
C H A P T E R 5

� � �

125

Bui lding the Entry Manager

At this point, you know enough to start building your blog! In this chapter, I’ll walk you through how to
build the backbone of your blogging application. The pieces you’ll build include:

• A form to accept entry input

• A script to handle input from the form

• A script to save the entry in the database

• A script to retrieve the entry from the database

• An HTML document to display the retrieved information

By the end of this chapter, you will have a very basic, but fully functional blogging system.

Planning the Entry Database Table
One of the most important steps with any new application is the planning of the tables that will hold
data. This has a huge impact on the ease of scaling our application later. Scaling is the expansion of an
application to handle more information and/or users, and it can be a tremendous pain if we don’t look
ahead when starting a new project.

At first, your blog needs to store several types of entry information to function:

• Unique ID

• Entry title

• Entry text

• Date created

Using a unique ID for each entry in the entry table enables you to access the information
contained with just a number. This is extremely helpful for data access, especially if this dataset changes
in the future (if you add an “imageURL” column to the table, for example).

The first step is to determine the fields you will need for the entries table. Your table needs to
define what type of information is stored in each column, so let’s take a quick look at the information
each column needs to store:

• id: A unique number identifying the entry. This will be a positive integer, and it makes sense for
this number to increment automatically because that ensures the number is unique. You will
also use this as the primary method for accessing an entry, so it will double as the primary key for
the table.

• title: An alphanumeric string that should be relatively short. You’ll limit the string to 150
characters.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

126

• entry: An alphanumeric string of indeterminate length. You won’t limit the length of this field
(within reason).

• created: The timestamp generated automatically at the original creation date of the entry. You’ll
use this to sort your entries chronologically, as well as for letting tour users know when an entry
was posted originally.

Now it’s time to create the database. Do this by navigating to http://localhost/phpmyadmin/
and creating a database called simple_blog using the “Create new database” field on the homepage (see
Figure 5-1).

Figure 5-1. Creating a new database in phpMyAdmin

The new database is created after you click “Create.” Next, you’re shown a confirmation
message and given options for interacting with your new database (see Figure 5-2).

Figure 5-2. The simple_blog database confirmation screen and options

CHAPTER 5 � BUILDING THE ENTRY MANAGER

127

The next step is to write the code that creates your entries table:

CREATE TABLE entries
(
 id INT PRIMARY KEY AUTO_INCREMENT,
 title VARCHAR(150),
 entry TEXT,
 created TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)

To create the entries table, click the SQL tab at the top of the page and enter the command that

creates your table (see Figure 5-3).

Figure 5-3. Creating the entries table in phpMyAdmin

After you click the Go button at the bottom right of the SQL text field, the entries table shows
up in the left-hand column of the screen. You can see a table’s structure by clicking the table you’re
interested in (see Figure 5-4).

Figure 5-4. The structure of the entries table in phpMyAdmin

At this point, you have created the entries table, and you’re ready to create your input form.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

128

Creating the Entry Input Form
Storing entries in your database requires that you allow site administrators to enter data via a web form.
Before you can do this, you need to identify which fields the form must include.

Two of your fields are populated automatically when an entry is created: the id field will
generate an automatically incremented number to identify the entry, and the created field automatically
stores the timestamp for the entry’s creation date. All you need to include are fields to enter the title
and entry fields.

Your title field has a maximum length of 150 characters, so you use an input tag with a
maxlength attribute for this. The entry field can be as long as you want it to, so create a textarea tag.

In Eclipse, create a new file in the simple_blog project called admin.php; this file should end up
saved in the xampp folder at /xampp/htdocs/simple_blog/admin.php).

In the new file, add the following HTML:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title> Simple Blog </title>
</head>

<body>
 <h1> Simple Blog Application </h1>

 <form method="post" action="inc/update.inc.php">
 <fieldset>
 <legend>New Entry Submission</legend>
 <label>Title
 <input type="text" name="title" maxlength="150" />
 </label>
 <label>Entry
 <textarea name="entry" cols="45" rows="10"></textarea>
 </label>
 <input type="submit" name="submit" value="Save Entry" />
 <input type="submit" name="submit" value="Cancel" />
 </fieldset>
 </form>
</body>

</html>

CHAPTER 5 � BUILDING THE ENTRY MANAGER

129

You can view the form you’ve created by navigating to http://localhost/simple_blog/
admin.php in your browser (see Figure 5-5).

Figure 5-5. The entry creation form

This is not a book about Cascading Style Sheets (CSS), a language used to describe the
presentation of HTML- and XML-based documents, but you’ll take advantage of CSS to make your form
easy-to-use. Begin by creating a new folder in the simple_blog project called css. Next, create a file
called default.css in the css folder (full path: /xampp/htdocs/simple_blog/css/default.css), then add
the following style information to your new file:

h1 {
 width:380px;
 margin:0 auto 20px;
 padding:0;
 font-family:helvetica, sans-serif;
}
ul#menu {
 width:350px;
 margin:0 auto;
 padding:0;
 list-style:none;
}
ul#menu > li {
 display:inline;
}
ul#menu > li > a {
 padding:6px;
 color:#FFF;
 background:#333;
 font-family:helvetica, sans-serif;
 text-decoration:none;
}

CHAPTER 5 � BUILDING THE ENTRY MANAGER

130

#control_panel, #entries, fieldset {
 width:350px;
 margin:0 auto;
 padding:10px;
 font-family:helvetica, sans-serif;
}
#control_panel {
 width:350px;
 margin:20px auto 0;
 padding:4px;
 font-size:80%;
 text-align:center;
 background:#DDD;
 border-top:1px dotted #000;
 border-bottom:1px dotted #000;
}
input, textarea {
 font-size:95%;
 font-family:helvetica, sans-serif;
 display:block;
 width:340px;
 margin:0 auto 10px;
 padding:4px;
 border:1px solid #333;
}
input[type=submit] {
 display:inline;
 width:auto;
}
input[type=hidden] {
 display:none;
}
.backlink {
 border:0;
 text-align:right;
}
#comment-form > fieldset {
 width:330px;
 border:1px solid #000;
}
#comment-form input[type=text],
#comment-form textarea {
 width:320px;
}

CHAPTER 5 � BUILDING THE ENTRY MANAGER

131

.error {
 color:#F00;
 text-align:center;
 font-weight:bold;
 margin:5px 0 15px;
}
.comment {
 padding:0 0 10px;
}
.comment > span,
.comment > .admin {
 display:block;
 font-size:80%;
 margin:0 0 10px;
 padding:4px;
 text-align:right;
 background:#DDD;
 border-bottom:1px dotted #000;
}
.comment > .admin {
 background:transparent;
 border:0;
}
.comment > span > strong {
 float:left;
}

I won't go into the specifics of how this works, but this code will provide styling information for

all the components I'll be building in this book. To apply these styles to your form, you need to link to
the CSS file in the head section of admin.php. Do this by adding the code highlighted in bold to admin.php:

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

Once you save the linked stylesheet in admin.php, you can reload admin.php to see the cleaned

up form (see Figure 5-6).

CHAPTER 5 � BUILDING THE ENTRY MANAGER

132

�Note You can learn more about CSS by checking out the book, Beginning CSS Web Development: From Novice
to Professional, by Simon Collison (Apress, 2006).

Figure 5-6. The input-manager form styled with CSS

Create a Script to Process the Form Input
Your entry form is set to submit entered values using the POST method to a file located at
inc/update.inc.php. The next step is to create the file that will accept the input from the form and save
entries to the database.

First, you need to create the inc folder. You create a folder for this script because it won’t be
accessed directly by a browser.

�Tip To keep our project organized, you can separate scripts that process information from scripts that display it.
This makes maintenance a little easier because it groups similar files.

In your simple_blog project, create the inc folder, then create a file called update.inc.php. This
script will have logic that determines whether input should be saved; it will also have the ability to save
entries to the entries table.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

133

�Tip Be sure to save files that aren’t accessed directly by the browser with a different file extension, such as
.inc.php; this helps you identify files that should not be public easily.

It is critical that you plan your script that processes form input properly; a good way to do that
is to break the process into small, discrete steps:

1. Verify that information was submitted via the POST method

2. Verify that the Save Entry button was pressed

3. Verify that both the title and entry form fields were filled out

4. Connect to the database

5. Formulate a MySQL query to store the entry data

6. Sanitize the input and store it in the entries table

7. Obtain the unique ID for the newly created entry

8. Send the user to the newly created entry

Performing the Initial Verification
You can combine the first three steps into one conditional statement. All conditions are required, so you
can use the && operator to require that all conditions are true. The conditional statement looks like this:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry'
 && !empty($_POST['title'])
 && !empty($_POST['entry']))
{
 // Continue processing information . . .
}

// If both conditions aren't met, sends the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

CHAPTER 5 � BUILDING THE ENTRY MANAGER

134

You use the $_SERVER superglobal to determine whether the script was accessed using the POST
method. Making this check helps you ensure that the page wasn’t accessed by mistake. You use the
$_POST superglobal to access the value of the button pressed to submit the form. If the pressed button
wasn’t the “Save Entry” button, the form isn’t submitted. This makes it possible for the Cancel button to
send the user back to the main page without saving any of the input from the form. Finally, you use the
$_POST superglobal to verify that the user filled out the title and entry fields of the form; performing this
check helps you ensure that you don’t store any incomplete entries in the database.

If any of these conditions isn’t met, the user is sent back to the main page, and your script
performs no further processing. This means that any information submitted won’t be saved to the
database.

Connect to the Database
If all conditions were met, the script can proceed to Step 4, where you save the information to your
database. You need to open a connection to the database before you can save to it; you open the
connection using PHP Data Objects (PDO).

Keeping Database Credentials Separate
It’s a good habit to keep database credentials and other site-wide information separate from the rest of
your scripts. The reason: This allows you to change an entire project’s configuration quickly and easily
by altering a single file.

You might wonder why skipping this step could matter. Imagine that you build a project that
has dozens of scripts, all of which need to contact the database for some reason or another. Now
imagine that the database is moved to a new server, and the login credentials need to be updated. If you
did not keep site-wide information separate from the rest of your scripts in this scenario, you would be
required to open every single file in your project to swap in the new login information—this would be a
tedious and potentially time-consuming task.

If, however, you store all the login credentials and other scripts that access the database in one
file, you’re able to move the site to a new database by altering a single file.

You store your database credentials in a file you create and store in the inc folder called
db.inc.php (full path: /xampp/htdocs/simple_blog/inc/db.inc.php). You can define the credentials as
constants with the following code:

<?php

define('DB_INFO', 'mysql:host=localhost;dbname=simple_blog');
define('DB_USER', 'root');
define('DB_PASS', '');

?>

All that remains is to include db.inc.php in any file that needs database access, and you have

access to your credentials.

Connecting to the Database in update.inc.php
Next, add the bolded lines to update.inc.php to include your credentials and open a connection to the
database:

CHAPTER 5 � BUILDING THE ENTRY MANAGER

135

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database

 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Continue processing data...
}

// If both conditions aren't met, send the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

Save the Entry to the Database
When you’re sure that all the necessary conditions have been met and a connection to the database is
open, you’re ready to proceed with Steps 5 and 6: formulating a MySQL query to store the entry data and
then sanitizing the input and storing it in the entries table. To accomplish these tasks, you need to
create a prepared statement. Begin by creating a query template, which you use to save the title and
entry fields entered to the title and entry columns in the entries table. The query looks like this:

INSERT INTO entries (title, entry) VALUES (?, ?)

You store this query in a variable that you pass to PDO’s prepare() method. With your query

prepared, you can execute the statement using the supplied form information, confident that the input
is being escaped properly.

Add the code in bold to update.inc.php:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

CHAPTER 5 � BUILDING THE ENTRY MANAGER

136

 // Save the entry into the database
 $sql = "INSERT INTO entries (title, entry) VALUES (?, ?)";
 $stmt = $db->prepare($sql);

 $stmt->execute(array($title, $entry));
 $stmt->closeCursor();

 // Continue processing data...
}

// If both conditions aren't met, sends the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

The execute() method saves the information into the entries table. Finally, call the

closeCursor() method to end the query.

Retrieve the Entry’s Unique ID and Display the Entry to the User
You’ve saved your new entry successfully; the final pair of steps is to obtain the unique ID of the new
entry and enable the user to view his new entry.

To accomplish this, you need the ID generated for the entry you just saved. Fortunately, MySQL
provides a built-in function for tackling the first part of this; you can use the LAST_INSERT_ID() function
to structure a query that retrieves the unique ID of the new entry:

SELECT LAST_INSERT_ID()

When you access the results of the query using the fetch() method, you’re given an array in

which the first index (0) contains the ID of the last entry inserted into the database.
Once you have the ID, you want to send the user to the publicly displayed page that contains his

entry, which you call index.php. To do this, you need to insert the id of the entry you want to display in a
URL:

http://localhost/simple_blog/index.php?id=1

You can shorten the URL like this:

http://localhost/simple_blog/?id=1

CHAPTER 5 � BUILDING THE ENTRY MANAGER

137

�Tip This script uses relative paths to access the publicly displayed site. This approach allows the scripts to exist
in any directory, as long as they remain in the same relationship to each other within the file structure. The relative
path ../ means, in plain English: “Go up one folder.” In this case, the relative path takes you out of the inc folder
and back into the simple_blog folder.

Now add the following code to update.inc.php to retrieve the entry’s ID and direct the user to
the entry’s public display:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Save the entry into the database
 $sql = "INSERT INTO entries (title, entry) VALUES (?, ?)";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_POST['title'], $_POST['entry']));
 $stmt->closeCursor();

 // Get the ID of the entry we just saved
 $id_obj = $db->query("SELECT LAST_INSERT_ID()");
 $id = $id_obj->fetch();
 $id_obj->closeCursor();

 // Send the user to the new entry
 header('Location: ../admin.php?id='.$id[0]);
 exit;
}

// If both conditions aren't met, sends the user back to the main page
else
{
 header('Location: ../admin.php');
 exit;
}

?>

CHAPTER 5 � BUILDING THE ENTRY MANAGER

138

�Note You haven’t created index.php yet, so this code redirects to admin.php. You’ll change this when you
create index.php in the next step.

No matter how the script is accessed, the user will receive a resolution: either the script
executes successfully and the user is shown her new entry, or the script takes her back out to the main
display and nothing is saved.

You can test the new system by adding three dummy entries to the system:

• Title: First Entry; Entry: This is some text.

• Title: Second Entry; Entry: More text and a link.

• Title: Third Entry; Entry: A third entry in the database.

These entries will give you some test data to work with when you move on to the next step,
which is to build the script that retrieves entries from the database and displays them.

Displaying the Saved Entries
As I stated earlier, you will call your script to display the entries index.php, and you will store it in the
root of the simple_blog project (full path: /xampp/htdocs/simple_blog/index.php). Your first step is to
put together the structure of the page that will display the information.
Add the following HTML to index.php:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" href="/css/default.css" type="text/css" />
 <title> Simple Blog </title>
</head>

<body>

 <h1> Simple Blog Application </h1>

 <div id="entries">

CHAPTER 5 � BUILDING THE ENTRY MANAGER

139

<?php

 // Format the entries from the database

?>
 <p class="backlink">
 Post a New Entry
 </p>

 </div>

</body>

</html>

This code creates a valid HTML page, complete with a link to the CSS file you created earlier this

chapter. It also creates a page heading (“Simple Blog Application”), a container for the entries, and a link
to admin.php, which you can use to create additional entries.

Planning Our Scripts
You want your script to scale to your future needs, so now is a good time to explore best practices,
organizational techniques, and other ways to eliminate unnecessary rewrites as you modify your code
going forward. This might seem like a bit of a departure from the simple blogging application, but taking
a moment to learn how to separate your code properly now can save you a lot of time in the future (as
you’ll see in upcoming chapters).

Separation of Logic in Programming
When you write scripts, it’s important to know what your script is doing and why. This helps you
separate different parts of your script into smaller chunks with specific purposes, which simplifies the
organization, maintenance, and readability of your applicatoin’s code.

To separate your code, you need to identify the different categories that scripts can fall into. In
general, there are three main types of coding logic:

• Database logic

• Business logic

• Presentation logic

Database Logic
Database logic refers to any code that connects to the database, whether that code creates, modifies, or
retrieves data.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

140

Business Logic
Business logic is a much broader area of coding, and it includes any script that processes data. Business
logic typically exists between the database and presentation logic, and it serves to modify the data in
some capacity that doesn’t involve specific output properties. For example, you might use business logic
to replace words in some text, convert a timestamp to a date, and so on.

Business logic represents a large area of coding, so it can be tough to describe it precisely.
However, it’s generally safe to assume that if a given bit of code doesn’t access the database or generate
the presentation (such as HTML markup), it’s probably performing business logic.

Presentation Logic
Presentation logic is the part of a script that displays output to a user. This code can include generating
HTML markup, XML output, or any other format that allows a user to access the information a script is
working with.

Organizational Philosophies and Programming Patterns
There isn’t a hard and fast “right way” to separate logic in an application, and the methods a developer
chooses for a given project are determined largely by her preferences. However, there are several
popular programming patterns, or general philosophies, you can choose from when deciding how to
structure an application.

A couple of the more popular patterns are the Multitier Architecture pattern and the Model-
View-Controller (MVC) pattern—you can learn more about the MVC pattern at
http://en.wikipedia.org/wiki/Model-View-Controller. The simple blog application relies on the
Multitier Architecture pattern—you can more about the basics of this pattern in a great article on
Wikipedia at http://en.wikipedia.org/wiki/Multitier_architecture.

Mapping Your Functions to Output Saved Entries
Planning the necessary steps of your script can help you identify the different types of logic involved,
enabling you to group different steps into their respective functional categories.

Your script needs to allow users to see a list of entry titles if no entry is selected; it also needs to
let users see a full entry if an entry ID is supplied. To accomplish this, your script needs to accomplish
several tasks:

• Connect to the database

• Retrieve all entry titles and IDs if no entry ID was supplied

• Retrieve an entry title and entry if an ID was supplied

• Sanitize the data to prepare it for display

• Present a list of linked entry titles if no entry ID was supplied

• Present the entry title and entry if an ID was supplied

CHAPTER 5 � BUILDING THE ENTRY MANAGER

141

If you look at what each step is doing, you can assign each step to a database, business, or
presentation layer. For example, a simple breakdown of tasks might look like this:

Database layer

• Connect to the database

• Retrieve all entry titles and IDs if no entry ID was supplied

• Retrieve an entry title and entry if an ID was supplied

Business layer

• Sanitize the data to prepare it for display

Presentation layer

• Present a list of linked entry titles if no entry ID was supplied

• Present the entry title and entry if an ID was supplied

A good way to approach this problem is to separate your tasks into a database function called
retrieveEntries(), a business function called sanitizeData(), and the presentation logic, which you
will store in index.php.

You can reinforce these logical separations by defining your database and business functions in
a separate file, which you’ll call functions.inc.php and create in the inc folder. This makes your
functions accessible to other pages in your application, should that become necessary in the future.

Writing the Database Functions
Begin by creating the file that will contain your functions. In the inc folder, create a new file called
functions.inc.php (full path: /xampp/htdocs/simple_blog/inc/functions.inc.php).

In your new file, define tour database function, retrieveEntries(). This function accepts two
parameters: your database connection and an optional parameter for the entry ID. Your defined
function should look like this:

<?php

function retrieveEntries($db, $id=NULL)
{
 // Get entries from database
}

?>

You declare the default value for $id to be NULL; doing this means you can omit it without

causing an error. Before you design your database query, you must determine whether an entry ID was
passed; if so, you need to retrieve different information. The default value is NULL, so you simply need to
check whether $id is NULL. Do this by adding the code in bold to retrieveEntries():

CHAPTER 5 � BUILDING THE ENTRY MANAGER

142

<?php

function retrieveEntries($db, $id=NULL)
{
 /*

 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 // Load specified entry
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else

 {
 // Load all entry titles
 }

 // Return loaded data
}

?>

Your next step is to write a script that executes if no entry ID is supplied. Your database query

needs to retrieve two pieces of information from the entries table: the id and title fields. You need to
store this information so it can be returned from the retrieve_entries() function and used by your
business and presentation layers. A function can only return one variable, so you need to store the entry
information in an array.

The query to retrieve the necessary information looks like this:

SELECT id, title
FROM entries
ORDER BY created DESC

There aren’t any user-supplied parameters in the query, so you don’t need to prepare the

statement. This means you can execute the query immediately and loop through the results, storing the
id and title in a multidimensional array.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

143

Add the lines in bold to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 // Load specified entry
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries

 ORDER BY created DESC";
 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],

 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries

 $fulldisp = 0;
 }

 // Return loaded data
}

?>

If no entry ID is supplied, your script now loads all entry titles and IDs into an array called $e;

your script also sets a flag called $fulldisp to 0, which tells your presentation layer that the supplied
information is not for full display.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

144

As a safeguard, you should set some default values in the event that no entries come back from
the entries table. To do this, you check whether the $e variable is an array. If it isn’t, you know that no
entries were returned, and you can create a default entry in $e and set the $fulldisp flag to 1, which
signifies that your default entry should be displayed as a full entry.

Again, add the code highlighted in bold code to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 // Load specified entry
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries
 ORDER BY created DESC";

 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries
 $fulldisp = 0;

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */

CHAPTER 5 � BUILDING THE ENTRY MANAGER

145

 if(!is_array($e))
 {
 $fulldisp = 1;

 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'Post an entry!'
);
 }
 }

 // Return loaded data
}

?>

You can now run your function safely without an error, so long as no entry ID is supplied. Next,

you need to modify the script so it retrieves an entry if an ID is supplied.
This code needs to use the supplied ID in a query to retrieve the associated entry title and

entry fields. As before, you store the returned data in an array called $e.
Add the code in bold to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 $sql = "SELECT title, entry
 FROM entries

 WHERE id=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_GET['id']));

 // Save the returned entry array
 $e = $stmt->fetch();

 // Set the fulldisp flag for a single entry
 $fulldisp = 1;
 }

CHAPTER 5 � BUILDING THE ENTRY MANAGER

146

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries
 ORDER BY created DESC";

 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries
 $fulldisp = 0;

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */
 if(!is_array($e))
 {
 $fulldisp = 1;
 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'Post an entry!'
);
 }
 }

 // Return loaded data
}

?>

At this point, your function has two variables: $e and $fulldisp. Both variables must be

returned from the function for further processing; however, a function can return only one value, so you
need to somehow combine these variables into a single variable.

You do this using a function called array_push(), which adds a value to the end of an array.
Using this function, you can add the value of $fulldisp to the end of $e and return $e.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

147

You can accomplish this by adding the code in bold to functions.inc.php:

<?php

function retrieveEntries($db, $id=NULL)
{
 /*
 * If an entry ID was supplied, load the associated entry
 */
 if(isset($id))
 {
 $sql = "SELECT title, entry
 FROM entries
 WHERE id=?
 LIMIT 1";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_GET['id']));

 // Save the returned entry array
 $e = $stmt->fetch();

 // Set the fulldisp flag for a single entry
 $fulldisp = 1;
 }

 /*
 * If no entry ID was supplied, load all entry titles
 */
 else
 {
 $sql = "SELECT id, title
 FROM entries
 ORDER BY created DESC";

 // Loop through returned results and store as an array
 foreach($db->query($sql) as $row) {
 $e[] = array(
 'id' => $row['id'],
 'title' => $row['title']
);
 }

 // Set the fulldisp flag for multiple entries
 $fulldisp = 0;

CHAPTER 5 � BUILDING THE ENTRY MANAGER

148

 /*
 * If no entries were returned, display a default
 * message and set the fulldisp flag to display a
 * single entry
 */
 if(!is_array($e))
 {
 $fulldisp = 1;
 $e = array(
 'title' => 'No Entries Yet',
 'entry' => 'Post an entry!'
);
 }
 }

 // Add the $fulldisp flag to the end of the array

 array_push($e, $fulldisp);

 return $e;
}

?>

Writing the Business Function
At this point in your application, the business layer is pretty simple. All you need to do at this point is
escape your output to avoid potential issues. You can accomplish this by writing a function called
sanitizeData(), which you declare right below retrieveEntries() in functions.inc.php.

This function accepts one parameter, $data, and performs basic sanitization using the
strip_tags() function. Sanitizing the function removes all HTML from a string unless a tag is specifically
whitelisted, or placed in a collection of allowed tags, in strip_tags() second parameter.

The data you pass to sanitizeData() is potentially a mixture of both array and string data, so
you need to check whether $data is an array before you process any data—doing this can help you avoid
any parsing errors.

If $data isn’t an array, you use strip_tags() to eliminate all HTML tags except the <a> tag; this
enables your entries to contain links.

If $data is an array, you use the array_map() function to call sanitizeData() recursively on each
element in the array.

Recursive Functions
In some cases, it becomes necessary to call a function from within itself. This technique is known as a
recursive function call, and it has a number of useful applications. In this instance, you use recursion to
ensure that every element in an array is sanitized, no matter how deep your array goes. In other words,
the first element contains an array where its first element is another array, and so on. Recursion allows
your function to be called repeatedly until you reach the bottom of the array.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

149

Sanitizing the Data
The next step is to declare sanitizeData() and write the code to perform the recursive technique just
described. Add this code to functions.inc.php, just below retrieveEntries():

function sanitizeData($data)
{
 // If $data is not an array, run strip_tags()
 if(!is_array($data))
 {
 // Remove all tags except <a> tags
 return strip_tags($data, "<a>");
 }

 // If $data is an array, process each element
 else
 {
 // Call sanitizeData recursively for each array element
 return array_map('sanitizeData', $data);
 }
}

Writing the Presentation Code
Your last step in this phase of creating the blog is to use the information retrieved and formatted by your
database and business layers to generate HTML markup and display the entries.

You will write this code in index.php inline with the HTML markup. The reason for this
approach: This code is strictly for inserting your processed data into HTML markup.

Begin by including both db.inc.php and functions.inc.php in index.php. At the very top of
index.php, add the following code:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

?>

Next, you need to open a connection to the database. You also need to check whether an entry

ID was passed in the URL.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

150

�Note Passing entry IDs in the URL (i.e., http://localhost/simple_blog/??id=1 is a popular and
straightforward way of using one page to display different entries. You accomplish this in PHP using the $_GET
superglobal.

Now add the bold lines to index.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection

 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Determine if an entry ID was passed in the URL
 $id = (isset($_GET['id'])) ? (int) $_GET['id'] : NULL;

?>

So far, you’ve determined whether an ID is set using the ternary operator, which allows you to

compress an if statement into one line. Translated into plain English, the previous code snippet would
read like this: “if $_GET['id'] is set to some value, save its value as an integer in $id, or else set the value
of $id to NULL.”

Next, you need to load the entries from the database. Do this by calling your retrieveEntries()
function and passing it your database connection ($db) and the ID you collected ($id) as parameters.
Now add the lines in bold to index.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

CHAPTER 5 � BUILDING THE ENTRY MANAGER

151

 // Determine if an entry ID was passed in the URL
 $id = (isset($_GET['id'])) ? (int) $_GET['id'] : NULL;

 // Load the entries

 $e = retrieveEntries($db, $id);

?>

The appropriate entries for the page are stored in the $e array and are ready to be displayed.

You know that the last element of the array contains a flag telling you whether a full entry is stored, so
your next step is to pop the last element off the array and store it in a variable ($fulldisp) that you’ll use
in just a moment.

Also, you need to sanitize the entry data, which we do by calling sanitizeData() and passing $e
as the parameter. Next, add the lines in bold to index.php:

<?php

 /*
 * Include the necessary files
 */
 include_once 'inc/functions.inc.php';
 include_once 'inc/db.inc.php';

 // Open a database connection
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Determine if an entry ID was passed in the URL
 $id = (isset($_GET['id'])) ? (int) $_GET['id'] : NULL;

 // Load the entries
 $e = retrieveEntries($db, $id);

 // Get the fulldisp flag and remove it from the array

 $fulldisp = array_pop($e);

 // Sanitize the entry data
 $e = sanitizeData($e);

?>

At this point, you have a flag to let you know whether you’re displaying a full entry or a list of

entry titles ($fulldisp), as well as an array of information to insert into HTML markup ($e).
To create the output, you need to determine whether the flag is set to 1, which would signify a

full entry. If so, you insert the entry title into an <h2> tag and place the entry in a <p> tag.

CHAPTER 5 � BUILDING THE ENTRY MANAGER

152

In index.php, in the middle of the page below <div id="entries">, add the following lines of
bold code:

 <div id="entries">

<?php

// If the full display flag is set, show the entry
if($fulldisp==1)
{

?>

 <h2> <?php echo $e['title'] ?> </h2>
 <p> <?php echo $e['entry'] ?> </p>
 <p class="backlink">

 Back to Latest Entries
 </p>

<?php

} // End the if statement

?>

 <p class="backlink">
 Post a New Entry
 </p>

 </div>

Navigating to the http://localhost/simple_blog/?id=1 address enables you to see the first

entry (see Figure 5-7).

CHAPTER 5 � BUILDING THE ENTRY MANAGER

153

Figure 5-7. The first entry loaded using a variable passed in the URL

Next, you need to determine how you should display your list of entry titles. Ideally, you want to
show the title as a link that takes the user to view the full entry.

This list of links is displayed if the $fulldisp flag is set to 0, so add an else to the conditional
statement that checks whether $fulldisp is set to 1. Inside the else statement, you need to create a loop
to process each paired ID and title together.

Just after the if statement, add the bold lines of code to index.php:

<?php

} // End the if statement

// If the full display flag is 0, format linked entry titles
else
{
 // Loop through each entry

 foreach($e as $entry) {

?>

 <p>
 <a href="?id=<?php echo $entry['id'] ?>">
 <?php echo $entry['title'] ?>

 </p>

CHAPTER 5 � BUILDING THE ENTRY MANAGER

154

<?php

 } // End the foreach loop
} // End the else

?>

 <p class="backlink">
 Post a New Entry
 </p>

 </div>

Now, navigate to http://localhost/simple_blog/, and you should see the title of each entry

listed as a link(see Figure 5-8). Clicking any of the links takes you to the associated entry.

Figure 5-8. The title of each entry is listed as a link

CHAPTER 5 � BUILDING THE ENTRY MANAGER

155

Fix the Redirect
Now that index.php exists, you want to be taken to your new entries after they are submitted. To do this,
you need to change the address of the header() calls to take the user to index.php. Change the code in
bold in update.inc.php to make this happen:

<?php

if($_SERVER['REQUEST_METHOD']=='POST'
 && $_POST['submit']=='Save Entry')
{
 // Include database credentials and connect to the database
 include_once 'db.inc.php';
 $db = new PDO(DB_INFO, DB_USER, DB_PASS);

 // Save the entry into the database
 $sql = "INSERT INTO entries (title, entry) VALUES (?, ?)";
 $stmt = $db->prepare($sql);
 $stmt->execute(array($_POST['title'], $_POST['entry']));
 $stmt->closeCursor();

 // Get the ID of the entry we just saved
 $id_obj = $db->query("SELECT LAST_INSERT_ID()");
 $id = $id_obj->fetch();
 $id_obj->closeCursor();

 // Send the user to the new entry

 header('Location: ../?id='.$id[0]);
 exit;
}

// If both conditions aren't met, sends the user back to the main page
else
{

 header('Location: ../');
 exit;
}

?>

CHAPTER 5 � BUILDING THE ENTRY MANAGER

156

Summary
You have now created a blog in the basic sense! Basic techniques you learned in this chapter included:

• How to use a web form to create and save entries in the database

• How to retrieve and display entries based on variables passed in the URL

As you continue on, you’ll add several cool features to the blog, including a formatted date,
authoring information, and images. In the next chapter, you’ll learn how to make your blog support
multiple pages, which in turn will enable you to build an “About the Author” page.

