CHAPTER 1

Getting Started with JavaScript

This book is about a scripting language called JavaScript and how to use it in a practical man-
ner. After you read it, you’ll be able to

Understand JavaScript syntax and structures.

Create scripts that are easy to understand and maintain.

Write scripts that do not interfere with other JavaScripts.

Write scripts that make web sites easier to use without blocking out non-JavaScript users.

Write scripts that are independent of the browser or user agent trying to understand
them—which means that in some years they will still be usable and won’t rely on obso-
lete technology.

Enhance a web site with JavaScript and allow developers without any scripting knowl-
edge to change the look and feel.

Enhance a web document with JavaScript and allow HTML developers to use your func-
tionality by simply adding a CSS class to an element.

Use progressive enhancement to make a web document nicer only when and if the user
agent allows for it.

Use Ajax to bridge the gap between back end and client side, thus creating sites that are
easier to maintain and appear much slicker to the user.

Use JavaScript as part of a web methodology that enables you to maintain it indepen-
dently without interfering with the other development streams.

What you will not find here are

Instructions on how to create effects that look flashy but do nothing of value for the
visitor

JavaScript applications that are browser specific

JavaScripts that are only there to prove that they can be used and do not enhance the vis-
itor’s experience

JavaScripts that promote unwanted content, such as pop-up windows or other flashy
techniques like tickers or animation for animation’s sake

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

Itis my credo that JavaScript has a place in modern web development, but we cannot take it
for granted that the visitor will be able to use or even experience all the effects and functionality
we can achieve with JavaScript. JavaScript allows us to completely change the web page by add-
ing and removing or showing and hiding elements. We can offer users richer interfaces like drag-
and-drop applications or multilevel drop-down menus. However, some visitors cannot use a
drag-and-drop interface because they can only use a keyboard or rely on voice recognition to use
our sites. Other visitors might be dependent on hearing our sites rather than seeing them (via
screen readers) and will not necessarily be notified of changes achieved via JavaScript. Last but
not least, there are users who just cannot have JavaScript enabled, for example, in high-security
environments like banks. Therefore, it is necessary to back up a lot of the things we do in
JavaScript with solutions on the server side.

Sadly, JavaScript also has a history of being used as a way to force information onto the vis-
itor that was not requested (pop-up windows are a good example). This practice is frowned on
by me, as well as many professional web designers. It is my hope that you will not use the
knowledge gained from this book to such an end.

Note Web design has matured over the years—we stopped using FONT tags and deprecated visual
attributes like bgcolor and started moving all the formatting and presentational attributes to a CSS file. The
same cleaning process has to happen to JavaScript should it remain a part of web development. We sepa-
rated content, structure, and presentation, and now it is time to separate the behavior of web sites from the
other layers. Web development now is for business and for helping the user rather than for the sake of putting
something out there and hoping it works in most environments.

It is high time we see JavaScript as a part of an overall development methodology, which
means that we develop it not to interfere with other technologies like HTML or CSS, but to
interact with them or complement them. To that end, we see the emergence of a new technol-
ogy (or at least a new way of using existing technologies) called Ajax, which we will discuss in
Chapter 8.

Web development has come quite a way since the 1990s, and there is not much sense in
creating web sites that are static and fixed in their size. Any modern web design should allow
for growth as needed. It should also be accessible to everyone (which does not mean that
everybody gets the same appearance—a nice multicolumn layout, for example, might make
sense on a high-resolution monitor but is hard to use on a mobile phone or a PDA)—and ready
for internationalization. We cannot afford any longer to build something and think it’ll last for-
ever. Since the Web is about content and change, it'll become obsolete if we don’t upgrade our
web products constantly and allow other data sources to feed into it or get information from it.

Enough introductions—you got this book to learn about JavaScript, so let’s start by talking
quickly about JavaScript’s history and assets before diving right into it.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

In this chapter you'll learn
* What JavaScript is and what it can do for you

¢ The advantages and disadvantages of JavaScript

How to add JavaScript to a web document and its essential syntax
¢ Object-oriented programming (OOP) in relation to JavaScript
* How to write and run a simple JavaScript program

Chances are that you have already come across JavaScript, and already have an idea of
what it is and what it can do, so we’ll move quite swiftly through some basics of the language
and its capabilities first. If you know JavaScript well already, and you simply want to know
more about the newer and more accessible features and concepts, you might skip to Chapter 3.
I won’t hold it against you—however, there might be some information you've forgotten, and
a bit of a review doesn’t hurt, either.

The Why of JavaScript

In the beginning of the Web, there was HTML and the Common Gateway Interface (CGI).
HTML defines the parts of a text document and instructs the user agent (usually the web
browser) how to show it—for example, text surrounded by the tags <p></p> becomes a para-
graph. Within that paragraph you may have <h1></h1> tags that define the main page heading.
Notice that for most opening tags, there is a corresponding closing tag that begins with </.

HTML has one disadvantage—it has a fixed state. If you want to change something, or
use data the visitor entered, you need to make a round-trip to a server. Using a dynamic tech-
nology (such as ColdFusion, ASP, ASP.NET, PHP, or JSP) you send the information from forms,
or from parameters, to a server, which then performs calculating/testing/database lookups,
etc. The application server associated with these technologies then writes an HTML document
to show the results, and the resulting HTML document is returned to the browser for viewing.

The problem with that is it means every time there is a change, the entire process must be
repeated (and the page reloaded). This is cumbersome, slow, and not as impressive as the new
media “Internet” promised us to be. It is true that at least the Western world has the benefit of
fast Internet connections these days, but displaying a page still means a reload, which could be
a slow process that frequently fails (ever get an Error 404?).

We need something slicker—something that allows web developers to give immediate
feedback to the user and change HTML without reloading the page from the server. Just imag-
ine a form that needs to be reloaded every time there’s an error in one of its fields—isn’t it
handier when something flags the errors immediately, without needing to reload the page
from the web server? This is one example of what JavaScript can do for you.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

Some information, such as calculations and verifying the information on a form, may not
need to come from the server. JavaScript is executed by the user agent (normally a browser) on
the visitor’s computer. We call this client-side code. This could result in fewer trips to the
server and faster-running web sites.

What Is JavaScript?

JavaScript started life as LiveScript, but Netscape changed the name—possibly because of the
excitement being generated by Java—to JavaScript. The name is confusing though, as there is
no real connection between Java and JavaScript—although some of the syntax looks similar.

Java is to JavaScript what Car is to Carpet

——From a JavaScript discussion group on Usenet

Netscape created the JavaScript language in 1996 and included it in their Netscape Navi-
gator (NN) 2.0 browser via an interpreter that read and executed the JavaScript added to .html
pages. The language has steadily grown in popularity since then, and is now supported by the
most popular browsers.

The good news is that this means JavaScript can be used in web pages for all major
modern browsers. The not-quite-so-good news is that there are differences in the way the
different browsers implement JavaScript, although the core JavaScript language is much the
same. However, JavaScript can be turned off by the user—and many companies and other
institutions require their users to do so for security reasons. We will discuss this further
shortly, as well as throughout this book.

The great thing about JavaScript is that once you’ve learned how to use it for browser pro-
gramming, you can move on to use it in other areas. Microsoft’s server—IIS—uses JavaScript
to program server-side web pages (ASP), PDF files now use JavaScript, and even Windows
administration tasks can be automated with JavaScript code. A lot of applications such as
Dreamweaver and Photoshop are scriptable with JavaScript. Operating system add-ons like
the Apple Dashboard or Konfabulator on Linux and Windows even allow you to write small
helper applications in JavaScript.

Lately a lot of large companies also offer application programming interfaces (APIs) that
feature JavaScript objects and methods you can use in your own pages—Google Maps being
one of them. You can offer a zoomable and scrollable map in your web site with just a few lines
of code.

Even better is the fact that JavaScript is a lot easier to develop than higher programming
languages or server-side scripting languages. It does not need any compilation like Java or C++,
or to be run on a server or command line like Perl, PHP, or Ruby: all you need to write, execute,
debug, and applyJavaScript is a text editor and a browser—both of which are supplied with any
operating system. There are, of course, tools that make it a lot easier for you, examples being
JavaScript debuggers like Mozilla Venkman, Microsoft Script Debugger, or kjscmd.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

Problems and Merits of JavaScript

AsImentioned at the outset of this chapter, JavaScript has been an integral part of web devel-
opment over the last few years, but it has also been used wrongly. As aresult, it has gotten a bad
reputation. The reason for this is gratuitous JavaScript effects, like moving page elements and
pop-up windows, which might have been impressive the first time you saw them but soon
turned out to be just a “nice to have” and in some cases even a “nice to not have any longer.”
Alot of this comes from the days of DHTML (more on this in Chapter 3).

The term user agent and the lack of understanding what a user agent is can also be a prob-
lem. Normally, the user agent is a browser like Microsoft Internet Explorer (MSIE), Netscape,
Mozilla (Moz), Firefox (Fx), Opera, or Safari. However, browsers are not the only user agents on
the Web. Others include

* Assistive technology that helps users to overcome the limitations of a disability—like
text-to-speech software or Braille displays

* Text-only agents like Lynx

¢ Web-enabled applications

* Game consoles

¢ Mobile/cell phones

¢ PDAs

¢ Interactive TV set-top boxes

* Search engines and other indexing programs
* And many more

This large variety of user agents, of different technical finesse (and old user agents that
don’t get updated), is also a great danger for JavaScript.

Not all visitors to your web site will experience the JavaScript enhancements you applied
to it. A lot of them will also have JavaScript turned off—for security reasons. JavaScript can be
used for good and for evil. If the operating system—Ilike unpatched Windows—allows you to,
you can install viruses or Trojan Horses on a computer via JavaScript or read out user informa-
tion and send it to another server.

Note There is no way of knowing what the visitor uses or what his computer is capable of. Furthermore,
you never know what the visitor’s experience and ability is like. This is one of the beautiful aspects of the
Web—everyone can participate. However, this can introduce a lot of unexpected consequences for the
JavaScript programmer.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

In many cases, you might want to have a server-side backup plan. It would test to see
whether the user agent supports the functionality desired and, if it doesn’t, the server takes over.

Independence of scripting languages is a legal requirement for web sites, defined in the
Digital Discrimination Act for the UK, section 508 in the US law, and many more localized legal
requirements throughout the world. This means that if the site you developed cannot be used
withoutJavaScript, or your JavaScript enhancements are expecting a certain ability of the users
or their user agent without a fallback, your client could be sued for discrimination.

However, JavaScript is not evil or useless, and it is a great tool to help your visitor to surf
web sites that are a lot slicker and less time-consuming.

Why Use JavaScript If It Cannot Be Relied On?

As I just mentioned, just because it may not always be available doesn’t mean that JavaScript
shouldn’t be used at all. It should simply not be the only means of user interaction.
The merits of using JavaScript are

Less server interaction: You can validate user input before sending the page off to the
server. This saves server traffic, which means saving money.

Immediate feedback to the visitors: They don’t have to wait for a page reload to see if
they have forgotten to enter something

Automated fixing of minor errors: For example, if you have a database system that
expects a date in the format dd-mm-yyyy and the visitor enters it in the form dd/mm/yyyy,
a clever JavaScript script could change this minor mistake prior to sending the form to the
server. If that was the only mistake the visitor made, you can save her an error message—
thus making it less frustrating to use the site.

Increased usability by allowing visitors to change and interact with the user interface
without reloading the page: For example, by collapsing and expanding sections of the

page or offering extra options for visitors with JavaScript. A classic example of this would
be select boxes that allow immediate filtering, such as only showing the available desti-
nations for a certain airport, without making you reload the page and wait for the result.

Increased interactivity: You can create interfaces that react when the user hovers over
them with a mouse or activates them via the keyboard. This is partly possible with CSS

and HTML as well, but JavaScript offers you a lot wider—and more widely supported—
range of options.

Richer interfaces: If your users allow for it, you can use JavaScript to include such items
as drag-and-drop components and sliders—something that originally was only possible
in thick client applications your users had to install, such as Java applets or browser
plug-ins like Flash.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

¢ Lightweight environment: Instead of downloading a large file like a Java applet or a
Flash movie, scripts are small in file size and get cached (held in memory) once they
have been loaded. JavaScript also uses the browser controls for functionality rather than
its own user interfaces like Flash or Java applets do. This makes it easier for users, as they
already know these controls and how to use them. Modern Flash and Macromedia Flex
applications do have the option to stream media and—being vector based—are visually
scalable, something JavaScript and HTML controls aren’t. On the other hand, they
require the plug-in to be installed.

JavaScript in a Web Page and Essential Syntax

Applying JavaScript to a web document is very easy; all you need to do is to use the script tag:

<script type="text/javascript">
// Your code here
</script>

For older browsers, or if you want to use strict XHTML (the newest version of HTML)
instead of transitional, you’ll need to comment out the code to make sure the user agent does
not display it inside the page or tries to render it as HTML markup. There are two different syn-
taxes for commenting out code. For HTML documents and transitional XHTML, you use the
normal HTML comments:

<script type="text/javascript">
<l--
// Your code here
-->
</script>

In strict XHTML, you will need to use the CDATA commenting syntax to comment out
your code—however, it is best not to add any JavaScript inside strict XHTML documents, but
keep it in its own document. More on this in Chapter 3.

<script type="text/javascript"><!--//--><![CDATA[//><!-
// Your code here
//1--><1]]></script>

Technically it is possible to include JavaScript anywhere in the HTML document, and
browsers will interpret it. However, there are reasons in modern scripting why this is a bad
idea. For now though, we will add JavaScript examples to the body of the document to allow
you to see immediately what your first scripts are doing. This will help you get familiar with
JavaScript a lot easier than the more modern and advanced techniques awaiting you in
Chapter 3.

Note There is also an “opposite” to the script tag—noscript—which allows you to add content that
will only be displayed when JavaScript is not available. However, noscript is deprecated in XHTML and strict
HTML, and there is no need for it—if you create JavaScript that is unobtrusive.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

JavaScript Syntax

Before we go any further, we should discuss some JavaScript syntax essentials:

// indicates that the rest of the current line is a comment and not code to be executed,
so the interpreter doesn’t try to run it. Comments are a handy way of putting notes in
the code to remind us what the code is intended to do, or to help anyone else reading the
code see what’s going on.

/* indicates the beginning of a comment that covers more than one line.

*/ indicates the end of a comment that covers more than one line. Multiline comments
are also useful if you want to stop a certain section of code from being executed but don’t
want to delete it permanently. If you were having problems with a block of code, for
example, and you weren’t sure which lines were causing the problem, you could com-
ment one portion of it at a time in order to isolate the problem.

Curly braces ({ and }) are used to indicate a block of code. They ensure that all the lines
inside the braces are treated as one block. You will see more of these when we discuss
structures such as if or for, as well as functions.

A semicolon or a newline defines the end of a statement, and a statement is a single com-
mand. Semicolons are in fact optional, but it’s still a good idea to use them to make clear
where statements end, because doing so makes your code easier to read and debug.
(Although you can put many statements on one line, it’s best to put them on separate
lines in order to make the code easier to read.) You don’t need to use semicolons after
curly braces.

Let’s put this syntax into a working block of code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">

<html dir="1tr" lang="en">

<head>

<body>

<script type="text/JavaScript">

//

/*

*/

/*

One-line comments are useful for reminding us what the code is doing

This is a multiline comment. It's useful for longer comments and
also to block out segments of code when you're testing

Script starts here. We're declaring a variable myName, and assigning to it the
value of whatever the user puts in the prompt box (more on that in Chapter
2), finishing the instruction with a semicolon because it is a statement

*/

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

nonn

var myName = prompt ("Enter your name","");

// If the name the user enters is Chris Heilmann
if (myName == "Chris Heilmann")
{
// then a new window pops up saying hello
alert("Hello Me");

// If the name entered isn't Chris Heilmann
else
{
// say hello to someone else
alert("hello someone else");
}
</script>
</body>
</html>

Some of the code may not make sense yet, depending on your previous JavaScript experi-
ence. All that matters for now is that it’s clear how comments are used, what a code block is,
and why there are semicolons at the end of some of the statements. You can run this script if
you like—just copy it into an HTML page, save the document with the file extension .html, and
open it in your browser.

Although statements like if and else span more than one line and contain other state-
ments, they are considered single statements and don’t need a semicolon after them. The
JavaScript interpreter knows that the lines linked with an if statement should be treated as one
block because of the curly braces, {}. While not mandatory, it is a good idea to indent the code
within the curly braces. This makes reading and debugging much easier. We’ll be looking at
variables and conditional statements (if and else) in the next chapter.

Code Execution

The browser reads the page from top to bottom, so the order in which code executes depends
on the order of the script blocks. A script block is the code between the <script> and
</script> tags. (Also note that it’s not just the browser that can read our code; the user of a
web site can view your code, too, so it’s not a good idea to put anything secret or sensitive in
there.) There are three script blocks in this next example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">

<html dir="1tr" lang="en">

<head>

<script type="text/javascript">

alert('First script Block ');

alert('First script Block - Second Line ');
</script>

10

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

</head>

<body>

<h1>Test Page</h1>

<script type="text/JavaScript">
alert('Second script Block');

</script>

<p>Some more HTML</p>

<script type="text/JavaScript">
alert('Third script Block');
function doSomething() {

alert('Function in Third script Block');

}

</script>

</body>

</html>

If you try it out, you'll see that the alert() dialog in the first script block appears first dis-
playing the message

First script Block

followed by the next alert() dialog in the second line displaying the message

First script Block - Second Line.

The interpreter continues down the page and comes to the second script block, where the
alert() function displays this dialog:

Second script Block

and the third script block following it with an alert() statement that displays

Third script Block

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

Although there’s another alert statement inside the function a few lines down, it doesn’t
execute and display the message. This is because it’s inside a function definition (function
doSomething()) and code inside a function executes only when the function is called.

An Aside About Functions

We'll be talking about functions in much more depth in Chapter 3, but I introduce them here
because you can’t get very far in JavaScript without an understanding of functions. A function
is a named, reusable block of code, surrounded by curly braces, that you create to perform a
task. JavaScript contains functions that are available for us to use and perform tasks like dis-
playing a message to the user. Proper use of functions can save a programmer a lot of writing
of repetitive code.

We can also create our own functions, which is what we did in the previous code block.
Let’s say we create some code that writes out a message to a page in a certain element. We’d
probably want to use it again and again in different situations. While we could cut and paste
code blocks wherever we wanted to use them, this approach can make the code excessively
long; if you want the same piece of code three or four times within one page, it’ll also get pretty
hard to decipher and debug. Instead we can wrap the messaging code into a function and then
pass in any information that the function needs in order to work using parameters. A function
can also return a value to the code that called the function into action originally.

To call the function, you simply write its name followed by parentheses, (). (Note—you
use the parentheses to pass the parameters. However, even when there are no parameters, you
must still use the parentheses.) But you can’t call the function, as you might expect, until the
script has created it. We can call it in this script by adding it to the third script block like this:

<script type="text/JavaScript">
alert('Third script Block ');
function doSomething(){
alert('Function in Third script Block ');
}
// Call the function doSomething
doSomething();
</script>
</body>
</html>

So far in this chapter you've looked at the pros and cons of the JavaScript language, seen
some of the syntax rules, learned about some of the main components of the language (albeit
briefly), and run a few JavaScript scripts. You've covered quite a lot of distance. Before we move
on to a more detailed examination of the JavaScript language in the next chapter, let’s talk
about something key to successful JavaScript development: objects.

11

12

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

Objects

Objects are central to the way we use JavaScript. Objects in JavaScript are in many ways like
objects in the world outside programming (it does exist, I just had a look). In the real world,
an object is just a “thing” (many books about object-oriented programming compare objects
to nouns): a car, a table, a chair, and the keyboard I'm typing on. Objects have

Properties (analogous to adjectives): The car is red.

Methods (like verbs in a sentence): The method for starting the car might be furn
ignition key.

Events: Turning the ignition key results in the car starting event.

Object Oriented Programming (OOP) tries to make programming easier by modeling real-
world objects. Let’s say we were creating a car simulator. First, we would create a car object,
giving it properties like color and current speed. Then we’d need to create methods: perhaps a
start method to start the car, and a break method to slow the car, into which we’d need to pass
information about how hard the brakes should be pressed so that we can determine the slow-
ing effect. Finally, we would want some events, for example, a gasoline low event to remind us
to fill up the car.

Object-oriented programming works with these concepts. This way of designing software
is now very commonplace and influences many areas of programming—but most importantly
to us, it’s central to JavaScript and web browser programming.

Some of the objects we’ll be using are part of the language specification: the String object,
the Date object, and the Math object, for example. The same objects would be available to
JavaScript in a PDF file and on a web server. These objects provide lots of useful functionality
that could save us tons of programming time. The Date object, for example, allows you to
obtain the current date and time from the client (such as a user’s PC). It stores the date and
provides lots of useful date-related functions, for example, converting the date/time from one
time zone to another. These objects are usually referred to as core objects, as they are indepen-
dent of the implementation. The browser also makes itself available for programming through
objects that allow us to obtain information about the browser and to change the look and feel
of the application. For example, the browser makes available the Document object, which repre-
sents a web page available to JavaScript. We can use this in JavaScript to add new HTML to the
web page being viewed by the user of the web browser. If you were to use JavaScript with a dif-
ferent host, with a Windows server for example, then you'd find that the server hosting
JavaScript exposes a very different set of host objects, their functionality being related to things
you want to do on a web server.

You'll also see in Chapter 3 that JavaScript allows us to create our own objects. This is a
powerful feature that allows us to model real-world problems using JavaScript. To create a new
object, we need to specify the properties and methods it should have using a template called a
class. A class is a bit like an architect’s drawing in that it specifies what should go where and do
what, but it doesn’t actually create the object.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

Note There is some debate as to whether JavaScript is an object-based language or an object-oriented
language. The difference is that an object-based language uses objects for doing programming but doesn’t
allow the coder to use object-oriented programming in their code design. An object-oriented programming
language not only uses objects, but also makes it easy to develop and design code in line with object-oriented
design methodology. JavaScript allows us to create our own objects, but this is not accomplished in the same
way as in class-based languages like Java or C#. However, we’ll be concentrating not on debates about what
is or isn’t object oriented here, but on how objects are useful in practical terms in this book, and we’ll look at
some basic object-oriented coding where it helps make life easier for us.

As you progress through the book, you'll get a more in-depth look at objects: the objects
central to the JavaScript language, the objects that the browser makes available for access and
manipulation using JavaScript, and creating your own custom objects. For now, though, all
you need to know is that objects in JavaScript are “entities” you can use to add functionality to
web pages, and that they can have properties and methods. The Math object, for example, has
among its properties one that represents the value of pi and among its methods one that gen-
erates a random number.

Simple JavaScript Example

We'll finish the chapter with a simple script that determines first the width of the visitor’s

screen and then applies a suitable style sheet (by adding an extra LINK element to the page).

We’ll do this using the Screen object, which is a representation of the user’s screen. This object

has an availWidth property that we’ll retrieve and use to decide which style sheet to load.
Here’s the code:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="1tr" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>CSS Resolution Demo</title>
<!-- Basic style with all settings -->
<link rel="StyleSheet" href="basic.css" type="text/css" />
<!--
Extra style (applied via JavaScript) to override default settings
according to the screen resolution
-->

13

14 CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

<script type="text/javascript">
// Define a variable called cssName and a message
// called resolutionInfo
var cssName;
var resolutionInfo;
// If the width of the screen is less than 650 pixels
if(screen.availWidth < 650) {
// define the style Variable as the low-resolution style
cssName = 'lowres.css';
resolutionInfo = 'low resolution';
// Or if the width of the screen is less than 1000 pixels
} else {
if(screen.availWidth > 1000) {
// define the style Variable as the high-resolution style
cssName = 'highres.css';
resolutionInfo = 'high resolution';
// Otherwise
} else {
// define the style Variable as the mid-resolution style
cssName = 'lowres.css';
resolutionInfo = 'medium resolution';
}
}

document.write('<link rel="StyleSheet" href="' +
cssName + '" type="text/css" />');
</script>
</head>
<body>
<script type="text/javascript">
document.write('<p>Applied Style:' +
resolutionInfo + '</p>');
</script>
</body>
</html>

Although we’ll be looking at the details of if statements and loops in the next chapter, you
can probably see how this is working already. The if statement on the first line asks whether
the screen.availWidth is less than 650:

if (screen.availWidth < 650)

If the user’s screen is 640x 480, then the width is less than 650, so the code within the curly
braces is executed and the low-resolution style and message get defined.

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

if (screen.availWidth < 650) {
// define the style Variable as the low-resolution style

cssName = 'lowres.css';

resolutionInfo = 'low resolution';
}

The code carries on checking the screen size using the else statement. The final else only

occurs if neither of the other evaluations have resulted in code being executed, so we assume
that the screen is 800x 600, and define the medium style and message accordingly:

else {

// define the style Variable as the mid-resolution style
cssName = 'lowres.css';
resolutionInfo = 'medium resolution';

}

It’s also worth noting that we’re measuring the screen size here, and the user may have a
800x 600 screen, but that doesn’t mean their browser window is maximized. We may be apply-
ing a style that may not be appropriate.

We're using another object, the document object, to write to the page (HTML document).
The document object’s write() method allows us to insert HTML into the page. Note that
document.write() doesn’t actually change the source HTML page, just the page the user sees
on his computer.

Note Infact, you'll find document .write() very useful as you work through the first few chapters of the
book. It’s good for small examples that show how a script is working, for communicating with the user, and
even for debugging an area of a program that you're not sure is doing what you think it should be doing. It
also works on all browsers that support JavaScript. More modern browsers have better tools and methods for
debugging, but more on that in Chapter 3.

We use document.write() to write out the appropriate link element with our defined style
in the head:

document.write('<link rel="StyleSheet" href="' +
cssName + '" type="text/css" />');

And in the document’s body, we write out the message explaining which resolution style was
applied:

<script type="text/javascript">
document.write('<p>Applied Style: '+ resolutionInfo + '</p>');
</script>

Later on, we’ll be working with more complex examples that use JavaScript to test capabil-
ities of the user’s agent and interface. For now though, I hope this simple example gives you an
inkling of the kind of flexibility you can add to your web pages using JavaScript.

15

16

CHAPTER 1 GETTING STARTED WITH JAVASCRIPT

Summary

In this chapter, we’ve taken a look at what JavaScript is, how it works, and what its advantages
and disadvantages are. I noted that the biggest disadvantage is that we cannot rely on it as a
given. However, I also mentioned that using JavaScript can make web sites a nicer and slicker
experience.

You've run some JavaScript code, seen how to add comments to the code, and how to sep-
arate JavaScript statements using semicolons. You also saw that you can tell JavaScript to treat
a group of lines of code as a single block using curly braces, following an if statement, for
example. You learned that JavaScript execution generally runs from top to bottom, and from
the first script block to the last, with the exception of functions that only execute when you
tell them to.

We also looked at objects, which are central to writing JavaScript. Not only is JavaScript
itself very much dependent on objects, but the browser also uses objects and methods to
make itself and the document available for scripting. Finally, we looked at a simple example
that reads out the user’s screen resolution and applies a suitable style sheet.

In the next chapter, I'll cover the language fundamentals of JavaScript. You’ll see how
JavaScript stores and manipulates data, and uses it in calculations. We’ll also look at creating
“intelligent” JavaScript programs using decision-making statements that allow us to evaluate
data, do calculations with it, and decide on an appropriate course of action. With that chapter
under your belt, you’ll have most of the fundamental knowledge needed to go on to more excit-
ing and useful web programming.

