− 1)5 + · · ·

7.3.44 (p. ??) y = 2 − 3(x+ 2) +
1
2
(x+ 2)2 −

1
3
(x+ 2)3 +

31
24

(x+ 2)4 −
53
120

(x+ 2)5 + · · ·

7.3.45 (p. ??) y = 1 − 2x+
3
2
x2 −

11
6
x3 +

15
8
x4 −

71
60
x5 + · · ·

7.3.46 (p. ??) y = 2 − (x+ 2) −
7
2
(x+ 2)2 −

43
6
(x+ 2)3 −

203
24

(x+ 2)4 −
167
30

(x+ 2)5 + · · ·

7.3.47 (p. ??) y = 2 − x− x2 +
7
6
x3 − x4 +

89
120

x5 + · · ·

7.3.48 (p. ??) y = 1 +
3
2
(x− 1)2 +

1
6
(x− 1)3 −

1
8
(x− 1)5 + · · ·

7.3.49 (p. ??) y = 1 − 2(x− 3) +
1
2
(x− 3)2 −

1
6
(x− 3)3 +

1
4
(x− 3)4 −

1
6
(x− 3)5 + · · ·

Section 7.4 Answers, pp. ??–??

7.4.1 (p. ??) y = c1x
−4 + c2x

−2 7.4.2 (p. ??) y = c1x+ c2x
7

7.4.3 (p. ??) y = x(c1 + c2 ln x) 7.4.4 (p. ??) y = x−2(c1 + c2 ln x)
7.4.5 (p. ??) y = c1 cos(ln x) + c2 sin(ln x) 7.4.6 (p. ??) y = x2[c1 cos(3 ln x) + c2 sin(3 ln x)]
7.4.7 (p. ??) y = c1x+

c2

x3 7.4.8 (p. ??) y = c1x
2/3 + c2x

3/4 7.4.9 (p. ??) y = x−1/2(c1 + c2 ln x)

7.4.10 (p. ??) y = c1x+c2x
1/3 7.4.11 (p. ??) y = c1x

2+c2x
1/2 7.4.12 (p. ??) y =

1
x
[c1 cos(2 ln x) + c2 sin(2 ln x]
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7.4.13 (p. ??) y = x−1/3(c1 + c2 ln x) 7.4.14 (p. ??) y = x [c1 cos(3 ln x) + c2 sin(3 ln x)]
7.4.15 (p. ??) y = c1x

3 +
c2

x2 7.4.16 (p. ??) y =
c1

x
+ c2x

1/2 7.4.17 (p. ??) y = x2(c1 + c2 ln x)

7.4.18 (p. ??) y =
1
x2

[
c1 cos

(
1√
2

ln x
)
+ c2 sin

(
1√
2

ln x
)]

Section 7.5 Answers, pp. ??–??

7.5.1 (p. ??) y1 = x1/2
(

1 −
1
5
x−

2
35
x2 +

31
315

x3 + · · ·
)
y2 = x−1

(
1 + x+

1
2
x2 −

1
6
x3 + · · ·

)
;

7.5.2 (p. ??) y1 = x1/3
(

1 −
2
3
x+

8
9
x2 −

40
81
x3 + · · ·

)
; y2 = 1 − x+

6
5
x2 −

4
5
x3 + · · ·

7.5.3 (p. ??) y1 = x1/3
(

1 −
4
7
x−

7
45
x2 +

970
2457

x3 + · · ·
)

; y2 = x−1
(

1 − x2 +
2
3
x3 + · · ·

)
7.5.4 (p. ??) y1 = x1/4

(
1 −

1
2
x−

19
104

x2 +
1571
10608

x3 + · · ·
)

; y2 = x−1
(

1 + 2x−
11
6
x2 −

1
7
x3 + · · ·

)
7.5.5 (p. ??) y1 = x1/3

(
1 − x+

28
31
x2 −

1111
1333

x3 + · · ·
)

; y2 = x−1/4
(

1 − x+
7
8
x2 −

19
24
x3 + · · ·

)
;

7.5.6 (p. ??) y1 = x1/5
(

1 −
6
25
x−

1217
625

x2 +
41972
46875

x3 + · · ·
)

; y2 = x−
1
4
x2 −

35
18
x3 +

11
12
x4 + · · ·

7.5.7 (p. ??) y1 = x3/2
(

1 − x+
11
26
x2 −

109
1326

x3 + · · ·
)

; y2 = x1/4
(

1 + 4x−
131
24
x2 +

39
14
x3 + · · ·

)
7.5.8 (p. ??) y1 = x1/3

(
1 −

1
3
x+

2
15
x2 −

5
63
x3 + · · ·

)
; y2 = x−1/6

(
1 −

1
12
x2 +

1
18
x3 + · · ·

)
7.5.9 (p. ??) y1 = 1 −

1
14
x2 +

1
105

x3 + · · ·; y2 = x−1/3
(

1 −
1
18
x−

71
405

x2 +
719

34992
x3 + · · ·

)
7.5.10 (p. ??) y1 = x1/5

(
1 +

3
17
x−

7
153

x2 −
547
5661

x3 + · · ·
)

; y2 = x−1/2
(

1 + x+
14
13
x2 −

556
897

x3 + · · ·
)

7.5.14 (p. ??) y1 = x1/2
∞∑
n=0

(−2)n∏n
j=1(2j+ 3)

xn; y2 = x−1
∞∑
n=0

(−1)n

n!
xn

7.5.15 (p. ??) y1 = x1/3
∞∑
n=0

(−1)n
∏n
j=1(3j+ 1)

9nn!
xn; x−1

7.5.16 (p. ??) y1 = x1/2
∞∑
n=0

(−1)n

2nn!
xn; y2 =

1
x2

∞∑
n=0

(−1)n∏n
j=1(2j− 5)

xn

7.5.17 (p. ??) y1 = x

∞∑
n=0

(−1)n∏n
j=1(3j+ 4)

xn; y2 = x−1/3
∞∑
n=0

(−1)n

3nn!
xn

7.5.18 (p. ??) y1 = x

∞∑
n=0

2n

n!
∏n
j=1(2j+ 1)

xn; y2 = x1/2
∞∑
n=0

2n

n!
∏n
j=1(2j− 1)

xn

7.5.19 (p. ??) y1 = x1/3
∞∑
n=0

1
n!
∏n
j=1(3j+ 2)

xn; y2 = x−1/3
∞∑
n=0

1
n!
∏n
j=1(3j− 2)

xn

7.5.20 (p. ??) y1 = x

(
1 +

2
7
x+

1
70
x2
)

; y2 = x−1/3
∞∑
n=0

(−1)n

3nn!

 n∏
j=1

3j− 13
3j− 4

 xn
7.5.21 (p. ??) y1 = x1/2

∞∑
n=0

(−1)n

 n∏
j=1

2j+ 1
6j+ 1

 ; xn y2 = x1/3
∞∑
n=0

(−1)n

9nn!

 n∏
j=1

(3j+ 1)

 xn
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7.5.22 (p. ??) y1 = x

∞∑
n=0

(−1)n(n+ 2)!
2
∏n
j=1(4j+ 3)

; xn y2 = x1/4
∞∑
n=0

(−1)n

16nn!

n∏
j=1

(4j+ 5)xn

7.5.23 (p. ??) y1 = x−1/2
∞∑
n=0

(−1)n

n!
∏n
j=1(2j+ 1)

xn; y2 = x−1
∞∑
n=0

(−1)n

n!
∏n
j=1(2j− 1)

xn

7.5.24 (p. ??) y1 = x1/3
∞∑
n=0

(−1)n

n!

(
2
9

)n n∏
j=1

(6j+ 5)

 xn; y2 = x−1
∞∑
n=0

(−1)n2n

 n∏
j=1

2j− 1
3j− 4

 xn
7.5.25 (p. ??) y1 = 4x1/3

∞∑
n=0

1
6nn!(3n+ 4)

xn; x−1

7.5.28 (p. ??) y1 = x1/2
(

1 −
9
40
x+

5
128

x2 −
245

39936
x3 + · · ·

)
; y2 = x1/4

(
1 −

25
96
x+

675
14336

x2 −
38025

5046272
x3 + · · ·

)
7.5.29 (p. ??) y1 = x1/3

(
1 +

32
117

x−
28

1053
x2 +

4480
540189

x3 + · · ·
)

; y2 = x−3
(

1 +
32
7
x+

48
7
x2
)

7.5.30 (p. ??) y1 = x1/2
(

1 −
5
8
x+

55
96
x2 −

935
1536

x3 + · · ·
)

; y2 = x−1/2
(

1 +
1
4
x−

5
32
x2 −

55
384

x3 + · · ·
)

.

7.5.31 (p. ??) y1 = x1/2
(

1 −
3
4
x+

5
96
x2 +

5
4224

x3 + · · ·
)

; y2 = x−2 (1 + 8x+ 60x2 − 160x3 + · · ·
)

7.5.32 (p. ??) y1 = x−1/3
(

1 −
10
63
x+

200
7371

x2 −
17600

3781323
x3;+ · · ·

)
; y2 = x−1/2

(
1 −

3
20
x+

9
352

x2 −
105

23936
x3 + · · ·

)
7.5.33 (p. ??) y1 = x1/2

∞∑
m=0

(−1)m

8mm!

 m∏
j=1

4j− 3
8j+ 1

 x2m; y2 = x1/4
∞∑
m=0

(−1)m

16mm!

 m∏
j=1

8j− 7
8j− 1

 x2m

7.5.34 (p. ??) y1 = x1/2
∞∑
m=0

 m∏
j=1

8j− 3
8j+ 1

 x2m; y2 = x1/4
∞∑
m=0

1
2mm!

 m∏
j=1

(2j− 1)

 x2m

7.5.35 (p. ??) y1 = x4
∞∑
m=0

(−1)m(m+ 1)x2m; y2 = −x

∞∑
m=0

(−1)m(2m− 1)x2m

7.5.36 (p. ??) y1 = x1/3
∞∑
m=0

(−1)m

18mm!

 m∏
j=1

(6j− 17)

 x2m; y2 = 1 +
4
5
x2 +

8
55
x4

7.5.37 (p. ??) y1 = x1/4
∞∑
m=0

 m∏
j=1

8j+ 1
8j+ 5

 x2m; y2 = x−1
∞∑
m=0

∏m
j=1(2j− 1)
2mm!

x2m

7.5.38 (p. ??) y1 = x1/2
∞∑
m=0

1
8mm!

 m∏
j=1

(4j− 1)

 x2m; y2 = x1/3
∞∑
m=0

2m

 m∏
j=1

3j− 1
12j− 1

 x2m

7.5.39 (p. ??) y1 = x7/2
∞∑
m=0

(−1)m
∏m
j=1(4j+ 5)
8mm!

x2m; y2 = x1/2
∞∑
m=0

(−1)m

4m

 m∏
j=1

4j− 1
2j− 3

 x2m

7.5.40 (p. ??) y1 = x1/2
∞∑
m=0

(−1)m

4m

 m∏
j=1

4j− 1
2j+ 1

 x2m; y2 = x−1/2
∞∑
m=0

(−1)m

8mm!

 m∏
j=1

(4j− 3)

 x2m

7.5.41 (p. ??) y1 = x1/2
∞∑
m=0

(−1)m

m!

 m∏
j=1

(2j+ 1)

 x2m; y2 =
1
x2

∞∑
m=0

(−2)m

 m∏
j=1

4j− 3
4j− 5

 x2m
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7.5.42 (p. ??) y1 = x1/3
∞∑
m=0

(−1)m

 m∏
j=1

3j− 4
3j+ 2

 x2m; y2 = x−1(1 + x2)

7.5.43 (p. ??) y1 =

∞∑
m=0

(−1)m
2m(m+ 1)!∏m
j=1(2j+ 3)

x2m; y2 =
1
x3

∞∑
m=0

(−1)m
∏m
j=1(2j− 1)
2mm!

x2m

7.5.44 (p. ??) y1 = x1/2
∞∑
m=0

(−1)m

8mm!

 m∏
j=1

(4j− 3)2

4j+ 3

 x2m; y2 = x−1
∞∑
m=0

(−1)m

2mm!

 m∏
j=1

(2j− 3)2

4j− 3

 x2m

7.5.45 (p. ??) y1 = x

∞∑
m=0

(−2)m

 m∏
j=1

2j+ 1
4j+ 5

 x2m; y2 = x−3/2
∞∑
m=0

(−1)m

4mm!

 m∏
j=1

(4j− 3)

 x2m

7.5.46 (p. ??) y1 = x1/3
∞∑
m=0

(−1)m

2m
∏m
j=1(3j+ 1)

x2m; y2 = x−1/3
∞∑
m=0

(−1)m

6mm!
x2m

7.5.47 (p. ??) y1 = x1/2
(

1 −
6
13
x2 +

36
325

x4 −
216

12025
x6 + · · ·

)
; y2 = x1/3

(
1 −

1
2
x2 +

1
8
x4 −

1
48
x6 + · · ·

)
7.5.48 (p. ??) y1 = x1/4

(
1 −

13
64
x2 +

273
8192

x4 −
2639

524288
x6 + · · ·

)
; y2 = x−1

(
1 −

1
3
x2 +

2
33
x4 −

2
209

x6 + · · ·
)

7.5.49 (p. ??) y1 = x1/3
(

1 −
3
4
x2 +

9
14
x4 −

81
140

x6 + · · ·
)

; y2 = x−1/3
(

1 −
2
3
x2 +

5
9
x4 −

40
81
x6 + · · ·

)
7.5.50 (p. ??) y1 = x1/2

(
1 −

3
2
x2 +

15
8
x4 −

35
16
x6 + · · ·

)
; y2 = x−1/2

(
1 − 2x2 +

8
3
x4 −

16
5
x6 + · · ·

)
7.5.51 (p. ??) y1 = x1/4

(
1 − x2 +

3
2
x4 −

5
2
x6 + · · ·

)
; y2 = x−1/2

(
1 −

2
5
x2 +

36
65
x4 −

408
455

x6 + · · ·
)

7.5.53 (p. ??) (a) y1 = xν
∞∑
m=0

(−1)m

4mm!
∏m
j=1(j+ ν)

x2m; y2 = x−ν
∞∑
m=0

(−1)m

4mm!
∏m
j=1(j− ν)

x2m

y1 =
sin x√
x

; y2 =
cos x√
x

7.5.61 (p. ??) y1 =
x1/2

1 + x
; y2 =

x

1 + x
7.5.62 (p. ??) y1 =

x1/3

1 + 2x2 ; y2 =
x1/2

1 + 2x2

7.5.63 (p. ??) y1 =
x1/4

1 − 3x
; y2 =

x2

1 − 3x
7.5.64 (p. ??) y1 =

x1/3

5 + x
; y2 =

x−1/3

5 + x

7.5.65 (p. ??) y1 =
x1/4

2 − x2 ; y2 =
x−1/2

2 − x2 7.5.66 (p. ??) y1 =
x1/2

1 + 3x+ x2 ; y2 =
x3/2

1 + 3x+ x2

7.5.67 (p. ??) y1 =
x

(1 + x)2
; y2 =

x1/3

(1 + x)2
7.5.68 (p. ??) y1 =

x

3 + 2x+ x2 ; y2 =
x1/4

3 + 2x+ x2

Section 7.6 Answers, pp. ??–??

7.6.1 (p. ??) y1 = x

(
1 − x+

3
4
x2 −

13
36
x3 + · · ·

)
; y2 = y1 ln x+ x2

(
1 − x+

65
108

x2 + · · ·
)

7.6.2 (p. ??) y1 = x−1
(

1 − 2x+
9
2
x2 −

20
3
x3 + · · ·

)
; y2 = y1 ln x+ 1 −

15
4
x+

133
18
x2 + · · ·

7.6.3 (p. ??) y1 = 1 + x− x2 +
1
3
x3 + · · ·; y2 = y1 ln x− x

(
3 −

1
2
x−

31
18
x2 + · · ·

)
7.6.4 (p. ??) y1 = x1/2

(
1 − 2x+

5
2
x2 − 2x3 + · · ·

)
; y2 = y1 ln x+ x3/2

(
1 −

9
4
x+

17
6
x2 + · · ·

)
7.6.5 (p. ??) y1 = x

(
1 − 4x+

19
2
x2 −

49
3
x3 + · · ·

)
; y2 = y1 ln x+ x2

(
3 −

43
4
x+

208
9
x2 + · · ·

)
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7.6.6 (p. ??) y1 = x−1/3
(

1 − x+
5
6
x2 −

1
2
x3 + · · ·

)
; y2 = y1 ln x+ x2/3

(
1 −

11
12
x+

25
36
x2 + · · ·

)
7.6.7 (p. ??) y1 = 1 − 2x+

7
4
x2 −

7
9
x3 + · · ·; y2 = y1 ln x+ x

(
3 −

15
4
x+

239
108

x2 + · · ·
)

7.6.8 (p. ??) y1 = x−2
(

1 − 2x+
5
2
x2 − 3x3 + · · ·

)
; y2 = y1 ln x+

3
4
−

13
6
x+ · · ·

7.6.9 (p. ??) y1 = x−1/2
(

1 − x+
1
4
x2 +

1
18
x3 + · · ·

)
; y2 = y1 ln x+ x1/2

(
3
2
−

13
16
x+

1
54
x2 + · · ·

)
7.6.10 (p. ??) y1 = x−1/4

(
1 −

1
4
x−

7
32
x2 +

23
384

x3 + · · ·
)

; y2 = y1 ln x+ x3/4
(

1
4
+

5
64
x−

157
2304

x2 + · · ·
)

7.6.11 (p. ??) y1 = x−1/3
(

1 − x+
7
6
x2 −

23
18
x3 + · · ·

)
; y2 = y1 ln x− x5/3

(
1
12

−
13
108

x · · ·
)

7.6.12 (p. ??) y1 = x1/2
∞∑
n=0

(−1)n

(n!)2
xn; y2 = y1 ln x− 2x1/2

∞∑
n=1

(−1)n

(n!)2

 n∑
j=1

1
j

 xn;

7.6.13 (p. ??) y1 = x1/6
∞∑
n=0

(
2
3

)n ∏n
j=1(3j+ 1)
n!

xn;

y2 = y1 ln x− x1/6
∞∑
n=1

(
2
3

)n ∏n
j=1(3j+ 1)
n!

 n∑
j=1

1
j(3j+ 1)

 xn
7.6.14 (p. ??) y1 = x2

∞∑
n=0

(−1)n(n+ 1)2xn; y2 = y1 ln x− 2x2
∞∑
n=1

(−1)nn(n+ 1)xn

7.6.15 (p. ??) y1 = x3
∞∑
n=0

2n(n+ 1)xn; y2 = y1 ln x− x3
∞∑
n=1

2nnxn

7.6.16 (p. ??) y1 = x1/5
∞∑
n=0

(−1)n
∏n
j=1(5j+ 1)

125n(n!)2
xn;

y2 = y1 ln x− x1/5
∞∑
n=1

(−1)n
∏n
j=1(5j+ 1)

125n(n!)2

 n∑
j=1

5j+ 2
j(5j+ 1)

 xn
7.6.17 (p. ??) y1 = x1/2

∞∑
n=0

(−1)n
∏n
j=1(2j− 3)

4nn!
xn;

y2 = y1 ln x+ 3x1/2
∞∑
n=1

(−1)n
∏n
j=1(2j− 3)

4nn!

 n∑
j=1

1
j(2j− 3)

 xn
7.6.18 (p. ??) y1 = x1/3

∞∑
n=0

(−1)n
∏n
j=1(6j− 7)2

81n(n!)2
xn;

y2 = y1 ln x+ 14x1/3
∞∑
n=1

(−1)n
∏n
j=1(6j− 7)2

81n(n!)2

 n∑
j=1

1
j(6j− 7)

)

 xn
7.6.19 (p. ??) y1 = x2

∞∑
n=0

(−1)n
∏n
j=1(2j+ 5)

(n!)2
xn;

y2 = y1 ln x− 2x2
∞∑
n=1

(−1)n
∏n
j=1(2j+ 5)

(n!)2

 n∑
j=1

(j+ 5)
j(2j+ 5)

 xn
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7.6.20 (p. ??) y1 =
1
x

∞∑
n=0

2n
∏n
j=1(2j− 1)
n!

xn;

y2 = y1 ln x+
1
x

∞∑
n=1

2n
∏n
j=1(2j− 1)
n!

 n∑
j=1

1
j(2j− 1)

 xn
7.6.21 (p. ??) y1 =

1
x

∞∑
n=0

(−1)n
∏n
j=1(2j− 5)
n!

xn;

y2 = y1 ln x+
5
x

∞∑
n=1

(−1)n
∏n
j=1(2j− 5)
n!

 n∑
j=1

1
j(2j− 5)

 xn
7.6.22 (p. ??) y1 = x2

∞∑
n=0

(−1)n
∏n
j=1(2j+ 3)

2nn!
xn;

y2 = y1 ln x− 3x2
∞∑
n=0

(−1)n
∏n
j=1(2j+ 3)

2nn!

 n∑
j=1

1
j(2j+ 3)

 xn
7.6.23 (p. ??) y1 = x−2

(
1 + 3x+

3
2
x2 −

1
2
x3 + · · ·

)
; y2 = y1 ln x− 5x−1

(
1 +

5
4
x−

1
4
x2 + · · ·

)
7.6.24 (p. ??) y1 = x3(1 + 20x+ 180x2 + 1120x3 + · · ·; y2 = y1 ln x− x4

(
26 + 324x+

6968
3
x2 + · · ·

)
7.6.25 (p. ??) y1 = x

(
1 − 5x+

85
4
x2 −

3145
36

x3 + · · ·
)

; y2 = y1 ln x+ x2
(

2 −
39
4
x+

4499
108

x2 + · · ·
)

7.6.26 (p. ??) y1 = 1 − x+
3
4
x2 −

7
12
x3 + · · ·; y2 = y1 ln x+ x

(
1 −

3
4
x+

5
9
x2 + · · ·

)
7.6.27 (p. ??) y1 = x−3(1 + 16x+ 36x2 + 16x3 + · · · ); y2 = y1 ln x− x−2

(
40 + 150x+

280
3
x2 + · · ·

)
7.6.28 (p. ??) y1 = x

∞∑
m=0

(−1)m

2mm!
x2m; y2 = y1 ln x−

x

2

∞∑
m=1

(−1)m

2mm!

 m∑
j=1

1
j

 x2m

7.6.29 (p. ??) y1 = x2
∞∑
m=0

(−1)m(m+ 1)x2m; y2 = y1 ln x−
x2

2

∞∑
m=1

(−1)mmx2m

7.6.30 (p. ??) y1 = x1/2
∞∑
m=0

(−1)m

4mm!
x2m; y2 = y1 ln x−

x1/2

2

∞∑
m=1

(−1)m

4mm!

 m∑
j=1

1
j

 x2m

7.6.31 (p. ??) y1 = x

∞∑
m=0

(−1)m
∏m
j=1(2j− 1)

2mm!
x2m;

y2 = y1 ln x+
x

2

∞∑
m=1

(−1)m
∏m
j=1(2j− 1)

2mm!

 m∑
j=1

1
j(2j− 1)

 x2m

7.6.32 (p. ??) y1 = x1/2
∞∑
m=0

(−1)m
∏m
j=1(4j− 1)

8mm!
x2m;

y2 = y1 ln x+
x1/2

2

∞∑
m=1

(−1)m
∏m
j=1(4j− 1)

8mm!

 m∑
j=1

1
j(4j− 1)

 x2m

7.6.33 (p. ??) y1 = x

∞∑
m=0

(−1)m
∏m
j=1(2j+ 1)

2mm!
x2m;
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y2 = y1 ln x−
x

2

∞∑
m=1

(−1)m
∏m
j=1(2j+ 1)

2mm!

 m∑
j=1

1
j(2j+ 1)

 x2m

7.6.34 (p. ??) y1 = x−1/4
∞∑
m=0

(−1)m
∏m
j=1(8j− 13)

(32)mm!
x2m;

y2 = y1 ln x+
13
2
x−1/4

∞∑
m=1

(−1)m
∏m
j=1(8j− 13)

(32)mm!

 m∑
j=1

1
j(8j− 13)

 x2m

7.6.35 (p. ??) y1 = x1/3
∞∑
m=0

(−1)m
∏m
j=1(3j− 1)

9mm!
x2m;

y2 = y1 ln x+
x1/3

2

∞∑
m=1

(−1)m
∏m
j=1(3j− 1)

9mm!

 m∑
j=1

1
j(3j− 1)

 x2m

7.6.36 (p. ??) y1 = x1/2
∞∑
m=0

(−1)m
∏m
j=1(4j− 3)(4j− 1)
4m(m!)2

x2m;

y2 = y1 ln x+ x1/2
∞∑
m=1

(−1)m
∏m
j=1(4j− 3)(4j− 1)
4m(m!)2

 m∑
j=1

8j− 3
j(4j− 3)(4j− 1)

 x2m

7.6.37 (p. ??) y1 = x5/3
∞∑
m=0

(−1)m

3mm!
x2m; y2 = y21 ln x−

x5/3

2

∞∑
m=1

(−1)m

3mm!

 m∑
j=1

1
j

 x2m

7.6.38 (p. ??) y1 =
1
x

∞∑
m=0

(−1)m
∏m
j=1(4j− 7)

2mm!
x2m;

y2 = y1 ln x+
7
2x

∞∑
m=1

(−1)m
∏m
j=1(4j− 7)

2mm!

 m∑
j=1

1
j(4j− 7)

 x2m

7.6.39 (p. ??) y1 = x−1
(

1 −
3
2
x2 +

15
8
x4 −

35
16
x6 + · · ·

)
; y2 = y1 ln x+ x

(
1
4
−

13
32
x2 +

101
192

x4 + · · ·
)

7.6.40 (p. ??) y1 = x

(
1 −

1
2
x2 +

1
8
x4 −

1
48
x6 + · · ·

)
; y2 = y1 ln x+ x3

(
1
4
−

3
32
x2 +

11
576

x4 + · · ·
)

7.6.41 (p. ??) y1 = x−2
(

1 −
3
4
x2 −

9
64
x4 −

25
256

x6 + · · ·
)

; y2 = y1 ln x+
1
2
−

21
128

x2 −
215
1536

x4 + · · ·

7.6.42 (p. ??) y1 = x−3
(

1 −
17
8
x2 +

85
256

x4 −
85

18432
x6 + · · ·

)
; y2 = y1 ln x+ x−1

(
25
8

−
471
512

x2 +
1583

110592
x4 + · · ·

)
7.6.43 (p. ??) y1 = x−1

(
1 −

3
4
x2 +

45
64
x4 −

175
256

x6 + · · ·
)

; y2 = y1 ln x− x
(

1
4
−

33
128

x2 +
395
1536

x4 + · · ·
)

7.6.44 (p. ??) y1 =
1
x

; y2 = y1 ln x− 6 + 6x−
8
3
x2

7.6.45 (p. ??) y1 = 1 − x; y2 = y1 ln x+ 4x

7.6.46 (p. ??) y1 =
(x− 1)2

x
; y2 = y1 ln x+ 3 − 3x+ 2

∞∑
n=2

1
n(n2 − 1)

xn

7.6.47 (p. ??) y1 = x1/2(x+ 1)2; y2 = y1 ln x− x3/2

(
3 + 3x+ 2

∞∑
n=2

(−1)n

n(n2 − 1)
xn

)
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7.6.48 (p. ??) y1 = x2(1 − x)3; y2 = y1 ln x+ x3

(
4 − 7x+

11
3
x2 − 6

∞∑
n=3

1
n(n− 2)(n2 − 1)

xn

)
7.6.49 (p. ??) y1 = x− 4x3 + x5; y2 = y1 ln x+ 6x3 − 3x5

7.6.50 (p. ??) y1 = x1/3
(

1 −
1
6
x2
)

; y2 = y1 ln x+ x7/3

(
1
4
−

1
12

∞∑
m=1

1
6mm(m+ 1)(m+ 1)!

x2m

)

7.6.51 (p. ??) y1 = (1 + x2)2; y2 = y1 ln x−
3
2
x2 −

3
2
x4 +

∞∑
m=3

(−1)m

m(m− 1)(m− 2)
x2m

7.6.52 (p. ??) y1 = x−1/2
(

1 −
1
2
x2 +

1
32
x4
)

; y2 = y1 ln x+ x3/2

(
5
8
−

9
128

x2 +

∞∑
m=2

1
4m+1(m− 1)m(m+ 1)(m+ 1)!

x2m

)
.

7.6.56 (p. ??) y1 =

∞∑
m=0

(−1)m

4m(m!)2
x2m; y2 = y1 ln x−

∞∑
m=1

(−1)m

4m(m!)2

 m∑
j=1

1
j

 x2m

7.6.58 (p. ??)
x1/2

1 + x
;
x1/2 ln x
1 + x

7.6.59 (p. ??)
x1/3

3 + x
;
x1/3 ln x
3 + x

7.6.60 (p. ??)
x

2 − x2 ;
x ln x
2 − x2 7.6.61 (p. ??)

x1/4

1 + x2 ;
x1/4 ln x
1 + x2

7.6.62 (p. ??)
x

4 + 3x
;
x ln x
4 + 3x

7.6.63 (p. ??)
x1/2

1 + 3x+ x2 ;
x1/2 ln x

1 + 3x+ x2

7.6.64 (p. ??)
x

(1 − x)2
;

x ln x
(1 − x)2

7.6.65 (p. ??)
x1/3

1 + x+ x2 ;
x1/3 ln x

1 + x+ x2
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Section 7.7 Answers, pp. ??–??

7.7.1 (p. ??) y1 = 2x3
∞∑
n=0

(−4)n

n!(n+ 2)!
xn; y2 = x+ 4x2 − 8

y1 ln x− 4
∞∑
n=1

(−4)n

n!(n+ 2)!

 n∑
j=1

j+ 1
j(j+ 2)

 xn


7.7.2 (p. ??) y1 = x

∞∑
n=0

(−1)n

n!(n+ 1)!
xn; y2 = 1 − y1 ln x+ x

∞∑
n=1

(−1)n

n!(n+ 1)!

 n∑
j=1

2j+ 1
j(j+ 1)

 xn
7.7.3 (p. ??) y1 = x1/2; y2 = x−1/2 + y1 ln x+ x1/2

∞∑
n=1

(−1)n

n
xn

7.7.4 (p. ??) y1 = x

∞∑
n=0

(−1)n

n!
xn = xe−x; y2 = 1 − y1 ln x+ x

∞∑
n=1

(−1)n

n!

 n∑
j=1

1
j

 xn
7.7.5 (p. ??) y1 = x1/2

∞∑
n=0

(
−

3
4

)n ∏n
j=1(2j+ 1)
n!

xn;

y2 = x−1/2 −
3
4

y1 ln x− x1/2
∞∑
n=1

(
−

3
4

)n ∏n
j=1(2j+ 1)
n!

 n∑
j=1

1
j(2j+ 1)

 xn


7.7.6 (p. ??) y1 = x

∞∑
n=0

(−1)n

n!
xn = xe−x; y2 = x−2

(
1 +

1
2
x+

1
2
x2
)
−

1
2

y1 ln x− x
∞∑
n=1

(−1)n

n!

 n∑
j=1

1
j

 xn


7.7.7 (p. ??) y1 = 6x3/2
∞∑
n=0

(−1)n

4nn!(n+ 3)!
xn;

y2 = x−3/2
(

1 +
1
8
x+

1
64
x2
)
−

1
768

y1 ln x− 6x3/2
∞∑
n=1

(−1)n

4nn!(n+ 3)!

 n∑
j=1

2j+ 3
j(j+ 3)

 xn


7.7.8 (p. ??) y1 =
120
x2

∞∑
n=0

(−1)n

n!(n+ 5)!
xn;

y2 = x−7
(

1 +
1
4
x+

1
24
x2 +

1
144

x3 +
1

576
x4
)
−

1
2880

y1 ln x−
120
x2

∞∑
n=1

(−1)n

n!(n+ 5)!

 n∑
j=1

2j+ 5
j(j+ 5)

 xn


7.7.9 (p. ??) y1 =
x1/2

6

∞∑
n=0

(−1)n(n+ 1)(n+ 2)(n+ 3)xn;

y2 = x−5/2
(

1 +
1
2
x+ x2

)
− 3y1 ln x+

3
2
x1/2

∞∑
n=1

(−1)n(n+ 1)(n+ 2)(n+ 3)

 n∑
j=1

1
j(j+ 3)

 xn
7.7.10 (p. ??) y1 = x4

(
1 −

2
5
x

)
y2 = 1 + 10x+ 50x2 + 200x3 − 300

(
y1 ln x+

27
25
x5 −

1
30
x6
)

7.7.11 (p. ??) y1 = x3; y2 = x−3
(

1 −
6
5
x+

3
4
x2 −

1
3
x3 +

1
8
x4 −

1
20
x5
)
−

1
120

(
y1 ln x+ x3

∞∑
n=1

(−1)n6!
n(n+ 6)!

xn

)

7.7.12 (p. ??) y1 = x2
∞∑
n=0

1
n!

 n∏
j=1

2j+ 3
j+ 4

 xn;

y2 = x−2
(

1 + x+
1
4
x2 −

1
12
x3
)
−

1
16
y1 ln x+

x2

8

∞∑
n=1

1
n!

 n∏
j=1

2j+ 3
j+ 4

 n∑
j=1

(j2 + 3j+ 6)
j(j+ 4)(2j+ 3)

 xn
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7.7.13 (p. ??) y1 = x5
∞∑
n=0

(−1)n(n+ 1)(n+ 2)xn; y2 = 1 −
x

2
+
x2

6

7.7.14 (p. ??) y1 =
1
x

∞∑
n=0

(−1)n

n!

 n∏
j=1

(j+ 3)(2j− 3)
j+ 6

 xn; y2 = x−7
(

1 +
26
5
x+

143
20
x2
)

7.7.15 (p. ??) y1 = x7/2
∞∑
n=0

(−1)n

2n(n+ 4)!
xn; y2 = x−1/2

(
1 −

1
2
x+

1
8
x2 −

1
48
x3
)

7.7.16 (p. ??) y1 = x10/3
∞∑
n=0

(−1)n(n+ 1)
9n

 n∏
j=1

3j+ 7
j+ 4

 xn; y2 = x−2/3
(

1 +
4
27
x−

1
243

x2
)

7.7.17 (p. ??) y1 = x3
7∑
n=0

(−1)n(n+ 1)

 n∏
j=1

j− 8
j+ 6

 xn; y2 = x−3
(

1 +
52
5
x+

234
5
x2 +

572
5
x3 + 143x4

)

7.7.18 (p. ??) y1 = x3
∞∑
n=0

(−1)n

n!

 n∏
j=1

(j+ 3)2

j+ 5

 xn; y2 = x−2
(

1 +
1
4
x

)

7.7.19 (p. ??) y1 = x6
4∑
n=0

(−1)n2n

 n∏
j=1

j− 5
j+ 5

 xn; y2 = x(1 + 18x+ 144x2 + 672x3 + 2016x4)

7.7.20 (p. ??) y1 = x6
(

1 +
2
3
x+

1
7
x2
)

; y2 = x

(
1 +

21
4
x+

21
2
x2 +

35
4
x3
)

7.7.21 (p. ??) y1 = x7/2
∞∑
n=0

(−1)n(n+ 1)xn; y2 = x−7/2
(

1 −
5
6
x+

2
3
x2 −

1
2
x3 +

1
3
x4 −

1
6
x5
)

7.7.22 (p. ??) y1 =
x10

6

∞∑
n=0

(−1)n2n(n+ 1)(n+ 2)(n+ 3)xn;

y2 =

(
1 −

4
3
x+

5
3
x2 −

40
21
x3 +

40
21
x4 −

32
21
x5 +

16
21
x6
)

7.7.23 (p. ??) y1 = x6
∞∑
m=0

(−1)m
∏m
j=1(2j+ 5)

2mm!
x2m;

y2 = x2
(

1 +
3
2
x2
)
−

15
2
y1 ln x+

75
2
x6

∞∑
m=1

(−1)m
∏m
j=1(2j+ 5)

2m+1m!

 m∑
j=1

1
j(2j+ 5)

 x2m

7.7.24 (p. ??) y1 = x6
∞∑
m=0

(−1)m

2mm!
x2m = x6e−x

2/2;

y2 = x2
(

1 +
1
2
x2
)
−

1
2
y1 ln x+

x6

4

∞∑
m=1

(−1)m

2mm!

 m∑
j=1

1
j

 x2m

7.7.25 (p. ??) y1 = 6x6
∞∑
m=0

(−1)m

4mm!(m+ 3)!
x2m;

y2 = 1 +
1
8
x2 +

1
64
x4 −

1
384

y1 ln x− 3x6
∞∑
m=1

(−1)m

4mm!(m+ 3)!

 m∑
j=1

2j+ 3
j(j+ 3)

 x2m


7.7.26 (p. ??) y1 =

x

2

∞∑
m=0

(−1)m(m+ 2)
m!

x2m;
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y2 = x−1 − 4y1 ln x+ x
∞∑
m=1

(−1)m(m+ 2)
m!

 m∑
j=1

j2 + 4j+ 2
j(j+ 1)(j+ 2)

 x2m

7.7.27 (p. ??) y1 = 2x3
∞∑
m=0

(−1)m

4mm!(m+ 2)!
x2m;

y2 = x−1
(

1 +
1
4
x2
)
−

1
16

y1 ln x− 2x3
∞∑
m=1

(−1)m

4mm!(m+ 2)!

 m∑
j=1

j+ 1
j(j+ 2)

 x2m


7.7.28 (p. ??) y1 = x−1/2

∞∑
m=0

(−1)m
∏m
j=1(2j− 1)

8mm!(m+ 1)!
x2m;

y2 = x−5/2 +
1
4
y1 ln x− x−1/2

∞∑
m=1

(−1)m
∏m
j=1(2j− 1)

8m+1m!(m+ 1)!

 m∑
j=1

2j2 − 2j− 1
j(j+ 1)(2j− 1)

 x2m

7.7.29 (p. ??) y1 = x

∞∑
m=0

(−1)m

2mm!
x2m = xe−x

2/2; y2 = x−1 − y1 ln x+
x

2

∞∑
m=1

(−1)m

2mm!

 m∑
j=1

1
j

 x2m

7.7.30 (p. ??) y1 = x2
∞∑
m=0

1
m!
x2m = x2ex

2
; y2 = x−2(1 − x2) − 2y1 ln x+ x2

∞∑
m=1

1
m!

 m∑
j=1

1
j

 x2m

7.7.31 (p. ??) y1 = 6x5/2
∞∑
m=0

(−1)m

16mm!(m+ 3)!
x2m;

y2 = x−7/2
(

1 +
1
32
x2 +

1
1024

x4
)
−

1
24576

y1 ln x− 3x5/2
∞∑
m=1

(−1)m

16mm!(m+ 3)!

 m∑
j=1

2j+ 3
j(j+ 3)

 x2m


7.7.32 (p. ??) y1 = 2x13/3

∞∑
m=0

∏m
j=1(3j+ 1)

9mm!(m+ 2)!
x2m;

y2 = x1/3
(

1 +
2
9
x2
)
+

2
81

y1 ln x− x13/3
∞∑
m=0

∏m
j=1(3j+ 1)

9mm!(m+ 2)!

 m∑
j=1

3j2 + 2j+ 2
j(j+ 2)(3j+ 1)

 x2m


7.7.33 (p. ??) y1 = x2; y2 = x−2(1 + 2x2) − 2

(
y1 ln x+ x2

∞∑
m=1

1
m(m+ 2)!

x2m

)

7.7.34 (p. ??) y1 = x2
(

1 −
1
2
x2
)

; y2 = x−2
(

1 +
9
2
x2
)
−

27
2

(
y1 ln x+

7
12
x4 − x2

∞∑
m=2

( 3
2

)m
m(m− 1)(m+ 2)!

x2m

)

7.7.35 (p. ??) y1 =

∞∑
m=0

(−1)m(m+ 1)x2m; y2 = x−4

7.7.36 (p. ??) y1 = x5/2
∞∑
m=0

(−1)m

(m+ 1)(m+ 2)(m+ 3)
x2m; y2 = x−7/2(1 + x2)2

7.7.37 (p. ??) y1 =
x7

5

∞∑
m=0

(−1)m(m+ 5)x2m; y2 = x−1 (1 − 2x2 + 3x4 − 4x6)
7.7.38 (p. ??) y1 = x3

∞∑
m=0

(−1)m
m+ 1
2m

 m∏
j=1

2j+ 1
j+ 5

 x2m; y2 = x−7
(

1 +
21
8
x2 +

35
16
x4 +

35
64
x6
)
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7.7.39 (p. ??) y1 = 2x4
∞∑
m=0

(−1)m
∏m
j=1(4j+ 5)

2m(m+ 2)!
x2m; y2 = 1 −

1
2
x2

7.7.40 (p. ??) y1 = x3/2
∞∑
m=0

(−1)m
∏m
j=1(2j− 1)

2m−1(m+ 2)!
x2m; y2 = x−5/2

(
1 +

3
2
x2
)

7.7.42 (p. ??) y1 = xν
∞∑
m=0

(−1)m

4mm!
∏m
j=1(j+ ν)

x2m;

y2 = x−ν
ν−1∑
m=0

(−1)m

4mm!
∏m
j=1(j− ν)

x2m −
2

4νν!(ν− 1)!

y1 ln x−
xν

2

∞∑
m=1

(−1)m

4mm!
∏m
j=1(j+ ν)

 m∑
j=1

2j+ ν
j(j+ ν)

 x2m


Section 8.1 Answers, pp. 225–228

8.1.1 (p. 225) (a)
1
s2

(b)
1

(s+ 1)2
(c)

b

s2 − b2 (d)
−2s+ 5

(s− 1)(s− 2)
(e)

2
s3

8.1.2 (p. 225) (a)
s2 + 2

[(s− 1)2 + 1] [(s+ 1)2 + 1]
(b)

2
s(s2 + 4)

(c)
s2 + 8

s(s2 + 16)
(d)

s2 − 2
s(s2 − 4)

(e)
4s

(s2 − 4)2
(f)

1
s2 + 4

(g)
1√
2
s+ 1
s2 + 1

(h)
5s

(s2 + 4)(s2 + 9)
(i)
s3 + 2s2 + 4s+ 32
(s2 + 4)(s2 + 16)

8.1.4 (p. 225) (a) f(3−) = −1, f(3) = f(3+) = 1 (b) f(1−) = 3, f(1) = 4, f(1+) = 1
(c) f

(π
2
−
)
= 1, f

(π
2

)
= f

(π
2
+
)
= 2, f(π−) = 0, f(π) = f(π+) = −1

(d) f(1−) = 1, f(1) = 2, f(1+) = 1, f(2−) = 0, f(2) = 3, f(2+) = 6

8.1.5 (p. 226) (a)
1 − e−(s+1)

s+ 1
+
e−(s+2)

s+ 2
(b)

1
s
+ e−4s

(
1
s2

+
3
s

)
(c)

1 − e−s

s2
(d)

1 − e−(s−1)

(s− 1)2

8.1.7 (p. 226) L(eλt cosωt) =
(s− λ)2 −ω2

((s− λ)2 +ω2)2
L(eλt sinωt) =

2ω(s− λ)

((s− λ)2 +ω2)2

8.1.15 (p. 227) (a) tan−1 ω

s
, s > 0 (b)

1
2

ln
s2

s2 +ω2 , s > 0 (c) ln
s− b

s− a
, s > max(a,b)

(d)
1
2

ln
s2

s2 − 1
, s > 1 (e)

1
4

ln
s2

s2 − 4
, s > 2

8.1.18 (p. 228) (a)
1
s2

tanh
s

2
(b)

1
s

tanh
s

4
(c)

1
s2 + 1

coth
πs

2
(d)

1
(s2 + 1)(1 − e−πs)

Section 8.2 Answers, pp. 236–238

8.2.1 (p. 236) (a)
t3e7t

2
(b) 2e2t cos 3t (c)

e−2t

4
sin 4t (d)

2
3

sin 3t (e) t cos t

(f)
e2t

2
sinh 2t (g)

2te2t

3
sin 9t (h)

2e3t

3
sinh 3t (i) e2tt cos t

8.2.2 (p. 236) (a) t2e7t +
17
6
t3e7t (b) e2t

(
1
6
t3 +

1
6
t4 +

1
40
t5
)

(c) e−3t
(

cos 3t+
2
3

sin 3t
)

(d) 2 cos 3t+
1
3

sin 3t (e) (1 − t)e−t (f) cosh 3t+
1
3

sinh 3t (g)
(

1 − t− t2 −
1
6
t3
)
e−t

(h) et
(

2 cos 2t+
5
2

sin 2t
)

(i) 1 − cos t (j) 3 cosh t+ 4 sinh t (k) 3et + 4 cos 3t+
1
3

sin 3t

(l) 3te−2t − 2 cos 2t− 3 sin 2t

8.2.3 (p. 236) (a)
1
4
e2t −

1
4
e−2t − e−t (b)

1
5
e−4t −

41
5
et + 5e3t (c) −

1
2
e2t −

13
10
e−2t −

1
5
e3t

(d) −
2
5
e−4t −

3
5
et (e)

3
20
e2t −

37
12
e−2t +

1
3
et +

8
5
e−3t (f)

39
10
et +

3
14
e3t +

23
105

e−4t −
7
3
e2t
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8.2.4 (p. 237) (a)
4
5
e−2t −

1
2
e−t −

3
10

cos t+
11
10

sin t (b)
2
5

sin t+
6
5

cos t+
7
5
e−t sin t−

6
5
e−t cos t

(c)
8
13
e2t −

8
13
e−t cos 2t+

15
26
e−t sin 2t (d)

1
2
tet +

3
8
et + e−2t −

11
8
e−3t

(e)
2
3
tet +

1
9
et + te−2t −

1
9
e−2t (f) −et +

5
2
tet + cos t−

3
2

sin t

8.2.5 (p. 237) (a)
3
5

cos 2t+
1
5

sin 2t−
3
5

cos 3t−
2
15

sin 3t (b) −
4
15

cos t+
1
15

sin t+
4
15

cos 4t−
1
60

sin 4t

(c)
5
3

cos t+ sin t−
5
3

cos 2t−
1
2

sin 2t (d) −
1
3

cos
t

2
+

2
3

sin
t

2
+

1
3

cos t−
1
3

sin t

(e)
1
15

cos
t

4
−

8
15

sin
t

4
−

1
15

cos 4t+
1
30

sin 4t (f)
2
5

cos
t

3
−

3
5

sin
t

3
−

2
5

cos
t

2
+

2
5

sin
t

2
8.2.6 (p. 237) (a) et(cos 2t+ sin 2t) − e−t

(
cos 3t+

4
3

sin 3t
)

(b) e3t
(
− cos 2t+

3
2

sin 2t
)
+ e−t

(
cos 2t+

1
2

sin 2t
)

(c) e−2t
(

1
8

cos t+
1
4

sin t
)
− e2t

(
1
8

cos 3t−
1
12

sin 3t
)

(d) e2t
(

cos t+
1
2

sin t
)
− e3t

(
cos 2t−

1
4

sin 2t
)

(e) et
(

1
5

cos t+
2
5

sin t
)
− e−t

(
1
5

cos 2t+
2
5

sin 2t
)

(f) et/2
(
− cos t+

9
8

sin t
)
+ e−t/2

(
cos t−

1
8

sin t
)

8.2.7 (p. 237) (a) 1−cos t (b)
et

16
(1 − cos 4t) (c)

4
9
e2t +

5
9
e−t sin 3t−

4
9
e−t cos 3t (d) 3et/2 −

7
2
et sin 2t− 3et cos 2t

(e)
1
4
e3t −

1
4
e−t cos 2t (f)

1
9
e2t −

1
9
e−t cos 3t+

5
9
e−t sin 3t

8.2.8 (p. 237) (a) −
3
10

sin t+
2
5

cos t−
3
4
et +

7
20
e3t (b) −

3
5
e−t sin t+

1
5
e−t cos t−

1
2
e−t +

3
10
et

(c) −
1
10
et sin t−

7
10
et cos t+

1
5
e−t +

1
2
e2t (d) −

1
2
et +

7
10
e−t −

1
5

cos 2t+
3
5

sin 2t

(e)
3
10

+
1
10
e2t +

1
10
et sin 2t−

2
5
et cos 2t (f) −

4
9
e2t cos 3t+

1
3
e2t sin 3t−

5
9
e2t + et

8.2.9 (p. 238)
1
a
e
b
a
tf

(
t

a

)
Section 8.3 Answers, pp. 243–244

8.3.1 (p. 243) y =
1
6
et −

9
2
e−t +

16
3
e−2t 8.3.2 (p. 243) y = −

1
3
+

8
15
e3t +

4
5
e−2t

8.3.3 (p. 243) y = −
23
15
e−2t +

1
3
et +

1
5
e3t 8.3.4 (p. 243) y = −

1
4
e2t +

17
20
e−2t +

2
5
e3t

8.3.5 (p. 243) y =
11
15
e−2t +

1
6
et +

1
10
e3t 8.3.6 (p. 243) y = et + 2e−2t − 2e−t

8.3.7 (p. 243) y =
5
3

sin t−
1
3

sin 2t 8.3.8 (p. 243) y = 4et − 4e2t + e3t

8.3.9 (p. 243) y = −
7
2
e2t +

13
3
et +

1
6
e4t 8.3.10 (p. 244) y =

5
2
et − 4e2t +

1
2
e3t

8.3.11 (p. 244) y =
1
3
et − 2e−t +

5
3
e−2t 8.3.12 (p. 244) y = 2 − e−2t + et

8.3.13 (p. 244) y = 1 − cos 2t+
1
2

sin 2t 8.3.14 (p. 244) y = −
1
3
+

8
15
e3t +

4
5
e−2t

8.3.15 (p. 244) y =
1
6
et −

2
3
e−2t +

1
2
e−t 8.3.16 (p. 244) y = −1 + et + e−t

8.3.17 (p. 244) y = cos 2t− sin 2t+ sin t 8.3.18 (p. 244) y =
7
3
−

7
2
e−t +

1
6
e3t

8.3.19 (p. 244) y = 1+cos t 8.3.20 (p. 244) y = t+sin t 8.3.21 (p. 244) y = t−6 sin t+cos t+sin 2t
8.3.22 (p. 244) y = e−t + 4e−2t − 4e−3t 8.3.23 (p. 244) y = −3 cos t− 2 sin t+ e−t(2 + 5t)
8.3.24 (p. 244) y = − sin t− 2 cos t+ 3e3t + e−t 8.3.25 (p. 244) y = (3t+ 4) sin t− (2t+ 6) cos t
8.3.26 (p. 244) y = −(2t+ 2) cos 2t+ sin 2t+ 3 cos t 8.3.27 (p. 244) y = et(cos t− 3 sin t) + e3t
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8.3.28 (p. 244) y = −1+ t+e−t(3 cos t−5 sin t) 8.3.29 (p. 244) y = 4 cos t−3 sin t−et(3 cos t−
8 sin t)
8.3.30 (p. 244) y = e−t − 2et + e−2t(cos 3t− 11/3 sin 3t)
8.3.31 (p. 244) y = e−t(sin t− cos t) + e−2t(cos t+ 4 sin t)

8.3.32 (p. 244) y =
1
5
e2t −

4
3
et +

32
15
e−t/2 8.3.33 (p. 244) y =

1
7
e2t −

2
5
et/2 +

9
35
e−t/3

8.3.34 (p. 244) y = e−t/2(5 cos(t/2) − sin(t/2)) + 2t− 4

8.3.35 (p. 244) y =
1
17

(
12 cos t+ 20 sin t− 3et/2(4 cos t+ sin t)

)
.

8.3.36 (p. 244) y =
e−t/2

10
(5t+ 26) −

1
5
(3 cos t+ sin t) 8.3.37 (p. 244) y =

1
100

(
3e3t − et/3(3 + 310t)

)
Section 8.4 Answers, pp. 252–255

8.4.1 (p. 252) 1+u(t−4)(t−1);
1
s
+ e−4s

(
1
s2

+
3
s

)
8.4.2 (p. 252) t+u(t−1)(1− t);

1 − e−s

s2

8.4.3 (p. 252) 2t− 1 − u(t− 2)(t− 1);
(

2
s2

−
1
s

)
− e−2s

(
1
s2

+
1
s

)
8.4.4 (p. 252) 1 + u(t− 1)(t+ 1);

1
s
+ e−s

(
1
s2

+
2
s

)
8.4.5 (p. 252) t− 1 + u(t− 2)(5 − t);

1
s2

−
1
s
− e−2s

(
1
s2

−
3
s

)
8.4.6 (p. 252) t2 (1 − u(t− 1));

2
s3

− e−s
(

2
s3

+
2
s2

+
1
s

)
8.4.7 (p. 252) u(t− 2)(t2 + 3t); e−2s

(
2
s3

+
7
s2

+
10
s

)
8.4.8 (p. 252) t2 + 2 + u(t− 1)(t− t2 − 2);

2
s3

+
2
s
− e−s

(
2
s3

+
1
s2

+
2
s

)
8.4.9 (p. 252) tet + u(t− 1)(et − tet);

1 − e−(s−1)

(s− 1)2

8.4.10 (p. 252) e−t + u(t− 1)(e−2t − e−t) ;
1 − e−(s+1)

s+ 1
+
e−(s+2)

s+ 2

8.4.11 (p. 252) −t+ 2u(t− 2)(t− 2) − u(t− 3)(t− 5); −
1
s2

+
2e−2s

s2
+ e−3s

(
2
s
−

1
s2

)
8.4.12 (p. 252) [u(t− 1) − u(t− 2)] t ; e−s

(
1
s2

+
1
s

)
− e−2s

(
1
s2

+
2
s

)
8.4.13 (p. 252) t+ u(t− 1)(t2 − t) − u(t− 2)t2;

1
s2

+ e−s
(

2
s3

+
1
s2

)
− e−2s

(
2
s3

+
4
s2

+
4
s

)
8.4.14 (p. 252) t+ u(t− 1)(2 − 2t) + u(t− 2)(4 + t);

1
s2

− 2
e−s

s2
+ e−2s

(
1
s2

+
6
s

)
8.4.15 (p. 252) sin t+ u(t− π/2) sin t+ u(t− π)(cos t− 2 sin t);

1 + e−
π
2 ss− e−πs(s− 2)
s2 + 1

8.4.16 (p. 253) 2 − 2u(t− 1)t+ u(t− 3)(5t− 2);
2
s
− e−s

(
2
s2

+
2
s

)
+ e−3s

(
5
s2

+
13
s

)
8.4.17 (p. 253) 3 + u(t− 2)(3t− 1) + u(t− 4)(t− 2);

3
s
+ e−2s

(
3
s2

+
5
s

)
+ e−4s

(
1
s2

+
2
s

)
8.4.18 (p. 253) (t+ 1)2 + u(t− 1)(2t+ 3);

2
s3

+
2
s2

+
1
s
+ e−s

(
2
s2

+
5
s

)
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8.4.19 (p. 253) u(t− 2)e2(t−2) =

{
0, 0 6 t < 2,

e2(t−2), t > 2.

8.4.20 (p. 253) u(t− 1)
(
1 − e−(t−1)

)
=

{
0, 0 6 t < 1,

1 − e−(t−1), t > 1.

8.4.21 (p. 253) u(t− 1)
(t− 1)2

2
+ u(t− 2)(t− 2) =


0, 0 6 t < 1,

(t− 1)2

2
, 1 6 t < 2,

t2 − 3
2

, t > 2.

8.4.22 (p. 253) 2 + t+ u(t− 1)(4 − t) + u(t− 3)(t− 2) =


2 + t, 0 6 t < 1,

6, 1 6 t < 3,

t+ 4, t > 3.

8.4.23 (p. 253) 5 − t+ u(t− 3)(7t− 15) +
3
2
u(t− 6)(t− 6)2 =


5 − t, 0 6 t < 3,

6t− 10, 3 6 t < 6,

44 − 12t+ 3
2t

2, t > 6.

8.4.24 (p. 253) u(t− π)e−2(t−π)(2 cos t− 5 sin t) =

{
0, 0 6 t < π,

e−2(t−π)(2 cos t− 5 sin t), t > π.

8.4.25 (p. 253) 1 − cos t+ u(t− π/2)(3 sin t+ cos t) =

 1 − cos t, 0 6 t <
π

2
,

1 + 3 sin t, t >
π

2
.

8.4.26 (p. 253) u(t− 2)
(
4e−(t−2) − 4e2(t−2) + 2e(t−2)

)
=

{
0, 0 6 t < 2,

4e−(t−2) − 4e2(t−2) + 2e(t−2), t > 2.

8.4.27 (p. 253) 1 + t+ u(t− 1)(2t+ 1) + u(t− 3)(3t− 5) =


t+ 1, 0 6 t < 1,

3t+ 2, 1 6 t < 3,

6t− 3, t > 3.

8.4.28 (p. 253) 1 − t2 + u(t− 2)
(
−
t2

2
+ 2t+ 1

)
+ u(t− 4)(t− 4) =


1 − t2, 0 6 t < 2

−
3t2

2
+ 2t+ 2, 2 6 t < 4,

−
3t2

2
+ 3t− 2, t > 4.

8.4.29 (p. 253)
e−τs

s
8.4.30 (p. 253) For each t only finitely many terms are nonzero.

8.4.33 (p. 255) 1 +

∞∑
m=1

u(t−m);
1

s(1 − e−s)
8.4.34 (p. 255) 1 + 2

∞∑
m=1

(−1)mu(t−m);
1
s
;

1 − e−s

1 + e−s

8.4.35 (p. 255) 1 +

∞∑
m=1

(2m+ 1)u(t−m);
e−s(1 + e−s)

s(1 − e−s)2
8.4.36 (p. 255)

∞∑
m=1

(−1)m(2m− 1)u(t−m);
1
s

(1 − es)

(1 + es)2

Section 8.5 Answers, pp. 261–264

8.5.1 (p. 261) y = 3(1 − cos t) − 3u(t− π)(1 + cos t)

8.5.2 (p. 261) y = 3−2 cos t+2u(t−4) (t− 4 − sin(t− 4)) 8.5.3 (p. 261) y = −
15
2

+
3
2
e2t − 2t+

u(t− 1)
2

(e2(t−1) − 2t+ 1)
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8.5.4 (p. 261) y =
1
2
et +

13
6
e−t +

1
3
e2t + u(t− 2)

(
−1 +

1
2
et−2 +

1
2
e−(t−2) +

1
2
et+2 −

1
6
e−(t−6) −

1
3
e2t
)

8.5.5 (p. 261) y = −7et + 4e2t + u(t− 1)
(

1
2
− et−1 +

1
2
e2(t−1)

)
− 2u(t− 2)

(
1
2
− et−2 +

1
2
e2(t−2)

)
8.5.6 (p. 261) y =

1
3

sin 2t− 3 cos 2t+
1
3

sin t− 2u(t− π)
(

1
3

sin t+
1
6

sin 2t
)
+ u(t− 2π)

(
1
3

sin t−
1
6

sin 2t
)

8.5.7 (p. 262) y =
1
4
−

31
12
e4t +

16
3
et + u(t− 1)

(
2
3
et−1 −

1
6
e4(t−1) −

1
2

)
+ u(t− 2)

(
1
4
+

1
12
e4(t−2) −

1
3
et−2

)
8.5.8 (p. 262) y =

1
8
(cos t− cos 3t) −

1
8
u

(
t−

3π
2

)(
sin t− cos t+ sin 3t−

1
3

cos 3t
)

8.5.9 (p. 262) y =
t

4
−

1
8

sin 2t+
1
8
u
(
t−

π

2

)
(π cos 2t− sin 2t+ 2π− 2t)

8.5.10 (p. 262) y = t− sin t− 2u(t− π)(t+ sin t+ π cos t)

8.5.11 (p. 262) y = u(t− 2)
(
t−

1
2
+
e2(t−2)

2
− 2et−2

)
8.5.12 (p. 262) y = t+ sin t+ cos t− u(t− 2π)(3t− 3 sin t− 6π cos t)

8.5.13 (p. 262) y =
1
2
+

1
2
e−2t − e−t + u(t− 2)

(
2e−(t−2) − e−2(t−2) − 1

)
8.5.14 (p. 262) y = −

1
3
−

1
6
e3t +

1
2
et + u(t− 1)

(
2
3
+

1
3
e3(t−1) − et−1

)
8.5.15 (p. 262) y =

1
4
(
et + e−t(11 + 6t)

)
+ u(t− 1)(te−(t−1) − 1)

8.5.16 (p. 262) y = et − e−t − 2te−t − u(t− 1)
(
et − e−(t−2) − 2(t− 1)e−(t−2)

)
8.5.17 (p. 262) y = te−t + e−2t + u(t− 1)

(
e−t(2 − t) − e−(2t−1)

)
8.5.18 (p. 262) y = y =

t2e2t

2
− te2t − u(t− 2)(t− 2)2e2t

8.5.19 (p. 262) y =
t4

12
+ 1 −

1
12
u(t− 1)(t4 + 2t3 − 10t+ 7) +

1
6
u(t− 2)(2t3 + 3t2 − 36t+ 44)

8.5.20 (p. 262) y =
1
2
e−t(3 cos t+ sin t) +

1
2

−u(t− 2π)
(
e−(t−2π)

(
(π− 1) cos t+

2π− 1
2

sin t
)
+ 1 −

t

2

)
−

1
2
u(t− 3π)

(
e−(t−3π)(3π cos t+ (3π+ 1) sin t) + t

)
8.5.21 (p. 262) y =

t2

2
+

∞∑
m=1

u(t−m)
(t−m)2

2

8.5.22 (p. 263) (a) y =

{
2m+ 1 − cos t, 2mπ 6 t < (2m+ 1)π (m = 0, 1, . . . )

2m, (2m− 1)π 6 t < 2mπ (m = 1, 2, . . . )
(b) y = (m+ 1)(t− sin t−mπ cos t), 2mπ 6 t < (2m+ 2)π (m = 0, 1, . . . )
(c) y = (−1)m − (2m+ 1) cos t, mπ 6 t < (m+ 1)π (m = 0, 1, . . . )

(d) y =
em+1 − 1
2(e− 1)

(et−m + e−t) −m− 1, m 6 t < m+ 1 (m = 0, 1 . . . )

(e) y =

(
m+ 1 −

(
e2(m+1)π − 1
e2π − 1

)
e−t
)

sin t 2mπ 6 t < 2(m+ 1)π (m = 0, 1, . . . )

(f) y =
m+ 1

2
− et−m

em+1 − 1
e− 1

+
1
2
e2(t−m) e

2m+2 − 1
e2 − 1

, m 6 t < m+ 1 (m = 0, 1, . . . )
Section 8.6 Answers, pp. 274–278
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8.6.1 (p. 274) (a)
1
2

∫t
0
τ sin 2(t− τ)dτ (b)

∫t
0
e−2τ cos 3(t− τ)dτ

(c)
1
2

∫t
0

sin 2τ cos 3(t− τ)dτ or
1
3

∫t
0

sin 3τ cos 2(t− τ)dτ (d)
∫t
0

cos τ sin(t− τ)dτ

(e)
∫t
0
eaτdτ (f) e−t

∫t
0

sin(t− τ)dτ (g) e−2t
∫t
0
τeτ sin(t− τ)dτ

(h)
e−2t

2

∫t
0
τ2(t− τ)e3τ dτ (i)

∫t
0
(t− τ)eτ cos τdτ (j)

∫t
0
e−3τ cos τ cos 2(t− τ)dτ

(k)
1

4!5!

∫t
0
τ4(t− τ)5e3τ dτ (l)

1
4

∫t
0
τ2eτ sin 2(t− τ)dτ

(m)
1
2

∫t
0
τ(t− τ)2e2(t−τ) dτ (n)

1
5!6!

∫t
0
(t− τ)5e2(t−τ)τ6 dτ

8.6.2 (p. 274) (a)
as

(s2 + a2)(s2 + b2)
(b)

a

(s− 1)(s2 + a2)
(c)

as

(s2 − a2)2
(d)

2ωs(s2 −ω2)

(s2 +ω2)4

(e)
(s− 1)ω

((s− 1)2 +ω2)2
(f)

2
(s− 2)3(s− 1)2

(g)
s+ 1

(s+ 2)2 [(s+ 1)2 +ω2]

(h)
1

(s− 3) ((s− 1)2 − 1)
(i)

2
(s− 2)2(s2 + 4)

(j)
6

s4(s− 1)
(k)

3 · 6!
s7 [(s+ 1)2 + 9]

(l)
12
s7

(m)
2 · 7!

s8 [(s+ 1)2 + 4]
(n)

48
s5(s2 + 4)

8.6.3 (p. 275) (a) y =
2√
5

∫t
0
f(t− τ)e−3τ/2 sinh

√
5τ
2
dτ (b) y =

1
2

∫t
0
f(t− τ) sin 2τdτ

(c) y =

∫t
0
τe−τf(t− τ) dτ (d) y(t) = −

1
k

sinkt+ coskt+
1
k

∫t
0
f(t− τ) sinkτdτ

(e) y = −2te−3t +

∫t
0
τe−3τf(t− τ)dτ (f) y =

3
2

sinh 2t+
1
2

∫t
0
f(t− τ) sinh 2τdτ

(g) y = e3t +

∫t
0
(e3τ − e2τ)f(t− τ)dτ (h) y =

k1

ω
sinωt+ k0 cosωt+

1
ω

∫t
0
f(t− τ) sinωτdτ

8.6.4 (p. 275) (a) y = sin t(b) y = te−t (c) y = 1 + 2tet (d) y = t+
t2

2
(e) y = 4 +

5
2
t2 +

1
24
t4 (f) y = 1 − t

8.6.5 (p. 275) (a)
7!8!
16!

t16 (b)
13!7!
21!

t21 (c)
6!7!
14!

t14 (d)
1
2
(e−t + sin t− cos t) (e)

1
3
(cos t− cos 2t)

Section 8.7 Answers, pp. 285–286

8.7.1 (p. 285) y =
1
2
e2t − 4e−t +

11
2
e−2t + 2u(t− 1)(e−(t−1) − e−2(t−1))

8.7.2 (p. 285) y = 2e−2t + 5e−t +
5
3
u(t− 1)(e(t−1) − e−2(t−1))

8.7.3 (p. 285) y =
1
6
e2t −

2
3
e−t −

1
2
e−2t +

5
2
u(t− 1) sinh 2(t− 1)

8.7.4 (p. 285) y =
1
8
(8 cos t− 5 sin t− sin 3t) − 2u(t− π/2) cos t

8.7.5 (p. 285) y = 1 − cos 2t+
1
2

sin 2t+
1
2
u(t− 3π) sin 2t

8.7.6 (p. 285) y = 4et + 3e−t − 8 + 2u(t− 2) sinh(t− 2)

8.7.7 (p. 285) y =
1
2
et −

7
2
e−t + 2 + 3u(t− 6)(1 − e−(t−6))

8.7.8 (p. 285) y = e2t + 7 cos 2t− sin 2t−
1
2
u(t− π/2) sin 2t
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8.7.9 (p. 285) y =
1
2
(1 + e−2t) + u(t− 1)(e−(t−1) − e−2(t−1))

8.7.10 (p. 285) y =
1
4
et +

1
4
e−t(2t− 5) + 2u(t− 2)(t− 2)e−(t−2)

8.7.11 (p. 285) y =
1
6
(2 sin t+ 5 sin 2t) −

1
2
u(t− π/2) sin 2t

8.7.12 (p. 285) y = e−t(sin t− cos t) − e−(t−π) sin t− 3u(t− 2π)e−(t−2π) sin t

8.7.13 (p. 285) y = e−2t
(

cos 3t+
4
3

sin 3t
)
−

1
3
u(t− π/6)e−2(t−π/6) cos 3t−

2
3
u(t− π/3)e−2(t−π/3) sin 3t

8.7.14 (p. 285) y =
7
10
e2t −

6
5
e−t/2 −

1
2
+

1
5
u(t− 2)(e2(t−2) − e−(t−2)/2)

8.7.15 (p. 285) y =
1
17

(12 cos t+ 20 sin t) +
1
34
et/2(10 cos t− 11 sin t) − u(t− π/2)e(2t−π)/4 cos t

+u(t− π)e(t−π)/2 sin t

8.7.16 (p. 285) y =
1
3
(cos t− cos 2t− 3 sin t) − 2u(t− π/2) cos t+ 3u(t− π) sin t

8.7.17 (p. 285) y = et − e−t(1 + 2t) − 5u(t− 1) sinh(t− 1) + 3u(t− 2) sinh(t− 2)

8.7.18 (p. 285) y =
1
4
(et − e−t(1 + 6t)) − u(t− 1)e−(t−1) + 2u(t− 2)e−(t−2))

8.7.19 (p. 285) y =
5
3

sin t−
1
3

sin 2t+
1
3
u(t− π)(sin 2t+ 2 sin t) + u(t− 2π) sin t

8.7.20 (p. 285) y =
3
4

cos 2t−
1
2

sin 2t+
1
4
+

1
4
u(t− π/2)(1 + cos 2t) +

1
2
u(t− π) sin 2t+

3
2
u(t− 3π/2) sin 2t

8.7.21 (p. 285) y = cos t− sin t 8.7.22 (p. 285) y =
1
4
(8e3t − 12e−2t)

8.7.23 (p. 285) y = 5(e−2t − e−t) 8.7.24 (p. 285) y = e−2t(1 + 6t)

8.7.25 (p. 286) y =
1
4
e−t/2(4 − 19t)

8.7.29 (p. 286) y = (−1)kmω1Re
−cτ/2mδ(t− τ) ifω1τ− φ = (2k+ 1)π/2(k = integer)

8.7.30 (p. 286) (a) y =
(em+1 − 1)(et−m − e−t)

2(e− 1)
, m 6 t < m+ 1, (m = 0, 1, . . . )

(b) y = (m+ 1) sin t, 2mπ 6 t < 2(m+ 1)π, (m = 0, 1, . . . )

(c) y = e2(t−m) e
2m+2 − 1
e2 − 1

− e(t−m) e
m+1 − 1
e− 1

, m 6 t < m+ 1 (m = 0, 1, . . . )

(d) y =

{
0, 2mπ 6 t < (2m+ 1)π,

− sin t, (2m+ 1)π 6 t < (2m+ 2)π,
(m = 0, 1,. . . )

Section 9.1 Answers, pp. ??–??

9.1.2 (p. ??) y = 2x2 − 3x3 +
1
x

9.1.3 (p. ??) y = 2ex + 3e−x − e2x + e−3x 9.1.4 (p. ??)

yi =
(x− x0)

i−1

(i− 1)!
, 1 6 i 6 n

9.1.5 (p. ??) (b) y1 = −
1
2
x3 + x2 +

1
2x

, y2 =
1
3
x2 −

1
3x

, y3 =
1
4
x3 −

1
3
x2 +

1
12x

(c) y = k0y1 + k1y2 + k2y3
9.1.7 (p. ??) 2e−x2 9.1.8 (p. ??)

√
2K cos x 9.1.9 (p. ??) (a)W(x) = 2e3x (d) y = ex(c1 + c2x+

c3x
2)

9.1.10 (p. ??) (a) 2 (b) −e3x(c) 4 (d) 4/x2 (e) 1 (f) 2x (g) 2/x2(h) ex(x2 − 2x+ 2)
(i) −240/x5 (j) 6e2x(2x− 1)(l) −128x

9.1.24 (p. ??) (a) y ′′′ = 0 (b) xy ′′′ − y ′′ − xy ′ + y = 0 (c) (2x− 3)y ′′′ − 2y ′′ − (2x− 5)y ′ = 0
(d) (x2 − 2x+ 2)y ′′′ − x2y ′′ + 2xy ′ − 2y = 0 (e) x3y ′′′ + x2y ′′ − 2xy ′ + 2y = 0
(f) (3x− 1)y ′′′ − (12x− 1)y ′′ + 9(x+ 1)y ′ − 9y = 0
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(g) x4y(4) + 5x3y ′′′ − 3x2y ′′ − 6xy ′ + 6y = 0
(h) x4y(4) + 3x2y ′′′ − x2y ′′ + 2xy ′ − 2y = 0
(i) (2x− 1)y(4) − 4xy ′′′ + (5 − 2x)y ′′ + 4xy ′ − 4y = 0

(j) xy(4) − y ′′′ − 4xy ′′ + 4y ′ = 0

Section 9.2 Answers, pp. ??–??

9.2.1 (p. ??) y = ex(c1 + c2x+ c3x
2) 9.2.2 (p. ??) y = c1e

x + c2e
−x + c3 cos 3x+ c4 sin 3x

9.2.3 (p. ??) y = c1e
x + c2 cos 4x+ c3 sin 4x 9.2.4 (p. ??) y = c1e

x + c2e
−x + c3e

−3x/2

9.2.5 (p. ??) y = c1e
−x + e−2x(c1 cos x+ c2 sin x) 9.2.6 (p. ??) y = c1e

x + ex/2(c2 + c3x)
9.2.7 (p. ??) y = e−x/3(c1 + c2x+ c3x

2) 9.2.8 (p. ??) y = c1 + c2x+ c3 cos x+ c4 sin x
9.2.9 (p. ??) y = c1e

2x + c2e
−2x + c3 cos 2x+ c4 sin 2x

9.2.10 (p. ??) y = (c1 + c2x) cos
√

6x+ (c3 + c4x) sin
√

6x
9.2.11 (p. ??) y = e3x/2(c1 + c2x) + e

−3x/2(c3 + c4x)
9.2.12 (p. ??) y = c1e

−x/2 + c2e
−x/3 + c3 cos x+ c4 sin x

9.2.13 (p. ??) y = c1e
x+c2e

−2x+c3e
−x/2+c4e

−3x/2 9.2.14 (p. ??) y = ex(c1+c2x+c3 cos x+
c4 sin x)
9.2.15 (p. ??) y = cos 2x− 2 sin 2x+ e2x 9.2.16 (p. ??) y = 2ex + 3e−x − 5e−3x

9.2.17 (p. ??) y = 2ex + 3xex − 4e−x

9.2.18 (p. ??) y = 2e−x cos x− 3e−x sin x+ 4e2x 9.2.19 (p. ??) y =
9
5
e−5x/3 + ex(1 + 2x)

9.2.20 (p. ??) y = e2x(1 − 3x+ 2x2) 9.2.21 (p. ??) y = e3x(2 − x) + 4e−x/2

9.2.22 (p. ??) y = ex/2(1 − 2x) + 3e−x/2 9.2.23 (p. ??) y =
1
8
(5e2x + e−2x + 10 cos 2x+ 4 sin 2x)

9.2.24 (p. ??) y = −4ex + e2x − e4x + 2e−x 9.2.25 (p. ??) y = 2ex − e−x
9.2.26 (p. ??) y = e2x + e−2x + e−x(3 cos x+ sin x) 9.2.27 (p. ??) y = 2e−x/2 + cos 2x− sin 2x
9.2.28 (p. ??) (a) {ex, xex, e2x} : 1 (b) {cos 2x, sin 2x, e3x} : 26

(c) {e−x cos x, e−x sin x, ex} : 5 (d) {1, x, x2, ex} 2ex
(e) {ex, e−x, cos x, sin x}8 (f) {cos x, sin x, ex cos x, ex sin x} : 5

9.2.29 (p. ??) {e−3x cos 2x, e−3x sin 2x, e2x, xe2x, 1, x, x2}

9.2.30 (p. ??) {ex, xex, ex/2, xex/2, x2ex/2, cos x, sin x}
9.2.31 (p. ??) {cos 3x, x cos 3x, x2 cos 3x, sin 3x, x sin 3x, x2 sin 3x, 1, x}
9.2.32 (p. ??) {e2x, xe2x, x2e2x, e−x, xe−x, 1}
9.2.33 (p. ??) {cos x, sin x, cos 3x, x cos 3x, sin 3x, x sin 3x, e2x}
9.2.34 (p. ??) {e2x, xe2x, e−2x, xe−2x, cos 2x, x cos 2x, sin 2x, x sin 2x}
9.2.35 (p. ??) {e−x/2 cos 2x, xe−x/2 cos 2x, x2e−x/2 cos 2x, e−x/2 sin 2x, xe−x/2 sin 2x,

x2e−x/2 sin 2x}
9.2.36 (p. ??) {1, x, x2, e2x, xe2x, cos 2x, x cos 2x, sin 2x, x sin 2x}
9.2.37 (p. ??) {cos(x/2), x cos(x/2), sin(x/2), x sin(x/2), cos 2x/3 x cos(2x/3),

x2 cos(2x/3), sin(2x/3), x sin(2x/3), x2 sin(2x/3)}
9.2.38 (p. ??) {e−x, e3x, ex cos 2x, ex sin 2x} 9.2.39 (p. ??) (b) e(a1+a2+···+an)x

∏
16i<j6n

(aj − ai)

9.2.43 (p. ??) (a)
{
ex, e−x/2 cos

(√
3

2
x

)
, e−x/2 sin

(√
3

2
x

)}
(b)
{
e−x, ex/2 cos

(√
3

2
x

)
, ex/2 sin

(√
3

2
x

)}
(c) {e2x cos 2x, e2x sin 2x, e−2x cos 2x, e−2x sin 2x}

(d)
{
ex, e−x, ex/2 cos

(√
3

2
x

)
, ex/2 sin

(√
3

2
x

)
, e−x/2 cos

(√
3

2
x

)
, e−x/2 sin

(√
3

2
x

)}
(e) {cos 2x, sin 2x, e−

√
3x cos x, e−

√
3x sin x, e

√
3x cos x, e

√
3x sin x}

(f)
{

1, e2x, e3x/2 cos
(√

3
2
x

)
, e3x/2 sin

(√
3

2
x

)
, ex/2 cos

(√
3

2
x

)
, ex/2 sin

(√
3

2
x

)}
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(g)
{
e−x, ex/2 cos

(√
3

2
x

)
, ex/2 sin

(√
3

2
x

)
, e−x/2 cos

(√
3

2
x

)
, e−x/2 sin

(√
3

2
x

)}
9.2.45 (p. ??) y = c1x

r1 + c2x
r2 + c3x

r3 (r1, r2, r3 distinct); y = c1x
r1 + (c2 + c3 ln x)xr2 (r1, r2

distinct); y = [c1 + c2 ln x+ c3(ln x)2]xr1 ; y = c1x
r1 + xλ[c2 cos(ω ln x) + c3 sin(ω ln x)]

Section 9.3 Answers, pp. ??–??

9.3.1 (p. ??) yp = e−x(2 + x − x2) 9.3.2 (p. ??) yp = −
e−3x

4
(3 − x + x2) 9.3.3 (p. ??) yp =

ex(1 + x− x2)

9.3.4 (p. ??) yp = e−2x(1 − 5x+ x2). 9.3.5 (p. ??) yp = −
xex

2
(1 − x+ x2 − x3)

9.3.6 (p. ??) yp = x2ex(1 + x) 9.3.7 (p. ??) yp =
xe−2x

2
(2 + x) 9.3.8 (p. ??) yp =

x2ex

2
(2 + x)

9.3.9 (p. ??) yp =
x2e2x

2
(1 + 2x) 9.3.10 (p. ??) yp = x2e3x(2 + x − x2) 9.3.11 (p. ??) yp =

x2e4x(2 + x)

9.3.12 (p. ??) yp =
x3ex/2

48
(1 + x) 9.3.13 (p. ??) yp = e−x(1 − 2x + x2) 9.3.14 (p. ??) yp =

e2x(1 − x)

9.3.15 (p. ??) yp = e−2x(1 + x + x2 − x3) 9.3.16 (p. ??) yp =
ex

3
(1 − x) 9.3.17 (p. ??) yp =

ex(1 + x)2

9.3.18 (p. ??) yp = xex(1 + x3) 9.3.19 (p. ??) yp = xex(2 + x) 9.3.20 (p. ??) yp =
xe2x

6
(1 − x2)

9.3.21 (p. ??) yp = 4xe−x/2(1 + x) 9.3.22 (p. ??) yp =
xex

6
(1 + x2)

9.3.23 (p. ??) yp =
x2e2x

6
(1 + x + x2) 9.3.24 (p. ??) yp =

x2e2x

6
(3 + x + x2) 9.3.25 (p. ??)

yp =
x3ex

48
(2 + x)

9.3.26 (p. ??) yp =
x3ex

6
(1 + x) 9.3.27 (p. ??) yp = −

x3e−x

6
(1 − x + x2) 9.3.28 (p. ??) yp =

x3e2x

12
(2 + x− x2)

9.3.29 (p. ??) yp = e−x [(1 + x) cos x+ (2 − x) sin x] 9.3.30 (p. ??) yp = e−x [(1 − x) cos 2x+ (1 + x) sin 2x]
9.3.31 (p. ??) yp = e2x[(1 + x− x2) cos x+ (1 + 2x) sin x]

9.3.32 (p. ??) yp =
ex

2
[(1+x) cos 2x+(1−x+x2) sin 2x] 9.3.33 (p. ??) yp =

x

13
(8 cos 2x+14 sin 2x)

9.3.34 (p. ??) yp = xex[(1+x) cos x+(3+x) sin x] 9.3.35 (p. ??) yp =
xe2x

2
[(3−x) cos 2x+sin 2x]

9.3.36 (p. ??) yp = −
xe3x

12
(x cos 3x+ sin 3x) 9.3.37 (p. ??) yp = −

ex

10
(cos x+ 7 sin x)

9.3.38 (p. ??) yp =
ex

12
(cos 2x− sin 2x) 9.3.39 (p. ??) yp = xe2x cos 2x

9.3.40 (p. ??) yp = −
e−x

2
[(1 + x) cos x+ (2 − x) sin x] 9.3.41 (p. ??) yp =

xe−x

10
(cos x+ 2 sin x)

9.3.42 (p. ??) yp =
xex

40
(3 cos 2x−sin 2x) 9.3.43 (p. ??) yp =

xe−2x

8
[(1−x) cos 3x+(1+x) sin 3x]

9.3.44 (p. ??) yp = −
xex

4
(1 + x) sin 2x 9.3.45 (p. ??) yp =

x2e−x

4
(cos x− 2 sin x)

9.3.46 (p. ??) yp = −
x2e2x

32
(cos 2x− sin 2x) 9.3.47 (p. ??) yp =

x2e2x

8
(1 + x) sin x
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9.3.48 (p. ??) yp = 2x2ex + xe2x − cos x 9.3.49 (p. ??) yp = e2x + xex + 2x cos x
9.3.50 (p. ??) yp = 2x+ x2 + 2xex − 3xe−x + 4e3x
9.3.51 (p. ??) yp = xex(cos 2x−2 sin 2x)+2xe2x+1 9.3.52 (p. ??) yp = x2e−2x(1+2x)−cos 2x+
sin 2x
9.3.53 (p. ??) yp = 2x2(1 + x)e−x + x cos x− 2 sin x 9.3.54 (p. ??) yp = 2xex + xe−x + cos x

9.3.55 (p. ??) yp =
xex

6
(cos x+ sin 2x) 9.3.56 (p. ??) yp =

x2

54
[(2 + 2x)ex + 3e−2x]

9.3.57 (p. ??) yp =
x

8
sinh x sin x 9.3.58 (p. ??) yp = x3(1 + x)e−x + xe−2x

9.3.59 (p. ??) yp = xex(2x2 + cos x+ sin x) 9.3.60 (p. ??) y = e2x(1+ x) + c1e−x + ex(c2 + c3x)

9.3.61 (p. ??) y = e3x
(

1 − x−
x2

2

)
+ c1e

x + e−x(c2 cos x+ c3 sin x)

9.3.62 (p. ??) y = xe2x(1 + x)2 + c1e
x + c2e

2x + c3e
3x

9.3.63 (p. ??) y = x2e−x(1 − x)2 + c1 + e
−x(c2 + c3x)

9.3.64 (p. ??) y =
x3ex

24
(4 + x) + ex(c1 + c2x+ c3x

2)

9.3.65 (p. ??) y =
x2e−x

16
(1 + 2x− x2) + ex(c1 + c2x) + e

−x(c3 + c4x)

9.3.66 (p. ??) y = e−2x
[(

1 +
x

2

)
cos x+

(
3
2
− 2x

)
sin x

]
+ c1e

x + c2e
−x + c3e

−2x

9.3.67 (p. ??) y = −xex sin 2x+ c1 + c2ex + ex(c3 cos x+ c4 sin x)

9.3.68 (p. ??) y = −
x2ex

16
(1 + x) cos 2x+ ex [(c1 + c2x) cos 2x+ (c3 + c4x) sin 2x]

9.3.69 (p. ??) y = (x2 + 2)ex − e−2x + e3x 9.3.70 (p. ??) y = e−x(1 + x+ x2) + (1 − x)ex

9.3.71 (p. ??) y =

(
x2

12
+ 16

)
xe−x/2 − ex 9.3.72 (p. ??) y = (2 − x)(x2 + 1)e−x + cos x− sin x

9.3.73 (p. ??) y = (2−x) cos x−(1−7x) sin x+e−2x 9.3.74 (p. ??) 2+ex [(1 + x) cos x− sin x− 1]

Section 9.4 Answers, pp. ??–??

9.4.1 (p. ??) yp = 2x3 9.4.2 (p. ??) yp =
8

105
x7/2e−x

2
9.4.3 (p. ??) yp = x ln |x|

9.4.4 (p. ??) yp = −
2(x2 + 2)

x
9.4.5 (p. ??) yp = −

xe−3x

64
9.4.6 (p. ??) yp = −

2x2

3
9.4.7 (p. ??) yp = −

e−x(x+ 1)
x

9.4.8 (p. ??) yp = 2x2 ln |x| 9.4.9 (p. ??) yp = x2 + 1

9.4.10 (p. ??) yp =
2x2 + 6

3
9.4.11 (p. ??) yp =

x2 ln |x|

3
9.4.12 (p. ??) yp = −x2 − 2

9.4.13 (p. ??)
1
4
x3 ln |x|−

25
48
x3 9.4.14 (p. ??) yp =

x5/2

4
9.4.15 (p. ??) yp =

x(12 − x2)

6

9.4.16 (p. ??) yp =
x4 ln |x|

6
9.4.17 (p. ??) yp =

x3ex

2
9.4.18 (p. ??) yp = x2 ln |x|

9.4.19 (p. ??) yp =
xex

2
9.4.20 (p. ??) yp =

3xex

2
9.4.21 (p. ??) yp = −x3

9.4.22 (p. ??) y = −x(ln x)2 + 3x+ x3 − 2x ln x 9.4.23 (p. ??) y =
x3

2
(ln |x|)2 + x2 − x3 + 2x3 ln |x|

9.4.24 (p. ??) y = −
1
2
(3x+ 1)xex − 3ex − e2x + 4xe−x 9.4.25 (p. ??) y =

3
2
x4(ln x)2 + 3x− x4 + 2x4 ln x

9.4.26 (p. ??) y = −
x4 + 12

6
+ 3x− x2 + 2ex 9.4.27 (p. ??) y =

(
x2

3
−
x

2

)
ln |x|+ 4x− 2x2

9.4.28 (p. ??) y = −
xex(1 + 3x)

2
+
x+ 1

2
−
ex

4
+
e3x

2
9.4.29 (p. ??) y = −8x+ 2x2 − 2x3 + 2ex−
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e−x

9.4.30 (p. ??) y = 3x2 ln x− 7x2 9.4.31 (p. ??) y =
3(4x2 + 9)

2
+
x

2
−
ex

2
+
e−x

2
+
e2x

4
9.4.32 (p. ??) y = x ln x+ x−

√
x+

1
x
+

1√
x

. 9.4.33 (p. ??) y = x3 ln |x|+ x− 2x3 +
1
x
−

1
x2

9.4.35 (p. ??) yp =

∫x
x0

e(x−t) − 3e−(x−t) + 2e−2(x−t)

6
F(t)dt 9.4.36 (p. ??) yp =

∫x
x0

(x− t)2(2x+ t)
6xt3

F(t)dt

9.4.37 (p. ??) yp =

∫x
x0

xe(x−t) − x2 + x(t− 1)
t4

F(t)dt 9.4.38 (p. ??) yp =

∫x
x0

x2 − t(t− 2) − 2te(x−t)

2x(t− 1)2
F(t)dt

9.4.39 (p. ??) yp =

∫x
x0

e2(x−t) − 2e(x−t) + 2e−(x−t) − e−2(x−t)

12
F(t)dt

9.4.40 (p. ??) yp =

∫x
x0

(x− t)3

6x
F(t)dt

9.4.41 (p. ??) yp =

∫x
x0

(x+ t)(x− t)3

12x2t3
F(t)dt

9.4.42 (p. ??) yp =

∫x
x0

e2(x−t)(1 + 2t) + e−2(x−t)(1 − 2t) − 4x2 + 4t2 − 2
32t2

F(t)dt

Section 10.1 Answers, pp. 297–298

10.1.1 (p. 297)
Q ′1 = 2 −

1
10
Q1 +

1
25
Q2

Q ′2 = 6 +
3
50
Q1 −

1
20
Q2.

10.1.2 (p. 297)
Q ′1 = 12 −

5
100 + 2t

Q1 +
1

100 + 3t
Q2

Q ′2 = 5 +
1

50 + t
Q1 −

4
100 + 3t

Q2.

10.1.3 (p. 297) m1y
′′
1 = −(c1 + c2)y

′
1 + c2y

′
2 − (k1 + k2)y1 + k2y2 + F1

m2y
′′
2 = (c2 − c3)y

′
1 − (c2 + c3)y

′
2 + c3y

′
3 + (k2 − k3)y1 − (k2 + k3)y2 + k3y3 + F2

m3y
′′
3 = c3y

′
1 + c3y

′
2 − c3y

′
3 + k3y1 + k3y2 − k3y3 + F3

10.1.4 (p. 297) x ′′ = −
α

m
x ′ +

gR2x

(x2 + y2 + z2)3/2
y ′′ = −

α

m
y ′ +

gR2y

(x2 + y2 + z2)3/2

z ′′ = −
α

m
z ′ +

gR2z

(x2 + y2 + z2)3/2

10.1.5 (p. 297) (a)

x ′1 = x2
x ′2 = x3
x ′3 = f(t, x1,y1,y2)
y ′1 = y2
y ′2 = g(t,y1,y2)

(b)

u ′1 = f(t,u1, v1, v2,w2)
; v ′1 = v2
v ′2 = g(t,u1, v1, v2,w1)
w ′1 = w2
w ′2 = h(t,u1, v1, v2,w1,w2)

(c)
y ′1 = y2
y ′2 = y3
y ′3 = f(t,y1,y2,y3)

(d)

y ′1 = y2
y ′2 = y3
y ′3 = y4
y ′4 = f(t,y1)

(e)

x ′1 = x2
x ′2 = f(t, x1,y1)
y ′1 = y2
y ′2 = g(t, x1,y1)
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10.1.6 (p. 298)

x ′ = x1

y ′ = y1

z ′ = z1

x ′1 = −
gR2x

(x2 + y2 + z2)3/2

y ′1 = −
gR2y

(x2 + y2 + z2)3/2

z ′1 = −
gR2z

(x2 + y2 + z2)3/2

Section 10.2 Answers, pp. 302–305

10.2.1 (p. 302) (a) y ′ =
[

2 4
4 2

]
y (b) y ′ =

[
−2 −2
−5 1

]
y

(c) y ′ =
[

−4 −10
3 7

]
y (d) y ′ =

[
2 1
1 2

]
y

10.2.2 (p. 302) (a) y ′ =

 −1 2 3
0 1 6
0 0 −2

 y (b) y ′ =

 0 2 2
2 0 2
2 2 0

 y

(c) y ′ =

 −1 2 2
2 −1 2
2 2 −1

 y (d) y ′ =

 3 −1 −1
−2 3 2

4 −1 −2

 y

10.2.3 (p. 303) (a) y ′ =
[

1 1
−2 4

]
y, y(0) =

[
1
0

]
(b) y ′ =

[
5 3

−1 1

]
y, y(0) =

[
9
−5

]
10.2.4 (p. 303) (a) y ′ =

 6 4 4
−7 −2 −1

7 4 3

 y, y(0) =

 3
−6

4


(b) y ′ =

 8 7 7
−5 −6 −9

5 7 10

 y, y(0) =

 2
−4

3


10.2.5 (p. 303) (a) y ′ =

[
−3 2
−5 3

]
+

[
3 − 2t
6 − 3t

]
(b) y ′ =

[
3 1

−1 1

]
y +

[
−5et
et

]
10.2.10 (p. 305) (a)

d

dt
Y2 = Y ′Y + YY ′

(b)
d

dt
Yn = Y ′Yn−1 + YY ′Yn−2 + Y2Y ′Yn−3 + · · ·+ Yn−1Y ′ =

n−1∑
r=0

YrY ′Yn−r−1

10.2.13 (p. 305) B = (P ′ + PA)P−1.
Section 10.3 Answers, pp. 310–315

10.3.2 (p. 310) y ′ =

 0 1

−
P2(x)

P0(x)
−
P1(x)

P0(x)

 y 10.3.3 (p. 311) y ′ =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−
Pn(x)

P0(x)
−
Pn−1(x)

P0(x)
· · · −

P1(x)

P0(x)

 y

10.3.7 (p. 313) (b) y =

[
3e6t − 6e−2t

3e6t + 6e−2t

]
(c) y =

1
2

[
e6t + e−2t e6t − e−2t

e6t − e−2t e6t + e−2t

]
k

10.3.8 (p. 313) (b) y =

[
6e−4t + 4e3t
6e−4t − 10e3t

]
(c) y =

1
7

[
5e−4t + 2e3t 2e−4t − 2e3t
5e−4t − 5e3t 2e−4t + 5e3t

]
k

10.3.9 (p. 313) (b) y =

[
−15e2t − 4et
9e2t + 2et

]
(c) y =

[
−5e2t + 6et −10e2t + 10et
3e2t − 3et 6e2t − 5et

]
k
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10.3.10 (p. 313) (b) y =

[
5e3t − 3et
5e3t + 3et

]
(c) y =

1
2

[
e3t + et e3t − et

e3t − et e3t + et

]
k

10.3.11 (p. 313) (b) y =

 e2t − 2e3t + 3e−t
2e3t − 9e−t

e2t − 2e3t + 21e−t

 (c) y =
1
6

 4e2t + 3e3t − e−t 6e2t − 6e3t 2e2t − 3e3t + e−t
−3e3t + 3e−t 6e3t 3e3t − 3e−t

4e2t + 3e3t − 7e−t 6e2t − 6e3t 2e2t − 3e3t + 7e−t

k

10.3.12 (p. 314) (b) y =
1
3

 −e−2t + e4t

−10e−2t + e4t

11e−2t + e4t

 (c) y =
1
3

 2e−2t + e4t −e−2t + e4t −e−2t + e4t

−e−2t + e4t 2e−2t + e4t −e−2t + e4t

−e−2t + e4t −e−2t + e4t 2e−2t + e4t

k

10.3.13 (p. 314) (b) y =

 3et + 3e−t − e−2t

3et + 2e−2t

−e−2t

 (c) y =

 e−t et − e−t 2et − 3e−t + e−2t

0 et 2et − 2e−2t

0 0 e−2t

k

10.3.14 (p. 314) YZ−1 and ZY−1

Section 10.4 Answers, pp. 325–328

10.4.1 (p. 325) y = c1

[
1
1

]
e3t + c2

[
1

−1

]
e−t 10.4.2 (p. 325) y = c1

[
1
1

]
e−t/2 + c2

[
−1

1

]
e−2t

10.4.3 (p. 325) y = c1

[
−3

1

]
e−t + c2

[
−1

2

]
e−2t 10.4.4 (p. 325) y = c1

[
2
1

]
e−3t + c2

[
−2

1

]
et

10.4.5 (p. 325) y = c1

[
1
1

]
e−2t + c1

[
−4

1

]
e3t 10.4.6 (p. 325) y = c1

[
3
2

]
e2t + c2

[
1
1

]
et

10.4.7 (p. 325) y = c1

[
−3

1

]
e−5t + c2

[
−1

1

]
e−3t

10.4.8 (p. 325) y = c1

 1
2
1

 e−3t + c2

 −1
−4

1

 e−t + c3
 −1

−1
1

 e2t
10.4.9 (p. 326) y = c1

 2
1
2

 e−16t + c2

 −1
2
0

 e2t + c3
 −1

0
1

 e2t
10.4.10 (p. 326) y = c1

 −2
−4

3

 et + c2
 −1

1
0

 e−2t + c3

 −7
−5

4

 e2t
10.4.11 (p. 326) y = c1

 −1
−1

1

 e−2t + c2

 −1
−2

1

 e−3t + c3

 −2
−6

3

 e−5t

10.4.12 (p. 326) y = c1

 11
7
1

 e3t + c2
 1

2
1

 e−2t + c3

 1
1
1

 e−t
10.4.13 (p. 326) y = c1

 4
−1

1

 e−4t + c2

 −1
−1

1

 e6t + c3
 −1

0
1

 e4t
10.4.14 (p. 326) y = c1

 1
1
5

 e−5t + c2

 −1
0
1

 e5t + c3
 1

1
0

 e5t
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10.4.15 (p. 326) y = c1

 1
−1

2

+ c2

 −1
0
3

 e6t + c3
 1

3
0

 e6t
10.4.16 (p. 326) y = −

[
2
6

]
e5t +

[
4
2

]
e−5t 10.4.17 (p. 326) y =

[
2
−4

]
et/2 +

[
−2
1

]
et

10.4.18 (p. 326) y =

[
7
7

]
e9t −

[
2
4

]
e−3t 10.4.19 (p. 326) y =

[
3
9

]
e5t −

[
4
2

]
e−5t

10.4.20 (p. 326) y =

 5
5
0

 et/2 +
 0

0
1

 et/2 +
 −1

2
0

 e−t/2 10.4.21 (p. 326) y =

 3
3
3

 et +
 −2

−2
2

 e−t
10.4.22 (p. 326) y =

 2
−2

2

 et −
 3

0
3

 e−2t +

 1
1
0

 e3t
10.4.23 (p. 326) y = −

 1
2
1

 et +
 4

2
4

 e−t +
 1

1
0

 e2t
10.4.24 (p. 326) y =

 −2
−2

2

 e2t −
 0

3
0

 e−2t +

 4
12
4

 e4t
10.4.25 (p. 327) y =

 −1
−1

1

 e−6t +

 2
−2

2

 e2t +
 7

−7
−7

 e4t
10.4.26 (p. 327) y =

 1
4
4

 e−t +
 6

6
−2

 e2t 10.4.27 (p. 327) y =

 4
−2

2

+

 3
−9

6

 e4t +
 −1

1
−1

 e2t
10.4.29 (p. 327) Half lines of L1 : y2 = y1 and L2 : y2 = −y1 are trajectories other trajectories

are asymptotically tangent to L1 as t → −∞ and asymptotically tangent to L2 as
t→∞.

10.4.30 (p. 327) Half lines of L1 : y2 = −2y1 and L2 : y2 = −y1/3 are trajectories

other trajectories are asymptotically parallel to L1 as t→ −∞ and asymptotically
tangent to L2 as t→∞.

10.4.31 (p. 327) Half lines of L1 : y2 = y1/3 and L2 : y2 = −y1 are trajectories other trajectories

are asymptotically tangent to L1 as t → −∞ and asymptotically parallel to L2 as
t→∞.

10.4.32 (p. 327) Half lines of L1 : y2 = y1/2 and L2 : y2 = −y1 are trajectories other trajectories

are asymptotically tangent to L1 as t → −∞ and asymptotically tangent to L2 as
t→∞.

10.4.33 (p. 327) Half lines of L1 : y2 = −y1/4 and L2 : y2 = −y1 are trajectories other trajectories

are asymptotically tangent to L1 as t → −∞ and asymptotically parallel to L2 as
t→∞.

10.4.34 (p. 327) Half lines of L1 : y2 = −y1 and L2 : y2 = 3y1 are trajectories other trajectories
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are asymptotically parallel to L1 as t → −∞ and asymptotically tangent to L2 as
t→∞.

10.4.36 (p. 328) Points on L2 : y2 = y1 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1, parallel to
[

1
−1

]
,

traversed toward L1.

10.4.37 (p. 328) Points on L1 : y2 = −y1/3 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1, parallel to
[

−1
2

]
,

traversed away from L1.

10.4.38 (p. 328) Points on L1 : y2 = y1/3 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1, parallel to
[

1
−1

]
,[

1

]
−1, traversed away from L1.

10.4.39 (p. 328) Points on L1 : y2 = y1/2 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1, parallel to
[

1
−1

]
, L1.

10.4.40 (p. 328) Points on L2 : y2 = −y1 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L2, parallel to
[

−4
1

]
,

traversed toward L1.

10.4.41 (p. 328) Points on L1 : y2 = 3y1 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1, parallel to
[

1
−1

]
,

traversed away from L1.

Section 10.5 Answers, pp. 342–344

10.5.1 (p. 342) y = c1

[
2
1

]
e5t + c2

([
−1

0

]
e5t +

[
2
1

]
te5t

)
.

10.5.2 (p. 342) y = c1

[
1
1

]
e−t + c2

([
1
0

]
e−t +

[
1
1

]
te−t

)
10.5.3 (p. 342) y = c1

[
−2

1

]
e−9t + c2

([
−1

0

]
e−9t +

[
−2

1

]
te−9t

)
10.5.4 (p. 342) y = c1

[
−1

1

]
e2t + c2

([
−1

0

]
e2t +

[
−1

1

]
te2t

)
10.5.5 (p. 342) c1

[
−2

1

]
+ c2

([
−1

0

]
e−2t

3 +

[
−2

1

]
te−2t

)
10.5.6 (p. 342) y = c1

[
3
2

]
e−4t + c2

([
−1

0

]
e−4t

2
+

[
3
2

]
te−4t

)
10.5.7 (p. 342) y = c1

[
4
3

]
e−t + c2

([
−1

0

]
e−t

3
+

[
4
3

]
te−t

)
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10.5.8 (p. 342) y = c1

 −1
−1

2

+ c2

 1
1
2

 e4t + c3
 0

1
0

 e4t
2

+

 1
1
2

 te4t


10.5.9 (p. 342) y = c1

 −1
1
1

 et + c2
 1

−1
1

 e−t + c3
 0

3
0

 e−t +
 1

−1
1

 te−t
.

10.5.10 (p. 342) y = c1

 0
1
1

 e2t + c2
 1

0
1

 e−2t + c3

 1
1
0

 e−2t

2
+

 1
0
1

 te−2t


10.5.11 (p. 342) y = c1

 −2
−3

1

 e2t + c2
 0

−1
1

 e4t + c3
 1

0
0

 e4t
2

+

 0
−1

1

 te4t


10.5.12 (p. 342) y = c1

 −1
−1

1

 e−2t + c2

 1
1
1

 e4t + c3
 1

0
0

 e4t
2

+

 1
1
1

 te4t
.

10.5.13 (p. 342) y =

[
6
2

]
e−7t −

[
8
4

]
te−7t 10.5.14 (p. 342) y =

[
5
8

]
e3t −

[
12
16

]
te3t

10.5.15 (p. 342) y =

[
2
3

]
e−5t −

[
8
4

]
te−5t 10.5.16 (p. 342) y =

[
3
1

]
e5t −

[
12
6

]
te5t

10.5.17 (p. 342) y =

[
0
2

]
e−4t +

[
6
6

]
te−4t

10.5.18 (p. 342) y =

 4
8

−6

 et +
 2

−3
−1

 e−2t +

 −1
1
0

 te−2t

10.5.19 (p. 343) y =

 3
3
6

 e2t −
 9

5
6

+

 2
2
0

 t
10.5.20 (p. 343) y = −

 2
0
2

 e−3t +

 −4
9
1

 et −
 0

4
4

 tet
10.5.21 (p. 343) y =

 −2
2
2

 e4t +
 0

−1
1

 e2t +
 3

−3
3

 te2t
10.5.22 (p. 343) y = −

 1
1
0

 e−4t +

 −3
2

−3

 e8t +
 8

0
−8

 te8t
10.5.23 (p. 343) y =

 3
6
3

 e4t −
 3

4
1

+

 8
4
4

 t
10.5.24 (p. 343) y = c1

 0
1
1

 e6t + c2
 −1

1
0

 e6t
4

+

 0
1
1

 te6t


+c3

 1
1
0

 e6t
8

+

 −1
1
0

 te6t
4

+

 0
1
1

 t2e6t
2


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10.5.25 (p. 343) y = c1

 −1
1
1

 e3t + c2
 1

0
0

 e3t
2

+

 −1
1
1

 te3t


+c3

 1
2
0

 e3t
36

+

 1
0
0

 te3t
2

+

 −1
1
1

 t2e3t
2



10.5.26 (p. 343) y = c1

 0
−1

1

 e−2t + c2

 −1
1
0

 e−2t +

 0
−1

1

 te−2t



+c3

 3
−2

0

 e−2t

4
+

 −1
1
0

 te−2t +

 0
−1

1

 t2e−2t

2



10.5.27 (p. 343) y = c1

 0
1
1

 e2t + c2
 1

1
0

 e2t
2

+

 0
1
1

 te2t


+c3

 −1
1
0

 e2t
8

+

 1
1
0

 te2t
2

+

 0
1
1

 t2e2t
2



10.5.28 (p. 343) y = c1

 −2
1
2

 e−6t + c2

−

 6
1
0

 e−6t

6
+

 −2
1
2

 te−6t



+c3

−

 12
1
0

 e−6t

36
−

 6
1
0

 te−6t

6
+

 −2
1
2

 t2e−6t

2

 .

10.5.29 (p. 343) y = c1

 −4
0
1

 e−3t + c2

 6
1
0

 e−3t + c3

 1
0
0

 e−3t +

 2
1
1

 te−3t


10.5.30 (p. 343) y = c1

 −1
0
1

 e−3t + c2

 0
1
0

 e−3t + c3

 1
0
0

 e−3t +

 −1
−1

1

 te−3t


10.5.31 (p. 343) y = c1

 2
0
1

 e−t + c2
 −3

2
0

 e−t + c3
 1

0
0

 e−t
2

+

 −1
2
1

 te−t


10.5.32 (p. 343) y = c1

 −1
1
0

 e−2t + c2

 0
0
1

 e−2t + c3

 −1
0
0

 e−2t +

 1
−1

1

 te−2t


Section 10.6 Answers, pp. 354–356

10.6.1 (p. 354) y = c1e
2t
[

3 cos t+ sin t
5 cos t

]
+ c2e

2t
[

3 sin t− cos t
5 sin t

]
.
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10.6.2 (p. 354) y = c1e
−t

[
5 cos 2t+ sin 2t

13 cos 2t

]
+ c2e

−t

[
5 sin 2t− cos 2t

13 sin 2t

]
.

10.6.3 (p. 354) y = c1e
3t
[

cos 2t+ sin 2t
2 cos 2t

]
+ c2e

3t
[

sin 2t− cos 2t
2 sin 2t

]
.

10.6.4 (p. 354) y = c1e
2t
[

cos 3t− sin 3t
cos 3t

]
+ c2e

2t
[

sin 3t+ cos 3t
sin 3t

]
.

10.6.5 (p. 354) y = c1

 −1
−1

2

 e−2t + c2e
4t

 cos 2t− sin 2t
cos 2t+ sin 2t

2 cos 2t

+ c3e
4t

 sin 2t+ cos 2t
sin 2t− cos 2t

2 sin 2t

.

10.6.6 (p. 354) y = c1

 −1
−1

1

 e−t + c2e−2t

 cos 2t− sin 2t
− cos 2t− sin 2t

2 cos 2t

+ c3e
−2t

 sin 2t+ cos 2t
− sin 2t+ cos 2t

2 sin 2t


10.6.7 (p. 354) y = c1

 1
1
1

 e2t + c2et
 − sin t

sin t
cos t

+ c3e
t

 cos t
− cos t

sin t


10.6.8 (p. 354) y = c1

 −1
1
1

 et + c2e−t
 − sin 2t− cos 2t

2 cos 2t
2 cos 2t

+ c3e
−t

 cos 2t− sin 2t
2 sin 2t
2 sin 2t


10.6.9 (p. 354) y = c1e

3t
[

cos 6t− 3 sin 6t
5 cos 6t

]
+ c2e

3t
[

sin 6t+ 3 cos 6t
5 sin 6t

]
10.6.10 (p. 354) y = c1e

2t
[

cos t− 3 sin t
2 cos t

]
+ c2e

2t
[

sin t+ 3 cos t
2 sin t

]
10.6.11 (p. 354) y = c1e

2t
[

3 sin 3t− cos 3t
5 cos 3t

]
+ c2e

2t
[

−3 cos 3t− sin 3t
5 sin 3t

]
10.6.12 (p. 354) y = c1e

2t
[

sin 4t− 8 cos 4t
5 cos 4t

]
+ c2e

2t
[

− cos 4t− 8 sin 4t
5 sin 4t

]

10.6.13 (p. 354) y = c1

 −1
1
1

 e−2t + c2e
t

 sin t
− cos t

cos t

+ c3e
t

 − cos t
− sin t

sin t


10.6.14 (p. 354) y = c1

 2
2
1

 e−2t + c2e
2t

 − cos 3t− sin 3t
− sin 3t
cos 3t

+ c3e
2t

 − sin 3t+ cos 3t
cos 3t
sin 3t


10.6.15 (p. 354) y = c1

 1
2
1

 e3t + c2e6t
 − sin 3t

sin 3t
cos 3t

+ c3e
6t

 cos 3t
− cos 3t

sin 3t


10.6.16 (p. 354) y = c1

 1
1
1

 et + c2et
 2 cos t− 2 sin t

cos t− sin t
2 cos t

+ c3e
t

 2 sin t+ 2 cos t
cos t+ sin t

2 sin t


10.6.17 (p. 354) y = et

[
5 cos 3t+ sin 3t

2 cos 3t+ 3 sin 3t

]
10.6.18 (p. 355) y = e4t

[
5 cos 6t+ 5 sin 6t
cos 6t− 3 sin 6t

]
10.6.19 (p. 355) y = et

[
17 cos 3t− sin 3t
7 cos 3t+ 3 sin 3t

]
10.6.20 (p. 355) y = et/2

[
cos(t/2) + sin(t/2)

− cos(t/2) + 2 sin(t/2)

]

10.6.21 (p. 355) y =

 1
−1

2

 et + e4t
 3 cos t+ sin t

cos t− 3 sin t
4 cos t− 2 sin t


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10.6.22 (p. 355) y =

 4
4
2

 e8t + e2t
 4 cos 2t+ 8 sin 2t

−6 sin 2t+ 2 cos 2t
3 cos 2t+ sin 2t


10.6.23 (p. 355) y =

 0
3
3

 e−4t + e4t

 15 cos 6t+ 10 sin 6t
14 cos 6t− 8 sin 6t
7 cos 6t− 4 sin 6t


10.6.24 (p. 355) y =

 6
−3

3

 e8t +
 10 cos 4t− 4 sin 4t

17 cos 4t− sin 4t
3 cos 4t− 7 sin 4t


10.6.29 (p. 356) U =

1√
2

[
−1
1

]
, V =

1√
2

[
1
1

]
10.6.30 (p. 356) U ≈

[
.5257
.8507

]
, V ≈

[
−.8507

.5257

]
10.6.31 (p. 356) U ≈

[
.8507
.5257

]
,

V ≈
[

−.5257
.8507

]
10.6.32 (p. 356) U ≈

[
−.9732

.2298

]
, V ≈

[
.2298
.9732

]
10.6.33 (p. 356) U ≈

[
.5257

.8507

]
, V ≈

[
−.8507
.5257

]
10.6.34 (p. 356) U ≈

[
−.5257

.8507

]
, V ≈

[
.8507
.5257

]
10.6.35 (p. 356) U ≈

[
−.8817

.4719

]
, V ≈

[
.4719
.8817

]
10.6.36 (p. 356) U ≈

[
.8817
.4719

]
, V ≈

[
−.4719

.8817

]
10.6.37 (p. 356) U =

[
0
1

]
, V =

[
−1
0

]
10.6.38 (p. 356) U =

[
0
1

]
, V =

[
1
0

]
10.6.39 (p. 356) U =

1√
2

[
1
1

]
, V =

1√
2

[
−1

1

]
10.6.40 (p. 356) U ≈

[
.5257
.8507

]
, V ≈[

−.8507
.5257

]
Section 10.7 Answers, pp. 365–367

10.7.1 (p. 365)
[

5e4t + e−3t(2 + 8t)
−e4t − e−3t(1 − 4t)

]
10.7.2 (p. 365)

[
13e3t + 3e−3t

−e3t − 11e−3t

]
10.7.3 (p. 365)

1
9

[
7 − 6t

−11 + 3t

]
10.7.4 (p. 365)

[
5 − 3et
−6 + 5et

]

10.7.5 (p. 365)
[
e−5t(3 + 6t) + e−3t(3 − 2t)
−e−5t(3 + 2t) − e−3t(1 − 2t)

]
10.7.6 (p. 365)

[
t
0

]
10.7.7 (p. 365) −

1
6

 2 − 6t
7 + 6t
1 − 12t


10.7.8 (p. 365) −

1
6

 3et + 4
6et − 4

10


10.7.9 (p. 365)

1
18

 et(1 + 12t) − e−5t(1 + 6t)
−2et(1 − 6t) − e−5t(1 − 12t)
et(1 + 12t) − e−5t(1 + 6t)

 10.7.10 (p. 365)
1
3

 2et
et

2et

 10.7.11 (p. 365)
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[
t sin t

0

]
10.7.12 (p. 365) −

[
t2

2t

]
10.7.13 (p. 365) (t− 1) (ln |t− 1|+ t)

[
1

−1

]
10.7.14 (p. 365)

1
9

[
5e2t − e−3t

e3t − 5e−2t

]
10.7.15 (p. 365)

1
4t

[
2t3 ln |t|+ t3(t+ 2)

2 ln |t|+ 3t− 2

]

10.7.16 (p. 365)
1
2

[
te−t(t+ 2) + (t3 − 2)
tet(t− 2) + (t3 + 2)

]
10.7.17 (p. 365) −

 t
t
t

 10.7.18 (p. 366)
1
4

 −3et
1
e−t


10.7.19 (p. 366)

 2t2 + t
t
−t

 10.7.20 (p. 366)
et

4t

 2t+ 1
2t− 1
2t+ 1



10.7.22 (p. 366) (a) y ′ =


0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1

−Pn(t)/P0(t) −Pn−1/P0(t) · · · −P1(t)/P0(t)

 y +


0
0
...

F(t)/P0(t)

 .

(b)


y1 y2 · · · yn
y ′1 y ′2 · · · y ′n
...

...
. . .

...
y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n


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A BRIEF TABLE OF INTEGRALS∫
uα du =

uα+1

α+ 1
+ c, α 6= −1∫

du

u
= ln |u|+ c∫

cosu du = sinu+ c∫
sinu du = − cosu+ c∫
tanu du = − ln | cosu|+ c∫
cotu du = ln | sinu|+ c∫
sec2 u du = tanu+ c∫
csc2 u du = − cotu+ c∫
secu du = ln | secu+ tanu|+ c∫
cos2 u du =

u

2
+

1
4

sin 2u+ c∫
sin2 u du =

u

2
−

1
4

sin 2u+ c∫
du

1 + u2 du = tan−1 u+ c∫
du√

1 − u2
du = sin−1 u+ c∫

1
u2 − 1

du =
1
2

ln
∣∣∣∣u− 1
u+ 1

∣∣∣∣+ c∫
coshu du = sinhu+ c∫
sinhu du = coshu+ c∫
u dv = uv−

∫
v du∫

u cosu du = u sinu+ cosu+ c∫
u sinu du = −u cosu+ sinu+ c∫
ueu du = ueu − eu + c
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∫
eλu cosωu du =

eλu(λ cosωu+ω sinωu)
λ2 +ω2 + c∫

eλu sinωu du =
eλu(λ sinωu−ω cosωu)

λ2 +ω2 + c∫
ln |u| du = u ln |u|− u+ c∫
u ln |u| du =

u2 ln |u|

2
−
u2

4
+ c∫

cosω1u cosω2udu =
sin(ω1 +ω2)u

2(ω1 +ω2)
+

sin(ω1 −ω2)u

2(ω1 −ω2)
+ c (ω1 6= ±ω2)∫

sinω1u sinω2udu = −
sin(ω1 +ω2)u

2(ω1 +ω2)
+

sin(ω1 −ω2)u

2(ω1 −ω2)
+ c (ω1 6= ±ω2)∫

sinω1u cosω2udu = −
cos(ω1 +ω2)u

2(ω1 +ω2)
−

cos(ω1 −ω2)u

2(ω1 −ω2)
+ c (ω1 6= ±ω2)
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INDEX

A
Abel’s formula, ??–??, ??
Accelerated payment, ??
Acceleration due to gravity, 204
Airy’s equation, ??
Amplitude,

of oscillation, ??
time-varying, ??

Amplitude–phase form, ??
Aphelion distance, ??
Apogee, ??
Applications,

of first order equations, 181–??
autonomous second order equations,

209–??
cooling problems, 192–193
curves, ??–??
elementary mechanics, 203–??
growth and decay, 181–??
mixing problems, 200–??

of linear second order equations, ??–??
motion under a central force, ??–??
motion under inverse square law force,

??–??
RLC circuit, ??–??
spring–mass systems, ??–??

Autonomous second order equations, 209–
??

conversion to first order equations, 209
damped ??–??

pendulum 211
spring–mass system, ??

Newton’s second law of motion and,
210

undamped 210–??
pendulum ??–??
spring–mass system, 211–??

stability and instability conditions for,
??–??

B
Beat, ??
Bernoulli’s equation, 66–67
Bessel functions of order ν, ??
Bessel’s equation, ?? 287, ??

of order ν, ??
of order zero, ??
ordinary point of, ??
singular point of, ??, ??

Bifurcation value, 60, 214
Birth rate, 2

Laplace equation,

Capacitance, ??
Capacitor, ??
Carbon dating, 188

434
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Central force,
motion under a, ??–??
in terms of polar coordinates,

Characteristic equation, ??
with complex conjugate roots, ??–??
with disinct real roots, ??–??
with repeated real root, ??, ??

Characteristic polynomial, ??, ??, ??
Charge, ??

steady state, ??
Chebyshev polynomials, ??
Chebshev’s equation, ??
Circuit, RLC. See RLC circuit
Closed Circuit, ??
Coefficient(s) See also Constant coefficient

equations
computing recursively, ??
in Frobenius solutions, ??–??
undetermined, method of, ??–??, ??–??

principle of superposition and, ??
Coefficient matrix, 299, 299
Competition, species, 7, 328
Complementary equation, 41, ??
Complementary system, 357
Compound interest, continuous, 184, 184
Constant,

damping, ??
decay, 183
spring, ??
temperature decay, 192

Constant coefficient equations, ??, ??
homogeneous, ??–??

with complex conjugate roots, ??–??
with distinct real roots, ??, ??
higher order. See Higher order con-

stant coefficient homogeneous equa-
tions

with repeated real roots, ??, ??
with impulses, 278–285
nonhomogeneous, ??–??
with piecewise continuous forcing func-

tions, 255–264
Constant coefficient homogeneous linear sys-

tems of differential equations, 315–
356

geometric properties of solutions,
when n = 2, 322–325, 340–342, 351–

354

with complex eigenvalue of constant
matrix, 345–354

with defective constant matrix, 346–344
with linearly independent eigenvetors,

315–328
Constant solutions of separable first order

equations, 54–59
Converge absolutely, ??
Convergence,

of improper integral, 216
open interval of, ??
radius of, ??

Convergent power series, ??
Convolution, 265–278

convolution integral, 270–276
defined, 266
theorem, 266
transfer functions, 272–274
Volterra integral equation, 271

Cooling, Newton’s law of, 4, 192
Cooling problems, 192–197, 202–202
Cosine series, Fourier,
Critically damped motion, ??–??

oscillation, ??–??
Critical point, 210
Current, ??

steady state, ??
transient, ??

Curves, ??–??
equipotential, ??
geometric problems, ??
isothermal, ??
one-parameter famlies of, ??–?? subsubitem

defined, ??
differential equation for, ??

orthogonal trajectories, ??–??, ??
finding, ??–??

D
Damped autonomous second order equa-

tions, ??–??
for pendulum, 211
for spring-mass system, ??

Damped motion, ??
Damping,

RLC circuit in forced oscllation with, ??
spring-mass systems with, ??, ??, ??–??

critically damped motion, ??–??
forced vibrations, ??–??
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free vibrations, ??–??
overdamped motion,??
underdamped motion, ??

spring-mass systems without, ??–??
forced oscillation, ??–??

Damping constant, ??
Damping forces, 210, ??
Dashpot, ??
Dating, carbon, 188–188
Death rate 3
Decay, See Exponential growth and decay,
Decay constant, 183
Derivatives, Laplace transform of, 238–240
Differential equations,

defined, 13
order of, 14
ordinary, 13
partial, 13
solutions of, ??–??

Differentiation of power series, ??
Dirac, Paul A. M., 278
Dirac delta function, 278
Direction fields for first order equations, 22–

??
Discontinuity,

jump, 222
removable, 233

Distributions, theory of, 279
Divergence of improper integral, 216
Divergent power series, ??

E
Eccentricity of orbit, ??
Elliptic orbit, ??
Epidemics 6–60
Equidimensional equation, ??
Equilibrium, 210

spring-mass system, ??
Equilibrium position, ??
Equipotentials, ??
Error(s),

in applying numerical methods, 91
in Euler’s method, 92–97
at the i-th step, 91
truncation, 91

global, 97, 107, 119
local, 92
local, numerical methods with O(h3),

108–118

Escape velocity, ??
Euler’s equation, ??–??, ??
Euler’s identity, 91–106
Euler’s method, 91–106

error in, 92–92
truncation, 92–97

improved, 106–107
semilinear, 97–103
step size and accuracy of, 92

Exact first order equations, 73–??
implicit solutions of, 74–75
procedurs for solving, 78

Exactness condition, 76
Existence of solutions of nonlinear first order

equations, 61–??
Existence theorem, 46, 61
Exponential growth and decay, 181–??

carbon dating, 188
interest compounded continuously, 184
mixed growth and decay, 185
radioactive decay, 183
savings program, 188

Exponential order, function of, 223

F
First order equations, 38–??

applications of See under Applications.
autonomous second order equation con-

verted to, 209
direction fields for, 22–??
exact, 73–??

implicit solution of, 74
procedurs for solving, 78

linear, 38–??
homogeneous, 104–41
nonhomogeneous, 41–48
solutions of, 38

nonlinear, 48, 58, 61–??
existence and uniqueness of solutions

of, 61–??
transformation into separables, 66–??

numerical methods for solving. See Nu-
merical method

separable, 50–??, 72–??
constant solutions of, 54–57
implicit solutions of, 53–54

First order systems of equations,
higher order systems written as, 293
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scalar differential equations written as,
295

First shifting theorem, 220
Force(s)

damping, 210, ??
gravitational, 203, ??
impulsive, 279
lines of, ??
motion under central, ??–??
motion under inverse square law, ??–??

Forced motion, ??
oscillation

damped, ??–??
undamped, ??–??

vibrations, ??–??
Forcing function, ??

without exponential factors, 299, 299 ??–
??

with exponential factors, ??–??
piecewise continuous constant equations

with, 255–264
Free fall under constant gravity, ??
Free motion, ??

oscillation, RLC circuit in, ??–??
vibrations, ??–??

Frequency, ??
of simple harmonic motion, ??

Frobenius solutions, ??–??
indicial equation with distinct real roots

differing by an integer, ??–??
indicial equation with distinct real roots

not differing by an integer, ??–??
indicial equation with repeated root, ??–

??
power series in, ??
recurrence relationship in, ??

two term, ??–??
verifying, ??

Fundamental matrix, 309
Fundamental set of solutions, of higher or-

der constant coefficient homogeneous
equations, ??–??

of homogeneous linear second order
equations, ??, ??

of homogeneous linear systems of dif-
ferential equations, 306, 309

of linear higher order equations, ??

G

Gamma function, 227
Generalized Riccati equation, ??, ??
General solution

of higher order constant coefficient ho-
mogeneous equations, ??–??

of homogeneous linear second order
equations, ??

of homogeneous linear systems of dif-
ferential equations, 306, 309

of linear higher order equations, ??, ??
of nonhomogeneous linear first order

equations, 38, 46
of nonhomogeneous linear second or-

der equations, ??, ??–??
Geometric problems, ??–??
Global truncation error in Euler’s method,

97
Glucose absorption by the body, 5
Gravitation, Newton’s law of, 203, 214, ??,

292, 297
Gravity, acceleration due to,203
Grid, rectangular, 24
Growth and decay,

carbon dating, 188
exponential, 181–??
interest compounded continuously, 184–

186
mixed growth and decay, 186
radioactive decay, 183
savings program, 188

H
Half-life, 183
Half-line, 323
Half-plane, 340
Harmonic conjugate function, ??
Harmonic function, ??
Harmonic motion, simple, 211, ?? ??, ??

amplitude of oscillation, ??
natural frequancy of, ??
phase angle of, ??
nonhomogeneous problems,

Heat flow lines, ??
Heaviside’s method, 232, 236
Hermite’s equation, ??
Heun’s method, 118
Higher order constant coefficient homoge-

neous equations, ??–??
characteristic polynomial of, ??–??
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fundamental sets of solutions of, ??
general solution of, ??–??

Homogeneous linear first order equations,
37–41

general solutions of, 41
separation of variables in, 41

Homogeneous linear higher order equations,
??

Homogeneous linear second order equations,
??–??

constant coefficient, ??–??
with complex conjugate roots, ??–??
with distinct real roots, ??–??
with repeated real roots, ??–??, ??

solutions of, ??, ??
the Wronskian and Abel’s formula, ??–

??
Homogeneous linear systems of differential

equations, 299
basic theory of, 306–314
constant coefficient, 315–356

with complex eigenvalues of coeffi-
cient matrix, 345–356

with defective coefficient matrix, 329–
340

geometric properties of solutions when
n = 2, 315–325, 340–342, 351–354

with linearly independent eigenvec-
tors, 315–325 subitem fundamental
set of solutions of, 306, 309

general solution of, 306, 309
trivial and nontrivial solution of, 306
Wronskian of solution set of, 308

Homogeneous nonlinear equations
defined, 68
transformation into separable equations,

68–72
Hooke’s law, ??–??

I
Imaginary part, ??
Implicit function theorem, 53
Implicit solution(s) 74–75

of exact first order equations, 74–75
of initial value problems, 53
of separable first order equations, 53–55

Impressed voltage, 59
Improper integral, 216
Improved Euler method, 106–115 122–125

semilinear, 115–107
Impulse function, 278
Impulse response, 274, 281
Impulses, constant coefficient equations with,

278–286
Independence, linear

of n function, ??
of two functions, ??
of vector functions, 310

Indicial equation, ??, ??
with distinct real roots differing by an

integer, ??–??
with distinct real roots not differing by

an integer, ??–??
with repeated root, ??–??

Indicial polynomial, ??, ??
Inductance, ??
Initial conditions, 18
Initial value problems, ??–20

implicit solution of, 53
Laplace transforms to solve, 238–244

formula for, 268–269
second order equations, 240–244

Integral curves, ??–??, 238–??,
Integrals,

convolution, 270–270
improper, 216

Integrating factors, 82–??
finding, 83–??

Interest compounded continuously, 184–186
Interval of validity, ??
Inverse Laplace transforms, 228–238

defined, 228
linearity property of, 229
of rational functions, 230–238

Inverse square law force, motion under, ??–
??

Irregular singular point, ??
Isothermal curves, ??

J
Jump discontinuity, 222

K
Kepler’s second law, ??
Kepler’s third law, ??
Kirchoff’s Law, ??

L
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Laguerre’s equation, ??
boundary conditions,
formal solutions of,

Laplace transforms, 216–286
computation of simple, 216–219
of constant coefficient equations

with impulses 278–286
with piecewise continuous forcing func-

tions, 255–264
convolution, 265–278

convolution integral, 270
defined, 266
theorem, 266
transfer functions, 272–274

definition of, 216
existence of, 222
First shifting theorem, 220
inverse, 228

defined, 226
linearity property of, 229
of rational functons, 230–236

linearity of, 220
of piecewise continuous functions, 246–

255
unit step function and, 245–255

Second shifting theorem, 250
to solve initial value problems, 238–244

derivatives , 238–240
formula for, 268–269
second order equations, 240

tables of, 219
Legendre’s equation, ??, ??

ordinary points of, ??
singular points of, ??, ??

Limit, 222
Limit cycle, ??
Linear combination(s), ??, ??, 306

of power series, ??–??
Linear difference equations, second order

homogeneous, ??
Linear first order equations, 37–??

homogeneous, 37–41
general solution of, 41
separation of variables, 41

nonhomogeneous, 37, 41–48
general solution of, 42–48
solutions in integral form, 45–46
variation of parameters to solve, 41,

??

solutions of, 38–39
Linear higher order equations, ??–??

fundamental set of solutions of, ??, ??
general solution of, ??, ??
higher order constant coefficient homo-

geneous equations, ??–?? character-
istic polyomial of ??–??

fundamental sets of solutions of, ??–
??

general solution of, ??–??
homogeneous, ??
nonhomogeneous, ??, ??
trivial and nontrivial solutions of, ??
undetermined coefficients for, ??–??
variation of parameters for, ??–??

derivation of method, ??–??
fourth order equations, ??–??
third order equations, ??

Wronskian of solutions of ??–??
Linear independence ??

of n functions, ??
of two functions, ??
of vector functions, 306–308

Linearity,
of inverse Laplace transform, 229
of Laplace transform, 220

Linear second order equations, ??–??
applications of. See under Applications
defined, ??
homogeneous, ??–??

constant coefficient, ??–??
solutions of, ??–??
the Wronskian and Abel’s formula,

??–??
nonhomnogeneous, ??, ??–??, ??, ??

comparison of methods for solving,
??

complementary equation for, ??
constant coefficient, ??–??
general solution of, ??–??
particular solution of, ??, ??–??
reduction of order to find general so-

lution of, ??–??
superposition principle and, ??–??
undetermined coefficients method for,

??–??
variation of parameters to find partic-

ular solution of, ??–??
series solutions of, ??–??
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Euler’s equation, ??–??
Frobenius solutions, ??–??
near an ordinary point, ??–??

with regular singular points, ??–??
Linear systems of differential equations, 298–

367
defined, 298
homogeneous, 298

basic theory of, 306–315
constant coefficient, 315–356
fundamental set of solutions of, 306–

309
general solution of, 306, 309
linear indeopendence of, 306, 309
trivial and nontrivial solution of, 306
Wronskian of solution set of, 308

nonhomogeneous, 299
variation of parameters for, 357–366

solutions to initial value problem, 298–
301

Lines of force, ??
local truncation error, 92–97

numerical methods withO(h3), 107-118
Logistic equation 4

M
Maclaurin series, ??
Magnitude of acceleration due to gravity at

Earth’s surface, 204
Malthusian model, 2
Mathematical models, 1

validity of, 189, 192, 203
Matrix/matrices, 299–302

coefficient,
complex eigenvalue of, 345–356
defective, 329

fundamental, 309
Mechanics, elementary, 203–??

escape velocity, ??–?? 208, 208
motion through resisting medium un-

der constant gravitational force, 204–
??

Newton’s second law of motion, 203–
204

pendulum motion
damped, 211–213
undamped, ??–??

spring-mass system
damped, ??–211, ??, ??–??

undamped, 211–??,??
units used in, 203

Midpoint method, 106
Mixed Fourier cosine series,
Mixed Fourier sine series,
Mixed growth and decay, 186
Mixing problems, 200–202
Models, mathematical, 1–3

validity of, 189, 192, 203
Motion,

damped, ??
critically, ??
overdamped, ??–??
underdamped, ??

elementary, See Mechanics, elementary
equation of, ??
forced, ??
free, ??
Newton’s second law of, 7, 203–204, 209,

211, ??, ??–211, ??, ??, 293
autonomous second order equations

and, 210
simple harmonic, 211, ??–??

amplitude of oscillation, ??
frequency of, ??
phase angle of, ??

through resisting medium under con-
stant gravitational force, 204–??

under a central force, ??–??
under inverse square law force, ??–??
undamped, ??

Multiplicity, ??

N
Natural frequency, ??
Natural length of spring, ??
Negative half plane, 340
Newton’s law of cooling, 4, 192–194, 202–??
Newton’s law of gravitation, 203, 214, ??,

292, 303
Newton’s second law of motion, 203–204,

210, 211, ??, 213, ??, ??, 291, 292
autonomous second order equations and,

210
Nonhomogeneous linear second order equa-

tions, 37, 41, 48
general solution of, 42–45 46–48
solutions in integral form, 45
variation of parameters to solve, 41, 44
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Nonhomogeneous linear second order equa-
tions, ??, ??–??

comparison of methods for solving, ??
complementary equation for, ??, ??
constant coefficient, ??–??
general solution of, ??–??
particular solution of, ??, ??–??, ??–??,

??–??
reduction of order to find general solu-

tion of, ??–??
superposition principle and, ??–121
undetermined coefficients method for,

??–??
forcing functions with exponential fac-

tors, ??–??
forcing functions without exponen-

tial factors, ??–??
superposition principle and, ??
variation of parameters to find partic-

ular solution of, ??–??
Nonhomogeneous linear systems of differ-

ential equations, 298
variation of parameters for, 357–367

Nonlinear first order equations, 58 61–??
existence and uniqueness of solutions

of, 61–??
transformation into separable equations,

66–??
Nonoscillatory solution, ??
Nontrivial solutions

of homogeneous linear first order equa-
tions, 37

of homogeneous linear higher order equa-
tions, ??

of homogeneous linear second order
equations, ??

of homogeneous linear systems of dif-
ferential equations, 306

Numerical methods, 91–127, 297
with O(h3) local truncation, 107–118
error in, 91
Euler’s method, 91–106

error in, 92–97
semilinear, 97–103
step size and accuracy of, 92
truncation error in, ??–97

Heun’s method, 110
semilinear, 103

improved Euler method, 103, 106–115

semilinear, 115
midpoint, 118
Runge-Kutta method, 94, 103 119–127,

295–297
for cases where x0 isn’t the left end-

point, 120–126
semilinear, 103, 125

for systems of differential equations, 297
Numerical quadrature, 119, 127

O
One-parameter families of curves, ??–??

defined, ??
differential equation for, ??

One-parameter families of functions, 38
Open interval of convergence, ??
Open rectangle, 61
Orbit, ??

eccentricity of, ??
elliptic, ??
period of, ??

Order of differential equation, 13
Ordinary differential equation,

defined, 13
Ordinary point, series solutions of linear sec-

ond order equations near, ??–??
Orthogonal trajectories, ??–??,

finding, ??
Orthogonal with respect to a weighting func-

tion, ??, ??
Oscillation

amplitude of, ??
critically damped, ??
overdamped, ??
RLC circuit in forced, with damping, ??–

??
RLC circuit in free, ??–??
undamped forced, ??–??
underdamped, ??

Oscillatory solutions, ??–213, ??
Overdamped motion, ??–??

P
Partial differential equations

defined, 13
Partial fraction expansions, software pack-

ages to find, 236
Particular solutions of nonhomogeneous higher

equations, ??, ??–??
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Particular solutions of nonhomogeneous lin-
ear second order equations, ??, ??–
??, ??–??, ??–??

Particular solutions of nonhomogeneous lin-
ear systems equations, 357–367

Pendulum
damped, 211–213
undamped, ??–??

Perigee, ??
Perihelion distance, ??
Periodic functions, 228
Period of orbit, ??
Phase angle of simple harmonic motion, ??–

??
Phase plane equivalent, 209
Piecewise continuous functions, 223

forcing, constant coeffocient equations
with, 255–264

Laplace transforms of 222–225, 246–255
unit step functions and, 245–255

Plucked string, wave equation applied to,
Poinccaré, Henri, 209
Polar coordinates

central force in terms of, ??–??
in amplitude-phase form, ??

Polynomial(s)
characteristic, ??, ??, ??

of higher order constant coefficient
homogeneous equations, ??–??

Chebyshev, ??
indicial, ??, ??
Taylor, ??
trigonometric, ??

Polynomial operator, ??
Population growth and decay, 1
Positive half-plane, 340
Power series, ??–??

convergent, ??–??
defined, ??
differentiation of, ??–??
divergent, ??
linear combinations of, ??–??
radius of convergence of, ??, ??
shifting summation index in, ??–??
solutions of linear second order equa-

tions, represented by, ??–??
Taylor polynomials, ??
Taylor series, ??
uniqueness of ??–??

Q
Quasi-period, ??

R
Radioactive decay, 183–184
Radius of convergence of power series, ??,

??
Rational functions, inverse Laplace trans-

forms of, 230–238
Rayleigh, Lord, ??
Rayleigh’s equation, ??
Real part, ??
Rectangle, open, 61
Rectangular grid, 24
Recurrence relations, ??

in Frobenius solutions, ??
two term, ??–??

Reduction of order, ??, ??–??
Regular singular points, ??–??

at x0 = 0, ??–??
Removable discontinuity, 222
Resistance, ??
Resistor, ??
Resonance, ??
Ricatti, Jacopo Francesco, ??
Ricatti equation, ??
RLC circuit, ??–??

closed, ??
in forced oscillation with danping, ??
in free oscillation, ??–??

Roundoff errors, 91
Runge-Kutta method, 92, 119–127, 297

for cases where x0 isn’t the left endpoint,
120

for linear systems of differential equa-
tions, 297

semilinear, 103, 125

S
Savings program, growth of, 188
Scalar differential equations, 295
Second order differential equation, 7

autonomous, 209–??
conversion to first order equation, 209
damped, ??–??
Newton’s second law of mation and,

210
undamped, 210–??

Laplace transform to solve, 240–243
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linear, See linear second equations
two-point boundary value problems for,

Second order homogeneous linear difference
equation, ??

Second shifting Theorem, 250–252
Semilinear Euler method, 98
Semilinear improved Euler method, 103, 115
Semilinear Runge-Kutta method, 106, 126
Separable first order equations, 50–??

constant solutions of, 54–57
implicit solutions, 53
transfomations of nonlinear equations

to, 66–67
Bernoulli’s equation, 66–72
homogeneous nonlinear equations, 68–

72
other equations, 67

Separation of variables, 41, 50
to solve Laplace’s equation,

Separatrix, ??, ??
Series, power. See Power series
Series solution of linear second order equa-

tions, ??-??
Frobenius solutions, ??–??
near an ordinary point, ??

Shadow trajectory, 353–354
Shifting theorem

first, 220
second, 250–252

Simple harmonic motion, ??–??
amplitude of oscillation, ??
natural frequency of, ??
phase angle of, ??

Simpson’s rule, 127
Singular point, ??

irregular, ??
regular, ??–??

Solution(s), ??–18 See also Frobenius solu-
tions Nontrivial solutions Series so-
lutions of linear second order equa-
tions Trivial solution

nonoscillatory, ??
oscillatory, ??

Solution curve, ??–??
Species, interacting, 7, 326
Spring, natural length of, ??, ??
Spring constant, ??
Spring-mass systems, ??–??

damped, ??, ??, ??–??

critically damped motion, ??–??
forced vibrations, ??–??
free vibrations, ??–??
overdamped motion, ??
underdamped motion, ??

in equilibrium, ??
simple harmonic motion, ??–??

amplitude of oscillation, ??
natural frequency of, ??
phase angle of, ??

undamped, 210–211, ??–??
forced oscillation, ??–??

Stability of equilibrium and critical point,
210–210

Steady state, 188
Steady state charge, ??
Steady state component, ??, 272
Steady state current, ??
String motion, wave equation applied to,
Summation index in power series, ??–??
Superposition, principle of, ??, ??, ??, ??

method of undetermine coefficients and,
??

Systems of differential equations, 289–302
See also Linear systems of differen-
tial equations

first order
higher order systems rewritten as, ??–

294
scalar differential equations rewritten

as, 295
numerical solutions of, 297
two first order equations in two unknowns,

289–292

T
Tangent lines, ??
Taylor polynomials, ??
Taylor Series, ??
Temperature, Newton’s law of cooling, 4 192–

197, 202–203
Temperature decay constant of the medium,

192
Terminal velocity, 204
Time-varying amplitude, ??
Total impulse, 278
Trajectory(ies),

of autonomous second order equations,
209
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orthogonal, ??–??
finding, ??–??

shadow, 353
of 2× 2 systems, 322–325, 340–342, 351–354
Transfer functions, 272
Transformation of nonlinear equations to

separable first order, equations, 66–
??

Bernoulli’s equation, 66
homogeneous nonlinear equations, 68–

72
other equations, 67

Transform pair, 216
Transient current, ??
Transient components, ??, 272
Transient solutions, ??
Trapezoid rule, 119
Trivial solution,

of homogeneous linear first order equa-
tions, 37

of homogeneous linear second order
equations, ??

of homogeneous linear systems of dif-
ferential equations, 306

of linear higher order differential equa-
tions, ??

Truncation error(s), 91
in Euler’s method, 93
global, 97, 106
local, 92

numerical methods with O(h3), 107–
118

Two-point boundary value problems,

U
Undamped autonomous second order equa-

tions, 210–??
pendulum, ??–??
spring-mass system, 211–211
stability and instabilty conditions for,

??–??
Undamped motion, ??
Underdamped motion, ??
Underdamped oscillation, ??
Undetermined coefficients

for linear higher order equations, ??–??
forcing functions, ??–??

for linear second order equations, ??–??
principle of superposition, ??

Uniqueness of solutions of nonlinear first
equations, 61–??

Uniqueness theorem, 46, 61, ??, ??, 299
Unit step function, 247–255

V
Validity, interval of, ??
Vandermonde, ??
Vandermonde determinant, ??
van der Pol’s equation, ??
Variables, separation of, 41, 50
Variation of parameters

for linear first order equations, 41
for linear higher order equations, ??–??

derivation of method, ??–??
fourth order equations, ??–??
third order equations, ??

for linear higher second order equations,
??

for nonhomogeneous linear systems of
differential equations, 357–367

Velocity
escape, ??–203
terminal, 204–??

Verhulst, Pierre, 4
Verhulst model, 4, ??, 72
Vibrations

forced, ??–??
free, ??–??

Voltage, impressed, ??
Voltage drop, ??
Volterra, Vito 271
Volterra integral equation, 271

W
plucked string,

assumptions, ??
Wave, traveling, ??
??
Wronskian

of solutions of homogeneous linear sys-
tems of differential equations, 308

of solutions of homogeneous second dif-
ferential equations, ??–??

of solutions of homogeneous linear higher
order differential equations, ??–??
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