
C H A P T E R 4

� � �

97

Working with Databases

Modern web sites are incredibly powerful, and much of this power derives from their ability to store
information. Storing information allows developers to create highly customizable interactions between
their software and its users, ranging from entry-based blogs and commenting systems to high-powered
banking applications that handle sensitive transactions securely.

In this chapter, I’ll cover the basics of MySQL, a powerful, open-source database. Subjects I’ll
cover include:

• The basics of MySQL data storage

• Manipulating data in MySQL tables

• Your options in PHP for interacting with MySQL databases

• Table structure, usage, and a crash-course in planning

This is the last chapter that covers the theory of building PHP applications; in Chapter 5, I’ll
begin covering the practical aspects of building a blog!

The Basics of MySQL Data Storage
MySQL is a relational database management system, which lets you store data in multiple tables, where
each table contains a set of named columns and each row consists of a data entry into the table. Tables
will often contain information about other table entries, which allows developers to group relevant
information into smaller groups to ease a script’s load on the server, as well as simplifying data retrieval.

For example, take a look at how you might store information about musical artists (see Tables
4-1 and 4-2).

Table 4-1. The artists Table

ar t ist_i d ar t ist_name

1 Bon Iver

2 Feist

CHAPTER 4 � WORKING WITH DATABASES

98

Table 4-2. The albums Table

album_id ar t ist_i d album_name

1 1 For Emma, Forever Ago

2 1 Blood Bank - EP3

3 2 Let It Die

4 2 The Reminder

The first table, artists, includes two fields. The first field, artist_id, stores a unique numerical
identifier for the artists. The second column, artist_name, stores the artist’s name.

The second table, albums, stores a unique identifier for each album in the album_id column and
the album name in the—you guessed it!—album_name column. The album table includes a third column,
artist_id, that relates the artists and albums tables. This column stores the unique artist identifier that
corresponds to the artist that recorded the album.

Manipulating Data in MySQL Tables
You can manipulate the data in a MySQL table via several types of MySQL statements. In this section,
you will learn the MySQL statements that perform the following actions:

• Create a database

• Create a table in the database

• Insert data into the table

• Retrieve the data from the table

• Modify the data in the table

• Delete the data from the table

You’ll test these commands using the phpMyAdmin control panel provided by XAMPP. Open a
browser and navigate to http://localhost/phpmyadmin to access the control panel (see Figure 4-1).

CHAPTER 4 � WORKING WITH DATABASES

99

Figure 4-1. The home page of phpMyAdmin on XAMPP

Creating and Deleting Databases
The best way to get a feel for creating databases is to create one for testing. By default, XAMPP creates a
database called test. In the interests of learning, go ahead and delete this database, and then recreate it.

Deleting Databases Using DROP

MySQL uses the word DROP to indicate that a database or table should be removed. After you start the
DROP clause, you need to indicate whether you’re removing a database or a table, which you indicate by
name, then the name of the database or table (in this case, test).

Your complete command should look like this:

DROP DATABASE test

Click the SQL tab at the top of the screen and enter the preceding command, then click the Go

button beneath the SQL field to execute the command and remove the table. Because you’re deleting
information, an alert pops up asking you to confirm whether you really want to drop the table.

CHAPTER 4 � WORKING WITH DATABASES

100

Creating Databases Using CREATE

Next, you need to recreate the test database. MySQL uses the word CREATE to indicate that a table or
database is being created. Then, as with the DROP command, you specify a DATABASE and the name of the
database: test. Enter this command in the SQL tab, then click the Go button to execute it:

CREATE DATABASE test

Next, access the test database by clicking its name in the left column of the control panel. Click

the SQL tab at the top of the screen, and you’re ready to create your first table (see Figure 4-2).

Figure 4-2. The SQL tab inside the test table on phpMyAdmin

The CREATE TABLE Statement
Of course, the first thing you need to do to start working with MySQL is to create your first table.

MySQL syntax is very simple because it generally mimics natural speech patterns. In the text
field, add the following statement:

CREATE TABLE IF NOT EXISTS artists
(
artist_id INT PRIMARY KEY AUTO_INCREMENT,
artist_name VARCHAR(150)
)

CHAPTER 4 � WORKING WITH DATABASES

101

This code creates the artists table from the previous example about musicians. The created
tables will be empty, but all the columns will be in place.

The statement starts out with the words CREATE TABLE, which tells MySQL to do exactly that.
You append the optional IF NOT EXISTS to ensure you don’t overwrite a table if it has already been
created, then add the name of the table to be created (artists).

The tricky part is defining the columns within the table. To start, you enclose the column names
in parentheses after the name of the table, starting with the first column name:

(artist_id)

To identify the type of information you want to store in this column, you follow the column

name with a type identifier:

(INT [see Data Types in MySQL])

This snippet instructs MySQL to store only integer values in this column.
The PRIMARY KEY (see the “Understanding PRIMARY KEY” section later in this chapter) and

AUTO_INCREMENT (see the “Understanding AUTO_INCREMENT” section later in this chapter) keywords enable
you to make this field update automatically with a unique ID, or index (see the “Indexes in MySQL”
section later in this chapter).

You create the artist_name column with data type VARCHAR and specify a maximum length of
150 characters. VARCHAR is a variable-length string that can contain anywhere from 0 to 65,535 bytes. You
must specify a length with columns of the VARCHAR type, or you get an error.

�Note MySQL supports both VARCHAR and CHAR type columns. The primary difference between the two is that
CHAR columns are right padded with spaces to fill the specified length, whereas VARCHAR columns are not. For
example, if the specified field length were 8, the word “data” would be stored as 'data' in a VARCHAR and as
'data ' in a CHAR column.

Clicking the Go button beneath the text field creates the artists table. You need to repeat the
process and create the albums table, which you accomplish using the following code:

CREATE TABLE IF NOT EXISTS albums
(
album_id INT PRIMARY KEY auto_increment,
artist_id INT,
album_name VARCHAR(150)
)

Again, click the Go button beneath the text field, then click the Structure tab at the top of the

field to verify that your tables have been created (see Figure 4-3).

CHAPTER 4 � WORKING WITH DATABASES

102

Figure 4-3. The albums and artists tables created in phpMyAdmin

Data Types in MySQL
MySQL supports numerous data types. The types you will use most often include:

• INT: an integer value

• FLOAT: a floating point number

• VARCHAR: a short string value

• TEXT: a large string value that is treated as a character string (it’s best suited for blog entries)

• BLOB: a binary large object that is treated as a binary string (it can store images and similar
numbers)

• DATETIME: a date value (formatted YYYY-MM-DD HH:MM:SS)

Understanding PRIMARY KEY
A column assigned with the PRIMARY KEY identifier should contain a value that uniquely identifies each
value throughout the table. Because you’re using numerical IDs for each artist, you know that there
won’t be any overlap in the artist_id column.

The use of primary keys in MySQL tables is mandatory because the data isn’t really useful if you
can’t identify entries uniquely.

Understanding AUTO_INCREMENT

Using a unique numerical identifier for individual entries is incredibly useful, so MySQL includes an
easy way to create unique identifiers called AUTO_INCREMENT. A column flagged with AUTO_INCREMENT
generates identifiers in sequence automatically as entries are created, starting at 1.

CHAPTER 4 � WORKING WITH DATABASES

103

Indexes in MySQL
When you look up data in a MySQL table, queries can start to back up, depending on the number of rows
contained within the table. Imagine a site like CNN.com, where hundreds of thousands of people might
be looking up one of the site’s articles at any given moment; if each query had to go through every piece
of data in every row of the table, sites like this would slow to a crawl under the stress of daily use.

Fortunately, MySQL provides a way to speed up queries by allowing you to create one or more
index columns, which are sorted snippets of a table’s data that enable much faster searching.

In the artists table, it makes a lot of sense to use the artist_id as an index. Declaring this
column as the PRIMARY KEY means you’ve already created an index on it. However, in the albums table,
the artist_id column is not an index, so searching for an artist’s recordings could take much longer
than you want it to if you had thousands of artists in your database.

To create an index, you’ll need to ALTER the albums table. Next, you add the index by using the
ADD INDEX clause with the column to index enclosed in parentheses. The complete command looks like
this:

ALTER TABLE albums ADD INDEX (artist_id)

The proper use of MySQL indexes can add a huge performance boost to SELECT queries. It

should be noted, however, that each index creates a separate column that must be updated every time
data is added. This means it can take longer to add data to an indexed column than for an unindexed
column.

The INSERT Statement
With your tables created, you’re ready to start storing data. The first step is to store artist information in
the artists table. Each entry must be entered separately, so you start with the first artist, Bon Iver:

INSERT INTO artists (artist_name) VALUES ('Bon Iver')

The INSERT INTO phrase tells MySQL that you’re adding information. The next steps are to

determine what table you want to add information into (artists) and then specify the column(s) you’re
adding values into (artist_name), which you enclose in parentheses.

With your table name and columns selected, you can insert data using the word VALUES,
followed by the data you wish to insert, enclosed in parentheses:

("Bon Iver")

You follow the same format to add the next artist:

INSERT INTO artists (artist_name) VALUES ('Feist')

If you select the artists table from the left-hand column of phpMyAdmin and click the Browse

tab, you see that even though you specified only the artist_name column, the artist_id column was
filled out for you automatically (see Figure 4-4).

CHAPTER 4 � WORKING WITH DATABASES

104

Figure 4-4. The artists table populated with two entries

To populate the albums table, you specify two columns to enter data into, then execute four
statements simultaneously, separating them with a semicolon. Enter the following into the SQL text field
and click the Go button:

INSERT INTO albums (artist_id, album_name)
VALUES ('1', 'For Emma, Forever Ago'),
('1', 'Blood Bank – EP'),
('2', 'Let It Die'),
('2', 'The Reminder')

Instead of executing four different commands to insert the albums, as you did in the preceding

example, you can use what is called an extended insert to add all four albums at once. This works by
enclosing each entry in parentheses, separated by commas.

Now, if you select the albums table from the left column and browse its contents, you see the
four entries, as well as the automatically assigned album_id values (see Figure 4-5).

CHAPTER 4 � WORKING WITH DATABASES

105

Figure 4-5. The albums table populated with four entries

The SELECT Statement
Now that you’re comfortable inserting data into your tables, you need to figure out how to retrieve it for
use with your scripts.

You do this using the SELECT statement, followed by the column name(s) you want to retrieve.
You specify the table you want to query using the format FROM table_name. For example, you can get all
album names from the albums table by clicking the SQL tab and inserting the following line of code:

SELECT album_name FROM albums

The result of this query when you execute it in the SQL tab of phpMyAdmin: the four album

names (see Figure 4-6).

CHAPTER 4 � WORKING WITH DATABASES

106

Figure 4-6. The result of a query for all album_name column values

You’re also provided with options to modify the results, which enables you to make sure results
match certain conditions before they are returned. The WHERE clause is the most common query
modifier. For example, if you want to retrieve only album titles by Bon Iver, you can use a WHERE clause to
ensure that returned entries match Bon Iver’s artist_id of 1.

SELECT album_name FROM albums WHERE artist_id = 1

Telling your query to match only the artist_id of 1 displays only the albums by Bon Iver (see

Figure 4-7).

CHAPTER 4 � WORKING WITH DATABASES

107

Figure 4-7. Album names returned from rows that contain the artist_id of 1

�Note There are many other modifiers available you can use in SELECT statements. Refer to the MySQL manual
for more information on what they are and how they work. Any further modifiers used throughout this book will be
introduced in their appropriate contexts as they come up.

The UPDATE Statement
At some points in your scripts, you will need to change information in an entry. To do this, you use the
UPDATE statement. For example, if you were to decide to append the release year to Feist’s album, “Let It
Die,” you could do so with the following statement:

UPDATE albums
SET album_name = 'Let It Die (2005)'
WHERE album_name = 'Let It Die'

You begin by telling MySQL that you’re going to update a row using the UPDATE statement and

indicating which table name (albums) you want to update. Next, you identify the column(s) to update
using the word SET, followed by the column name (album_name) and the value you wish to update the
field with:

("Let It Die (2005)")

Finally, you add a WHERE clause to ensure that only entries that match conditions you set (in this

case, album_name = 'Let It Die') are updated.

CHAPTER 4 � WORKING WITH DATABASES

108

�Caution When updating rows, it’s important to use the WHERE clause to limit the rows being updated. Omitting
the WHERE clause in an update statement will result in all table rows being updated.

The JOIN Statement
Sometimes it’s necessary to select information from multiple tables. In the current example, you might
have only an artist’s ID but need to select both the artist’s name and the albums that artist has recorded.

That information is separated between two tables, so one approach is to perform two queries to
retrieve the information:

SELECT artist_name
FROM artists
WHERE artist_id = 1;
SELECT album_name
FROM albums
WHERE artist_id = 1;

Or you can use the JOIN statement to select from both tables at once. For example, look closely

at you do this first, then I’ll go over how it works:

SELECT artist_name, album_name
FROM artists
JOIN albums
USING (artist_id)
WHERE artist_id = 1

First, you specify that you want to retrieve both the artist_name and album_name columns,

which are stored in the artists and albums tables, respectively. This might seem wrong at first, because
you’re selecting from the artists table, which would throw an error if not for the JOIN clause.

The JOIN clause enables you to specify a second table to use in the query (albums in this case).
This means that the two tables will be combined into one table temporarily, which enables you to
retrieve both the artist_name and the album_name columns with a single query.

However, you must tell MySQL how the two tables are related before this will work. The
artist_id column exists in both tables, so you’re going to use it to tie the two tables together. You
accomplish this with the USING (artist_id) clause.

Finally, you add a WHERE clause, as when using a normal SELECT query. In plain English, this
preceding query reads, “Retrieve the artist_name and album_name columns where the artist_id field has
a value of 1 from the artists and albums tables.”

Executing this query in the SQL tab of http://localhost/phpmyadmin returns the following
results:

Artist_name album_name
Bon Iver For Emma, Forever Ago
Bon Iver Blood Bank - EP

CHAPTER 4 � WORKING WITH DATABASES

109

The DELETE Statement
If it becomes necessary to remove an entry, you do so using the DELETE statement. For example, assume
you want to remove Feist’s “The Reminder” from your list altogether:

DELETE FROM albums
WHERE album_name = 'The Reminder'
LIMIT 1

You start the statement with the DELETE FROM statement, then identify the table you want to

remove an entry from (albums). Next, you create a WHERE clause to create the condition you want to
match before you delete an entry (album_name = 'The Reminder'). And, just to be sure you don’t
accidentally delete your entire table, you add LIMIT 1 to the query, which means that only one entry will
be deleted, even if more than one entry matches the conditions.

When you click the Go button, phpMyAdmin pops up a confirmation box and asks you if you’re
sure you want to complete the command. This is your last chance to verify that your command has no
errors, such as a missing WHERE clause. This confirmation box pops up only when deleting information.

Opening a Connection
You need a method through which your PHP scripts can connect to MySQL in order to interact with the
database. You can establish this connection in any of several approaches:

• PHP’s MySQL Extension

• PHP’s MySQLi Extension

• PHP Data Objects (PDO)

�Caution Due to potential security weaknesses in the MySQL Extension, developers are strongly encouraged to
use PDO or MySQLi when using MySQL 4.1.3 or later.

PHP’s MySQL Extension
The MySQL Extension is the original extension provided by PHP that allows developers to create PHP
applications that interact with MySQL databases earlier than version 4.1.3.

The MySQL Extension uses a procedural interface, which means that each action is an individual
function (see the code sample that follows). You can use the artists table described earlier as a basis for
writing a PHP script that retrieve all the artists’ names. Open test.php in Eclipse and enter the following code:

<?php
 // Open a MySQL connection
 $link = mysql_connect('localhost', 'root', '');
 if(!$link) {
 die('Connection failed: ' . mysql_error());
 }

CHAPTER 4 � WORKING WITH DATABASES

110

 // Select the database to work with
 $db = mysql_select_db('test');
 if(!$db) {
 die('Selected database unavailable: ' . mysql_error());
 }

 // Create and execute a MySQL query
 $sql = "SELECT artist_name FROM artists";
 $result = mysql_query($sql);

 // Loop through the returned data and output it
 while($row = mysql_fetch_array($result)) {
 printf("Artist: %s
", $row['artist_name']);
 }

 // Free the memory associated with the query
 mysql_free_result($result);

 // Close the connection
 mysql_close($link);
?>

Navigating to http://localhost/simple_blog/test.php in your browser yields the following

result:

Artist: Bon Iver
Artist: Feist

As the immediately preceding example illustrates, each step in the process has a function
assigned to it:

mysql_connect(): Accepts the host, username, and password for a MySQL connection. You must
call this function before any interaction with the database can take place.

die(): This is an alias for the exit() command. It stops execution of a script after displaying an
optional message (passed as the function argument).

mysql_error(): If an error occurs in the MySQL database, this function displays that error; this is
helpful for debugging.

mysql_select_db(): Selects the database that the script will interact with.

mysql_query(): Executes a query to the database. This query can create, modify, return, or delete
table rows, as well as perform many other tasks.

mysql_fetch_array(): Converts the MySQL resource returned by mysql_query() into an array.

mysql_free_result():Frees the memory used by mysql_query() to maximize script performance.

mysql_close(): Closes the connection opened by mysql_connect().

CHAPTER 4 � WORKING WITH DATABASES

111

The MySQL extension doesn’t support prepared statements (see the “Using Prepared
Statements” section later in this chapter), so it is susceptible to SQL injection, a potentially devastating
security issue in web applications. Malicious users can use SQL injection to extract sensitive information
from a database, or even go so far as to erase all the information in a given database.

You can minimize this risk by sanitizing all information that you want to insert into the
database. The MySQL extension provides a function for escaping data called
mysql_real_escape_string(), which escapes (inserts a backslash before) special characters. Additional
functions for sanitizing data, such as htmlentities() and strip_tags(), are available. However, some
risks exist even if you implement these safeguards.

The MySQLi Extension
The MySQL manual recommends that developers using MySQL 4.1.3 or later use the MySQLi extension.
There are many benefits to using MySQLi over the original MySQL extension, including MySQLi’s:

• Support for both object-oriented and procedural programming methods

• Support for multiple statements

• Enhanced debugging capabilities

• Support for prepared statements

Using Prepared Statements
The MySQLi and PDO extensions provide an extremely useful feature in prepared statements.

In a nutshell, prepared statements enable you to separate the data used in a SQL command
from the command itself. If you fail to separate these, a malicious user could potentially tamper with
your commands. Using a prepared statement means that all submitted data is completely escaped,
which eliminates the possibility of SQL injection. You can read more about this subject in Harrison Fisk’s
article on prepared statements at http://dev.mysql.com/tech-resources/articles/4.1/prepared-
statements.html.

A prepared statement works similarly to a regular MySQL statement, except that it uses a
placeholder (a question mark [?]) to represent data. You can make the best use of prepared statements
when use your user input in a query.

For instance, if you have a form on your site that asks what a user’s favorite color is, you could
use that input in a MySQL query via the $_POST superglobal:

$sql = "SELECT info FROM colors WHERE color = '$_POST[fav_color]'";

However, you aren’t performing any sanitization of this input, so a malicious user could

potentially exploit your form or harm your site using SQL injection. To avoid this, you can rewrite the
preceding statement as a prepared statement:

$sql = "SELECT info FROM colors WHERE color = ?";

The question mark acts as a placeholder, and it signifies to MySQL that anything passed to this

query is to be used only as a parameter for the current statement. This prevents a malicious user from
tricking MySQL into giving away information or damaging the database.

CHAPTER 4 � WORKING WITH DATABASES

112

Using MySQLi
To use MySQLi, you establish a connection using an object-oriented interface. I’ll cover how to take
advantage of object-oriented programming (OOP) in the next chapter, as well as discuss the pros and
cons of OOP versus procedural programming.

The primary difference between OOP and procedural code is that an object can store
information, freeing you from having to pass variables explicitly from function to function.

�Note MySQLi also provides a procedural interface to developers. See the PHP manual entry on MySQLi for more
information.

To familiarize yourself with MySQLi, you can rewrite the preceding example using MySQLi.
Modify test.php so it contains the following:

<?php
 // Open a MySQL connection
 $link = new mysqli('localhost', 'root', '', 'test');
 if(!$link) {
 die('Connection failed: ' . $link->error());
 }

 // Create and execute a MySQL query
 $sql = "SELECT artist_name FROM artists";
 $result = $link->query($sql);

 // Loop through the returned data and output it
 while($row = $result->fetch_assoc()) {
 printf("Artist: %s
", $row['artist_name']);
 }

 // Free the memory associated with the query
 $result->close();

 // Close the connection
 $link->close();
?>

Navigating to http://localhost/simple_blog/test.php in your browser yields the following

result:

Artist: Bon Iver
Artist: Feist

CHAPTER 4 � WORKING WITH DATABASES

113

MySQLi works similarly to the MySQL extension, with one key exception: instead of providing
individual functions, developers using MySQLi have access to methods, or functions contained within
the MySQLi object. In the preceding code snippet, you instantiate your MySQLi object in the variable
$link and establish a connection with your host, username, password, and a database name.

To execute a query, you call the query() method and pass the variable containing your MySQL
statement. You call a method in OOP using the variable that contains the object, followed by an arrow
(->) and the name of the method you want to call. For example, this line from the previous code example
illustrates how to call a method in OOP:

$result = $link->query($sql);

The query() method returns a mysqli_result object, which has methods that allow you to

access the information returned by the query.
To access each returned entry in order, you set up a loop that uses the result of calling this line:

$result->fetch_assoc();

Next, you kick out the returned data, then destroy the returned data set by calling the close()

method on the $result object. Also, you close the MySQLi connection by calling the close() method on
$link, as well.

Using Prepared Statements with MySQLi
What really sets MySQLi apart from the MySQL extension is its ability to use prepared statements. If you
want to allow a user to select an artist that she wants to see albums from, you can create a form that
looks something like this:

<form method="post">
 <label for="artist">Select an Artist:</label>
 <select name="artist">
 <option value="1">Bon Iver</option>
 <option value="2">Feist</option>
 </select>
 <input type="submit" />
</form>

When the user selects an artist, the artist’s unique ID is passed to the processing script in the

$_POST['artist'] variable (review Chapter 3 for a refresher on $_POST), which allows you to change your
query based on user input.

In test.php, you can build a quick script that displays album names based on user input:

<?php
 if($_SERVER['REQUEST_METHOD']=='POST')
 {
 // Open a MySQL connection
 $link = new mysqli('localhost', 'root', '', 'test');

CHAPTER 4 � WORKING WITH DATABASES

114

 if(!$link) {
 die('Connection failed: ' . $mysqli->error());
 }

 // Create and execute a MySQL query
 $sql = "SELECT album_name FROM albums WHERE artist_id=?";
 if($stmt = $link->prepare($sql))
 {
 $stmt->bind_param('i', $_POST['artist']);
 $stmt->execute();
 $stmt->bind_result($album);
 while($stmt->fetch()) {
 printf("Album: %s
", $album);
 }
 $stmt->close();
 }

 // Close the connection
 $link->close();
 }
 else {
?>

<form method="post">
 <label for="artist">Select an Artist:</label>
 <select name="artist">
 <option value="1">Bon Iver</option>
 <option value="2">Feist</option>
 </select>
 <input type="submit" />
</form>

<?php } // End else ?>

When a user submits the form, a new MySQLi object is created, and a query is created with a

placeholder for the artist_id in the WHERE clause. You can then call the prepare() method on your
MySQLi object ($link->prepare($sql)) and pass the query as a parameter.

With your statement ($stmt) prepared, you need to tell MySQL how to handle the user input
and insert it into the query. This is called binding parameters to the query, and you accomplish this by
calling the bind_param() method on the newly created $stmt, which is a MySQLi_STMT object.

Binding parameters requires a couple steps: begin by passing the type of the parameter, then
pass the parameter value.

MySQLi supports four data types:

• i: Integer (any whole number value)

• s: String (any combination of characters)

CHAPTER 4 � WORKING WITH DATABASES

115

• d: Double (any floating point number)

• b: Blob (data is sent in packets that is used for storing images or other binary data)

You’re passing the artist’s ID, so you set the parameter type to i, then pass the value of
$_POST['artist'].

With the parameters bound, you can execute the statement using the execute() method.
After the query is executed, you need to specify variables to contain the returned results, which

you accomplish using the bind_result() method. For each column you’ve requested, you need to
provide a variable to contain it. In this example, you need to store the album name, which you
accomplish by supplying the $album variable.

Your script now knows where to store returned values, so you can set up a loop to run while
results still exist (as returned by the fetch() method). Inside the loop, you output each album name.

Finally, you destroy your resultset and close the connection by calling the close() method on
both your MySQLi_STMT and MySQLi objects; this frees the memory used by the query.

If you load your script by navigating to http://localhost/simple_blog/test.php and select Bon
Iver from the list, you see the following output:

Album: For Emma, Forever Ago
Album: Blood Bank – EP

PHP Data Objects (PDO)
PHP Data Objects, or PDO, is similar to MySQLi in that it is an object-oriented approach to handling
queries that supports prepared statements.

The main difference between MySQLi and PDO is that PDO is a database-access abstraction
layer. This means that PDO supports multiple database languages and provides a uniform set of
methods for handling most database interactions.

This is a great advantage for applications that need to support multiple database types, such as
PostgreSQL, Firebird, or Oracle. Changing from one database type to another generally requires that you
rewrite only a small amount of code, which enables developers to change your existing drivers for PDO
and continue with business as usual.

The downside to PDO is that some of the advanced features of MySQL are unavailable, such as
support for multiple statements. Another potential issue when using PDO is that it relies on the OOP
features of PHP5, which means that servers running PHP4 won’t be able to run scripts using PDO. This is
becoming less of an issue over time because few servers lack access to PHP5; however, it’s still
something you need to take into consideration when choosing your database access method.

Rewriting Your Example in PDO
You can use PDO to rewrite your prepared statement. In test.php, modify the code as follows:

<?php
 if($_SERVER['REQUEST_METHOD']=='POST')
 {
 // Open a MySQL connection
 $dbinfo = 'mysql:host=localhost;dbname=test';

CHAPTER 4 � WORKING WITH DATABASES

116

 $user = 'root';
 $pass = '';
 $link = new PDO($dbinfo, $user, $pass);

 // Create and execute a MySQL query
 $sql = "SELECT album_name
 FROM albums
 WHERE artist_id=?";
 $stmt = $link->prepare($sql);
 if($stmt->execute(array($_POST['artist'])))
 {
 while($row = $stmt->fetch()) {
 printf("Album: %s
", $row['album_name']);
 }
 $stmt->closeCursor();
 }
 }
 else {
?>

<form method="post">
 <label for="artist">Select an Artist:</label>
 <select name="artist">
 <option value="1">Bon Iver</option>
 <option value="2">Feist</option>
 </select>
 <input type="submit" />
</form>

<?php } // End else ?>

The first step, opening the database connection, is a little different from the other two methods

you’ve learned about so far. This difference stems from the fact that PDO can support multiple database
types, which means you need to specify a driver to create the right type of connection.

First, you create a variable called $dbinfo that tells PDO to initiate itself using the MySQL driver
for the host localhost host and the test database. Next, you create two more variables, $user and $pass,
to contain your database username and password.

After you pen your connection, you form your query with a placeholder, pass it to the prepare()
method, and then pass the query to be prepared. This returns a PDOStatement object that you save in the
$stmt variable.

Next, you call the execute() method with an array containing the user-supplied artist ID,
$_POST['artist']. This is equivalent to calling both bind_param() and execute() with the MySQLi
extension.

After the statement has executed, you set up a loop to run while results still exist. Each result is
sent to the browser, and you free the memory using the closeCursor() method.

CHAPTER 4 � WORKING WITH DATABASES

117

Running this script by loading http://localhost/simple_blog/test.php produces the following:

Album: For Emma, Forever Ago
Album: Blood Bank – EP

�Note PDO is highly versatile, so I rely on it for most of this book’s examples. Feel free to substitute another
method, but be advised that code that interacts with the database will look differently if you do.

Table Structure and a Crash Course in Planning
As your PHP applications become more complicated, your app’s performance will start to play a key role
in development. MySQL is a potential performance killer in applications, creating bottlenecks that
prevent scripts from executing as quickly as you want them to.

Part of your role as a developer is to know the risks involved with MySQL queries and eliminate
as many performance issues as possible. The most common risks I’ll show you how to address in this
chapter include:

• Poor planning of database tables

• Requests for unnecessary data (using the shortcut selector [*])

�Note Database architecture and optimization is a huge task; it’s actually a career in and of itself. This book
covers only the basics of this subject; however, knowing about the potential performance problems associated
with your databases is important because you might not always have a database architect available to you.

Planning Database Tables
Database tables are fairly simple, but interconnected tables can be a hindrance to your scripts’
performance if you don’t plan them properly. For example, a list of blog entries (entries) and a list of a
web site’s pages (pages) might look something like this (see Tables 4-3 and 4-4).

Table 4-3. The entries Table

t i t le textSample

Entry This is some text.

Entry Title This is more text.

Example Title A third entry.

CHAPTER 4 � WORKING WITH DATABASES

118

Table 4-4. The pages Table

page_name type

Blog Multi

About Static

Contact Form

You might use another table (entry_pages) to link the entries to the page you want to display
them on (see Table 4-5).

Table 4-5. The entry_pages Table

page entry

Blog Sample Entry

Blog Entry Title

About Example Title

Unfortunately, you’re storing redundant data in this case, which is both unnecessary and
potentially harmful to your application’s performance. If you know you’re on the blog page, you can use
two queries to retrieve the entry data:

<?php
 // Initiate the PDO object
 $dbinfo = 'mysql:dbname=test;host=localhost';
 $user = 'root';
 $pass = '';
 try {
 $db = new PDO($dbinfo, $user, $pass);
 } catch(PDOException $e) {
 echo 'Connection failed: ', $e->getMessage();
 }

 // Creates the first query
 $sql = "SELECT entry
 FROM entry_pages
 WHERE page='Blog'";

CHAPTER 4 � WORKING WITH DATABASES

119

 // Initialize the $entries variable in case there's no saved data
 $entries = NULL;

 // Retrieves the entries from the table
 foreach($db->query($sql) as $row) {
 $sql2 = "SELECT text
 FROM entries
 WHERE title='$row[entry]'";
 foreach($db->query($sql) as $row2) {
 $entries[] = array($row['title'], $row2['entry']);
 }
 }

 // Display the output
 print_r($entries);
?>

This code returns the following:

Array
(
 [0] => Array
 (
 [0] => Sample Entry
 [1] => This is some text.
)

 [1] => Array
 (
 [0] => Entry Title
 [1] => This is more text.
)
)

�Note For the preceding code to work, you need to create the entry_pages table and populate it with the data
described in Table 4-5.

However, this approach is extremely inefficient because you’re retrieving redundant data from
the entry_pages and entries tables.

One way to avoid this problem is to add an additional column to tables containing an ID for
each row that will automatically increment as rows are added. This allows for less redundancy in data
storage. For example, assume you want to revisit your pages and entries by adding an ID column (see
Tables 4-6 and 4-7).

CHAPTER 4 � WORKING WITH DATABASES

120

Table 4-6. The Revised pages Table

id page_name type

1 Blog Multi

2 About Static

3 Contact Form

Table 4-7. The Revised entries Table

id page_id t i t le text

1 1 Sample Entry This is some text.

2 1 Entry Title This is more text.

3 2 Example Entry This is a third entry.

Adding an ID column enables you to eliminate entry_pages altogether, which leaves you with
an easy way to cross-reference your tables. This means you can rewrite your script to retrieve entries for
a particular page far more efficiently:

<?php
 $dbinfo = 'mysql:dbname=test;host=localhost';
 $user = 'root';
 $pass = '';

 try {
 $db = new PDO($dbinfo, $user, $pass);
 } catch(PDOException $e) {
 echo 'Connection failed: ', $e->getMessage();
 }

 $sql = "SELECT title, text
 FROM entries
 WHERE page_id=1";
 foreach($db->query($sql) as $row) {
 $entries[] = array($row['title'], $row['text']);
 }

 print_r($entries);
?>

CHAPTER 4 � WORKING WITH DATABASES

121

This code returns an identical result to your previous example, but takes only half as long to
execute because it executes only one query instead of the original two.

�Note Database design is a highly specialized area of programming. You can learn more this subject by picking
up a copy of Beginning Database Design: From Novice to Professional by Clare Churcher (Apress, 2007).

The Shortcut Selector (*)
MySQL provides a shortcut selector (SELECT *) that enables developers to select all data contained
within a table. At first glance, this seems like a convenient way to retrieve data from our tables easily.
However, the shortcut selector poses a threat to the performance of your scripts by requesting data that
isn’t needed, which consumes memory unnecessarily.

To avoid wasting resources, it’s considered best practice to request all information required by
your scripts explicitly. For example, you shouldn’t use this approach if you can help it:

SELECT * FROM entries

Instead, you should write code that goes something like this:

SELECT title, text, author FROM entries

This ensures that information you won’t need for a particular script isn’t loaded and thus saves

memory. This approach has the added benefit of simplifying your code maintenance because you won’t
have to remember which columns are returned from table if the code needs to be updated in the
future—that information is readily available.

Summary
In this chapter, you’ve learned the basics of MySQL statements, as well as how to interact with the
database from your PHP scripts.

In the next chapter, you’ll learn how to begin building your blog by creating a basic entry
manager that will allows you to create, modify, and delete entries, as well as display them on a public
page.

Recommended Reading
You might find the following links useful for drilling down in more detail on several of the topics covered
in this chapter.

• The MySQL Extension: http://us2.php.net/manual/en/book.mysql.php

• The MySQLi Extension: http://us3.php.net/mysqli

• PHP Data Objects (PDO): http://us.php.net/manual/en/book.pdo.php

