
C H A P T E R 1

� � �

3

Sett ing Up the PHP
Development Envi ronment

Getting a working development environment put together can be intimidating, especially for the
absolute beginner.

To follow along with the project in this book, you’ll need to have access to a working installation
of Apache, PHP, and MySQL, preferably on your local machine. It’s always desirable to test locally, both
for speed and security. Doing this both shelters your work-in-progress from the open Internet and
decreases the amount of time spent uploading files to an FTP server and waiting for pages to reload.

Why You Need Apache, MySQL, and PHP
PHP is a powerful scripting language that can be run by itself in the command line of any computer with
PHP installed. However, PHP alone isn't enough in order to build dynamic web sites.

To use PHP on a web site, you need a server that can process PHP scripts. Apache is a free web
server that, once installed on a computer, allows developers to test PHP scripts locally; this makes it an
invaluable piece of your local development environment.

Additionally, dynamic websites are dependent on stored information that can be modified
quickly and easily; this is the main difference between a dynamic site and a static HTML site. However,
PHP doesn’t provide a simple, efficient way to store data. This is where a relational database
management system like MySQL comes into play. This book’s examples rely on MySQL; I chose this
database because PHP provides native support for it and the database is free, open-source project.

�Note An open-source project is available for free to end users and ships with the code required to create that
software. Users are free to inspect, modify, and improve the code, albeit with certain conditions attached. The
Open Source Initiative lists 10 key provisions that define open-source software; you can view this list at
www.opensource.org/docs/osd.

Drilling Down on PHP
PHP is a general-purpose scripting language that was originally conceived by Rasmus Lerdorf in 1995.
Lerdorf created it to satisfy the need for an easy way to process data when creating pages for the World
Wide Web.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

4

�Note PHP was born out of Rasmus Lerdorf’s desire to create a script that would keep track of how many visits
his online resume received. Due to the wild popularity of the script he created, Lerdorf continued developing the
language. Over time other developers joined him in creating the software; today, PHP is one of the most popular
scripting languages in use on the Internet.

PHP originally stood for “Personal Home Page” and was released as a free, open source project.
Over time, the language was reworked to meet the needs of its users. In 1997, PHP was renamed to the
current “PHP: Hypertext Preprocessor.”

At the time I write this, PHP 5.2.9 is the latest stable release available, but versions 5.3 and 6 are
both scheduled for release in the near future. PHP 4 is still in use on a number of servers, but support has
been discontinued. Many hosting companies let developer use either PHP 4 or PHP 5 on their sites.

Stable/Production vs. Development Releases
Many software products will have a development release available, alongside the current, stable release.
This is a way for the development community to test an upcoming version of a product; this helps the
product’s creators work bugs out of the system.

After a proposed release has been tested to a satisfactory level, its creators mark it as the current
production release. Users reasonably expect the production software they use to be free of major defects
or bugs; calling a version a stable/production release is a way for the product’s creators to let potential
users know that, in the opinion of the product’s creators, all major issues have been worked out, and that
it is safe to use this software for mission-critical applications.

How PHP Works
PHP is generally used as a server-side scripting language; it is especially well-suited for creating dynamic
web pages. The scripting language features integrated support for interfacing with databases such as
MySQL, which makes it a prime candidate for building all manner of web applications, from simple
personal web sites to complex enterprise-level applications.

Unlike HTML, which is parsed by a browser when a page loads, PHP is preprocessed by the
machine that serves the document (this machine is referred to as a server). All PHP code contained with
the document is processed by the server before the document is sent to the visitor’s browser.

PHP is a scripted language, which is another great advantage for PHP programmers. Many
programming languages require that you compile files into machine code before they can be run, which
is a time-consuming process. Bypassing the need to compile means you’re able to edit and test code
much more quickly.

Because PHP is a server-side language, running PHP scripts on your local machine requires
installing a server on your local machine, as well. The examples in this book rely on the Apache web
server to deliver your web pages.

Server-Side vs. Client-Side Scripting
The Internet features two main kinds of scripting: server-side and client-side. Client-side scripting is
comprised mainly of JavaScript, which is responsible for many of the web features that you can actually
see happening, such as pop-up windows, some animations, and other site features like drop-down
menus. The reason this is called “client-side” scripting because the code is executed on the user’s
machine, after the page has been loaded.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

5

Using client-side scripts enables you to make changes to a page without requiring a page
refresh; it also facilitates initial form validation and simplifies making improvements to the user
interface.

However, using client-side scripts requires that the users have JavaScript turned on or that their
browsers support the script you have written. This means you should not use client-side scripts for user
authentication or the handling of anything sensitive, due to the user’s ability to modify and/or disable
your client-side scripts.

Server-side scripting is performed on the site’s hosting server before the page is delivered to the
user. This means that any changes that must be made by the script require a page refresh.

Using server-side scripting is great for user authentication, saving changes to database
information, retrieving entries for display, and many other tasks.

The downside of server-side scripts lies mainly in the required page refresh. Because the script
is processed before it is delivered to the browser, the user doesn’t have access to the inner workings of
the code. This makes server-side scripts the best choice for handling any sensitive information.

�Caution Server-side scripting is better suited to handling sensitive information than client-side scripts, but you
still must take care to protect sensitive data. We’ll spend more time on basic security later in the book.

Serving web pages with Apache HTTP Server is the most popular web server on the web; it hosts
nearly half of all web sites that exist today. Apache is an open-source project that runs on virtually all
available operating systems.1 Apache server is a community-driven project, with many developers
contributing to its progress. Apache’s open-source roots also means that the software is available free of
charge, which probably contributes heavily to Apache’s overwhelming popularity relative to its
competitors, including Microsoft’s IIS and Google’s GWS, among others.

On the Apache web site (www.apache.org), Apache HTTP Server is described as “an effort to
develop and maintain an open-source HTTP server for modern operating systems including UNIX and
Windows NT. The goal of this project is to provide a secure, efficient, and extensible server that provides
HTTP services in sync with the current HTTP standards.”

What Apache Does
Like all web servers, Apache accepts an HTTP request and serves an HTTP response. The World Wide
Web is founded on web servers, and every website you visit demonstrates the functionality of web
servers.

I’ve already mentioned that, while HTML can be processed by a web browser, programming
languages such as PHP need to be handled by a web server. Due to its overwhelming popularity, Apache
is used for testing purposes throughout this book.

Store Info with MySQL
MySQL is a relational database management system (DBMS). Essentially, this means that MySQL allows
users to store information in a table-based structure, using rows and columns to organize different
pieces of data. This structure is similar to that of Microsoft’s Access database.

The examples in this book rely on MySQL to store the information you’ll use in your PHP scripts,
from blog entries to administrator information; it is that approach that allows your site to be dynamic.

1 Wikipedia, “Apache HTTP Server,” http://en.wikipedia.org/wiki/Apache_(HTTP_server)

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

6

�Note Blog is short for weblog, which is an online journal for an individual or business.

Installing PHP, Apache, and MySQL (the Hard Way)
One of the biggest hurdles for new programmers is starting. Before you can write your first line of PHP, you
must first download Apache and PHP, and usually MySQL, and then fight through installation instructions
that are full of technical jargon you might not understand yet. This experience can leave many developers
feeling unsure of themselves, doubting whether they’ve installed the required software correctly.

In my own case, this hurdle kept me from learning programming for months, even though I
desperately wanted to move beyond plain ol’ HTML. I unsuccessfully attempted to install PHP on my
local machine not once, but three different times before I was able to run my first PHP command
successfully.

Installation Made Easy
Fortunately, the development community has responded to the frustration of beginning developers with
several options that take all the pain out of setting up your development environment, whether you
create applications for Windows, Mac, or Linux machines. These options include all-in-one solutions for
setting up Apache, MySQL, and PHP installations.

The most common all-in-one solution is a program called “XAMPP” (www.apachefriends.org/
en/xampp.html), which rolls Apache, MySQL, PHP, and a few other useful tools together into one easy
installer.

XAMPP is free and available for Windows, Mac, and Linux, so this book assumes you will use it
as your development environment.

�Note Most Linux distributions ship with one flavor or another of the LAMP stack (Linux-specific software that
functions similarly to XAMPP) bundled in by default. Certain versions of Mac OS X also have PHP and Apache
installed by default.

Installing XAMPP
Enough background: You’re now ready to install XAMPP on your development machine. This process
should take about five minutes and is completely painless.

�Note A good habit to get into is to create separate development and production environments. A development
environment is for testing projects for bugs and is generally sheltered from the world at large. A production
environment is reserved for fully functional, publicly available projects.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

7

Step 1: Download XAMPP
Your first task is to obtain a copy of the XAMPP software. Head over to the XAMPP site
(www.apachefriends.org/en/xampp.html) and download the latest version (0.7.4 for Mac, 1.7.1 for
Windows, and 1.7 for Linux at the time I write this).

Step 2: Open the Installer and Follow the Instructions
After downloading XAMPP, find the newly downloaded installer and run it. You should be greeted with a
screen similar to the one shown in Figure 1-1.

�Note All screenshots used in this book were taken on a computer running Mac OS X 10.4.11. Your installation
might differ slightly if you use a different operating system. XAMPP for Windows offers additional options, such as the
ability to install Apache, MySQL, and Filezilla (an FTP server) as services. This is unnecessary and will consume
computer resources even when they are not being used, so it's probably best to leave these services off. Additionally,
Windows users should keep the c:\xampp install directory for the sake of following this book’s examples more easily.

Figure 1-1. The introductory screen for the XAMPP installer on Mac OS X

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

8

Click the Continue button to move to the next screen (see Figure 1-2), where you can choose
the destination drive you want to install XAMPP on.

Figure 1-2. Select a destination drive on which to install XAMPP

The installation wizard’s next screen (see Figure 1-3) asks what type of installation you prefer.
This is your first time installing XAMPP, so the only available option is a basic installation of XAMPP.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

9

Figure 1-3. XAMPP gives you only one option the first time you install it

Clicking “Upgrade” brings up a screen that shows the progress of XAMPP as it installs on the
selected drive (see Figure 1-4).

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

10

Figure 1-4. Watch the installer’s progress for XAMPP for Mac OS X

Installation requires a minute or two to complete, whereupon the installer displays the final
screen (see Figure 1-5), which confirms that the installation was successful.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

11

Figure 1-5. Successful installation of XAMPP brings up this screen

Step 3: Test XAMPP to Ensure Proper Installation
So far you’ve used the XAMPP wizard to install Apache, PHP, and MySQL. The next step is to activate the
trio of applications.

Open the XAMPP Control Panel
You can activate the just-installed applications by navigating to the newly installed xampp folder and
opening the XAMPP Control Panel (see Figure 1-6).

�Note When opening the XAMPP Control Panel you may be prompted for your password. This has no effect on
the services themselves and should not affect the projects covered in this book.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

12

Figure 1-6. Inside the XAMPP control panel

Activating Apache, PHP, and MySQL on your development machine is as simple as clicking the
“Start” button next to both Apache and MySQL on the XAMPP Control Panel. You might be prompted to
confirm that the server is allowed to run on your computer, and you might be required to enter your
system password. After you do this, the “Output” panel should start displaying a series of messages (see
Figure 1-7); the final message displayed should say, “XAMPP for (operating system here) started.”

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

13

Figure 1-7. Starting XAMPP services

�Note There is also an FTP (file transfer protocol) option available in XAMPP. FTP provides a method for moving
files between networks. The examples in this book don’t require this option, so there is no need to activate it in the
XAMPP control panel.

Verify That Apache and PHP Are Running
It’s a simple matter to check whether all the services are running properly on your development
machine. Simply open a browser and go to this address: http://localhost. If everything has gone
correctly, you’ll be redirected to http://localhost/xampp/index.php (see Figure 1-8).

If this screen loads, you’ve installed Apache and PHP on your development machine
successfully!

If you do not see this screen, the XAMPP online community is extremely helpful and most
installation issues have been addressed in the Apache Friends forum at http://www.apachefriends.org/
f/viewforum.php?f=34.

The address, http://localhost, is an alias for the current computer you’re working on. When
using XAMPP, navigating to http://localhost in a browser tells the server to open the root web
directory; this is the htdocs folder contained in the XAMPP install directory.

Another way to use your server to access the root web directory on your local machine is to
navigate to the IP address—a numerical identifier assigned to any device connected to a computer
network—that serves as the “home” address for all HTTP servers: http://127.0.0.1.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

14

Figure 1-8. Visit the XAMPP homepage at http://localhost

Verify That MySQL Is Running
You can verify that MySQL is also running by going to the Tools menu and choosing “phpMyAdmin.”
This should bring up the screen shown in Figure 1-9.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

15

Figure 1-9. MySQL is running if phpMyAdmin loads without error

Now that have MySQL running on your development machine, you’re ready to start running
PHP scripts. Note that if you’re a Windows user, you might need to navigate to C:\xampp\php\php.ini
and locate the following lines to verify that magic_quotes_gpc is set to Off:

; Magic quotes for incoming GET/POST/Cookie data

magic_quotes_gpc = Off

Choosing a Development Kit
Your development machine is now running all the necessary programs for programming with PHP. The
next step is to decide how you’re going to write your scripts. PHP scripts are text-based, so you have
myriad options, ranging from the simple Notepad.exe and text-edit programs to highly specialized
software development kits (SDKs) and integrated development environments (IDEs).

Benefiting from SDKs and IDEs
There’s nothing wrong with coding in a plain text editor, but using an SDK and/or IDE for development
can bring you many benefits, including:

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

16

• Syntax highlighting: This is the ability to recognize certain words in a programming language,
such as variables, control structures, and various other special text. This special text is
highlighted or otherwise differentiated to make scanning your code much easier. For example,
the color coding on the left makes this code less daunting to look at (see Figure 1-10).

• Built-in function references: When you enter the name of a function, this feature displays
available parameters, as well as the file that declares the function, a short description of what
the function does, and a more in-depth breakdown of parameters and return values (see Figure
1-11). This feature proves invaluable when dealing with large libraries, and it can save you trips
to the PHP manual to check the order of parameters or acceptable arguments for a function.

• Auto-complete features: Common to most SDKs and IDEs, this feature adds available variables to
a drop-down list, allowing you to select the intended variable from the list quickly and easily,
saving you the effort of typing it out every time (see Figure 1-12). When it comes to productivity,
every second counts, and this feature is a great way to contribute to saved time.

• Code Folding: This feature lets you collapse snippets of code (see the plus and minus toggles on
the left-hand side of Figure 1-13), reducing workspace clutter-free and making it easy to
navigate your code. This feature proves especially helpful for reducing the confusing clutter that
springs up as your scripts become increasingly complicated.

Figure 1-10. The left-hand side shows code with syntax highlighting; the right-hand side shows the same
code with no syntax highlighting

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

17

Figure 1-11. Viewing a function reference in the Eclipse PDT

Figure 1-12. Taking advantage of autocomplete in the Eclipse PDT

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

18

Figure 1-13. Code folding in the Eclipse PDT

Choosing the Right SDK
You have many choices when it comes to choosing development tools, and it should be noted that
there’s no wrong answer when selecting yours. If the tool feels right, and makes sense to you, that’s
really all that matters.

The Eclipse Foundation and PDT
The exercises in this book rely on the popular open source Eclipse SDK and more specifically on the
PHP-specific PDT IDE. PDT stands for PHP Development Tools, and this IDE provides a free IDE option
for beginning developers.

The team responsible for overseeing Eclipse notes, “Eclipse is an open source community,
whose projects are focused on building an open development platform comprised of extensible
frameworks, tools and runtimes for building, deploying and managing software across the lifecycle.”

Essentially, this means that Eclipse is a group of people working together to create the best
available tools for developers—at no cost to the developer.

Installing and Using the Eclipse PDT
Installing and setting up the Eclipse PDT requires six steps.

Step 1: Downloading the PDT
Get started by navigating to the PDT download page (http://www.eclipse.org/pdt/downloads/) and
scrolling down to the All-In-One downloads section. Select your operating system, then choose a mirror
for downloading (generally, the default mirror will be highlighted and will work just fine).

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

19

Step 2: Unpacking the PDT Archive
After the file finishes downloading, unzip the file. A folder called “eclipse” should appear in the same
directory as the downloaded archive.

Drag this folder into your Programs or Applications folder (or wherever you want to keep it) and
open it up. There will be a purple icon that says “Eclipse”; double-clicking the icon launches the IDE and
brings up the loading screen (see Figure 1-14).

Figure 1-14. Loading the Eclipse PDT screen

Step 3: Choosing Your Project Workspace
After a moment, a dialog box will pop up (see Figure 1-15) that asks you to select your workspace. You’ll
be working with XAMPP, so set the path to the XAMPP htdocs folder (see Figure 1-16). You can find this
in the xampp folder you installed previously.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

20

Figure 1-15. Selecting your workspace in the Eclipse PDT

Figure 1-16. Selecting the htdocs folder from the XAMPP installation

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

21

Selecting this folder and checking the “Use this as the default and do not ask me again” box
enables you to tell Eclipse to create new projects in the htdocs folder automatically, which simplifies
testing your code.

After clicking “Choose,” close the welcome screen that shows up by clicking the “X” in the tab at
the top, next to “Welcome” (see Figure 1-17), which takes you to the editor.

Figure 1-17. Clicking the “X” next to “Welcome” closes the welcome screen

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

22

Step 4: Creating Your First Project
You’re almost to the point where you can code a simple blog. The next step is to create a project. Do this
by clicking the New Project icon, which is at the top left of the Eclipse toolbar (see Figure 1-18).

Figure 1-18. Creating a new project in Eclipse

Select “New Project...” from the drop-down menu that pops up. This brings up a new dialog
(see Figure 1-19); select “PHP Project” from the list of project types and click “Next.”

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

23

Figure 1-19. Creating a PHP project

The next dialog presented asks you to name your project and provides some customization
options for the project (see Figure 1-20). Name the project “simple_blog” and leave all the settings at
their default values.

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

24

Figure 1-20. Creating the simple_blog project

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

25

Clicking “Finish” will bring you back to the editor; your newly created project will be listed in
the left-hand panel. At this point, Eclipse lets you know that this project type is associated with the PHP
perspective, and it asks whether you’d like to switch to the PHP perspective. It makes sense to do this
because you’re working with PHP, so select, "Yes."

Step 5: Creating a File
The final step is to create a file that you can start coding in. At first you’ll be doing basic exercises to get a
feel for the language, so call your first file test.php.

To create the file, right click the simple_blog project, hover over New, and then click PHP File
from the resulting drop-down menu (see Figure 1-21).

Figure 1-21. Creating a PHP file in Eclipse

This brings up a new dialog where you can name your file (see Figure 1-22).

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

26

Figure 1-22. Create test.php and click “Finish”

Clicking Finish creates your first file and means you can now start coding.

Step 6: Writing Your First Script
The final step is to make sure that everything is set up correctly and ready for you to start developing
your blog. You can do this by writing a short script to ensure that PHP is working in your test.php file.
Add this code to the test.php file and save:

<?php
 echo “Hello world!”;
?>

CHAPTER 1 � SETTING UP THE PHP DEVELOPMENT ENVIRONMENT

27

Now open any browser and navigate to http://localhost/simple_blog/test.php; what you see
should look like Figure 1-23).

Figure 1-23. test.php loaded in a browser, displaying your first script!

If the above text is visible, you have installed XAMPP and Eclipse successfully, and you’re ready
to start building your blog.

Summary
In this chapter, you learned what PHP, MySQL, and Apache are, and what role they play in the
development of dynamic web sites. You also learned a quick and easy way to install a fully functional
development environment on your local computer by installing XAMPP and Eclipse PDT.

In the next chapter, you’ll learn the basics of PHP, including variables, control structures, and
functions. Nearly everything you learn will be tested in your new development environment, so keep
test.php open and ready to edit.

