
C H A P T E R 3

■ ■ ■

65

Working with HTML5 Audio
and Video

In this chapter, we’ll explore what you can do with two important HTML5 elements—audio and video—
and we’ll show you how they can be used to create compelling applications. The audio and video
elements add new media options to HTML5 applications that allow you to use audio and video without
plugins while providing a common, integrated, and scriptable API.

First, we’ll discuss audio and video container files and codecs, and why we ended up with the
codecs supported today. We’ll go on to describe lack of common codec support—the most important
drawback for using the media elements—and we’ll discuss how we hope that this won’t be such a big
issue in the future. We’ll also show you a mechanism for switching to the most appropriate type of
content for the browser to display.

Next, we’ll show you how you can use control audio and video programmatically using the APIs and
finally we’ll explore the use of the HTML5 Audio and Video in your applications.

Overview of HTML5 Audio and Video
In the following sections, we’ll discuss some of the key concepts related to HTML5 audio and video:
containers and codecs.

Video Containers
An audio or video file is really just a container file, similar to a ZIP archive file that contains a number of
files. Figure 3-1 shows how a video file (a video container) contains audio tracks, video tracks, and
additional metadata. The audio and video tracks are combined at runtime to play the video. The
metadata contains information about the video such as cover art, title and subtitle, captioning
information, and so on.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

66

FFigure 3-1. Overview of the video container

Some of the popular video container formats include the following:

• Audio Video Interleave (.avi)

• Flash Video (.flv)

• MPEG 4 (.mp4)

• Matroska (.mkv)

• Ogg (.ogv)

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

67

Audio and Video Codecs
Audio and video coders/decoders (codecs) are algorithms used to encode and decode a particular audio or
video stream so that they can be played back. Raw media files are enormous, so without encoding, a
video or audio clip would consist of tremendous amounts of data that could be too large to transmit
across the Internet in a reasonable amount of time. Without a decoder, the recipient would not be able
to reconstitute the original media source from the encoded form. A codec is able to understand a specific
container format and decodes the audio and video tracks that it contains.

Some example audio codecs are the following:

• AAC

• MPEG-3

• Ogg Vorbis

Example video codecs are the following:

• H.264

• VP8

• Ogg Theora

The Codec Wars and the Tentative Truce
Some of the codecs are patent-encumbered, while others are freely available. For example, the Vorbis
audio codec and the Theora video codec are freely available, while the use of the MPEG-4 and H.264
codecs are subject to license fees.

Originally, the HTML5 specification was going to require that certain codecs were supported.
However, some vendors did not wish to include Ogg Theora as it was not part of their existing hardware
and software stacks. Apple's iPhone, for example, includes hardware accelerated decoding for h264
video but not Theora. Free systems, on the other hand, cannot include proprietary for-pay codecs
without hurting downstream distribution. On top of that, the performance that certain proprietary
codecs provide is a factor in the browser uptake of free codecs. This situation has led to a stalemate;
there does not appear to be a single codec that all browser vendors are willing to implement.

For now, the codec requirement has been dropped from the specification. However, this decision
may be revisited in the future. For now, understand the current browser support and understand that
you may need to re-encode your media for different environments. (You should probably be doing this
already.)

We do expect that support for different codecs will increase and converge over time, making the
choice of common media types easy and ubiquitous. It is also possible that one codec will grow to be the
de facto standard codec for the Web. Additionally, the media tags have a built in mechanism for
switching to the most appropriate type of content for the browser to display to make supporting
different environments easy.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

68

HERE COMES WEBM

Frank says: "Google introduced the WebM video format in May 2010. WebM is a new format for audio and
video intended to clear up the murky media format situation on the Web. WebM files have the .webm
extension and consist of VP8 video and Ogg Vorbis audio in a container based on Matroska. Google
released the WebM specification and software under permissive licenses covering source code and patent
rights. As a high quality format that is free for both implementers and publishers, WebM represents a
significant development in the codec landscape.

As far as browsers go, at least Firefox, Opera, and Chrome will support WebM natively. Opera 10.60 is
already shipping with WebM support. Mozilla and Google have committed to shipping WebM in the next
versions of their browsers."

Audio and Video Restrictions
There are a few things that are not supported in the HTML5 audio and video specification:

• Streaming audio and video. That is, there is currently no standard for bitrate
switching in HTML5 video; only full media files are supported by current
implementations. However, there are aspects of the spec that are designed to
support streaming media in the future once the formats are supported.

• Media is restricted by HTTP cross-origin resource sharing. See Chapter 5 for more
information about cross-origin resource sharing.

• Full-screen video is not scriptable because it could be considered a security
violation to let a scriptable element take over the full screen. However, browsers
have the option of letting users choose to view videos in full screen through
additional controls.

• Accessibility for audio and video elements is not fully specified yet. Work is
underway on a specification called WebSRT for subtitle support based on the
popular SRT format.

Browser Support for HTML5 Audio and Video
As shown in Table 3-1, HTML5 audio and video elements are already supported in many browsers at the
time of this writing. The table also shows the supported codecs.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

69

Table 3-1. Browser support for HTML5 Video

Browser Details Codec, Container Support

Chrome Version 3.0 and greater Theora and Vorbis, Ogg
Container
H.264 and AAC, MPEG 4

Firefox Version 3.5 and greater Theora and Vorbis, Ogg
Container

Internet Explorer Not supported N/A

Opera Version 10.5 and greater Theora and Vorbis, Ogg
Container (10.5 and greater)

VP8 and Vorbis, WebM
Format (10.6 and greater)

Safari Version 3.2 and greater H.264 and AAC, MPEG 4
Container

It is always good idea to first test whether HTML5 Audio and Video are supported. The section

“Checking for Browser Support” later in this chapter will show you how you can programmatically check
for browser support.

Using the HTML5 Audio and Video APIs
In this section, we’ll explore the use of the HTML5 Audio and Video in your applications. There are two
main benefits to using these HTML5 media tags over previous video-embedding techniques—usually
videos embedded using the Flash, QuickTime, or Windows Media plugins—that aim to make life easier
for users and developers:

• The new audio and video tags remove deployment hurdles by being part of the
native browser environment. Although some plugins have high install rates, they
are often blocked in controlled corporate environments. Some users choose to
disable these plugins due to the... ostentatious… advertising displays those
plugins are also capable of, which also removes their capability to be used for
media playback. Plugins are also separate vectors of attack for security issues. And
plugins often have difficulty integrating their displays with the rest of browser
content, causing clipping or transparency issues with certain site designs. Because
plugins use a self-contained rendering model that is different from that of the base
web page, developers face difficulties if elements such as popup menus or other
visual elements need to cross plugin boundaries in a page.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

70

• The media elements expose a common, integrated, and scriptable API to the
document. As a developer, your use of the new media elements allows very simple
ways to script the control and playback of content. We will see multiple examples
of this later in the chapter.

Of course, there is one primary drawback to using the media tags: lack of common codec support, as
discussed in the earlier sections of this chapter. However, we expect that support for codecs will increase
and converge over time, making the choice of common media types easy and ubiquitous. Plus, the
media tags have a built-in mechanism for switching to the most appropriate type of content for the
browser to display, as you will soon see.

Checking for Browser Support
The easiest way to check for support of the video and audio tags is to dynamically create one or both
with scripting and check for the existence of a function:

var hasVideo = !!(document.createElement('video').canPlayType);

This simple code line will dynamically create a video element and check for the existence of the

canPlayType() function. By using the !! operator, the result is converted to a Boolean value, which
indicates whether or not a video object could be created.

However, if video or audio support is not present, you may choose to use an enabling script that
introduces media script tags into older browsers, allowing the same scriptability but using technologies
such as Flash for playback.

Alternatively, you can choose to include alternate content between your audio or video tags, and the
alternate content will display in place of the unsupported tag. This alternate content can be used for a
Flash plugin to display the same video if the browser doesn’t support the HTML5 tags. If you merely wish
to display a text message for nonsupporting browsers, it is quite easy to add content inside the video or
audio elements such as the following:

<video src="video.ogg" controls>
 Your browser does not support HTML5 video.
</video>

However, if you choose to use an alternative method to render video for browsers without HTML5

media support, you can use the same element content section to provide a reference to an external
plugin displaying the same media:

<video src="video.ogg">
 <object data="videoplayer.swf" type="application/x-shockwave-flash">
 <param name="movie" value="video.swf"/>
 </object>
</video>

By embedding an object element that displays a Flash video inside the video element, the HTML5

video will be preferred if it is available, and the Flash video will be used as a fallback. Unfortunately, this
requires multiple versions of the video to be served up until HTML5 support is ubiquitous.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

71

MEDIA FOR EVERYONE

Brian says: “Making your web applications accessible to everyone isn’t just the right thing to do; it’s good
business and, in some cases, it’s the law! Users with limited vision or hearing should be presented with
alternative content that meets their needs.

The standards bodies designing HTML5 are keenly aware of the lack of built-in support for accessible
video and audio, such as closed captioning, and are in the process of planning it now. In the meantime,
developers should provide links to transcripts at a minimum, and should consider using the power of the
scripting APIs in video to add synchronized text displays on or nearby the video itself.

Keep in mind that the alternative content located between the video and audio elements is only displayed
if the browser does not support those elements at all, and therefore is not suitable for accessible displays
where the browser may support HTML5 media, but the user may not.”

Understanding Media Elements
Due to a wise design decision, there is much commonality between the audio and video elements in
HTML5. Both audio and video support many of the same operations—play, pause, mute/unmute, load,
and so on—and therefore, the common behavior was separated out into the media element section of
the specification. Let’s start examining the media elements by observing what they have in common.

The Basics: Declaring Your Media Element
For the sake of example, we will use an audio tag to try out the common behaviors of HTML5 media. The
examples in this section will be very media-heavy (surprise!), but they are included in the example
support files that come with this book.

For the very simplest example (the example file audio.html), let’s create a page that shows an audio
player for a soothing, satisfying, and very public domain audio clip: Johann Sebastian Bach’s “Air”:

<!DOCTYPE html>
<html>
 <title>HTML5 Audio </title>
 <audio controls src="johann_sebastian_bach_air.ogg">
 An audio clip from Johann Sebastian Bach.
 </audio>
</html>

This clip assumes that the HTML document and the audio file—in this case,

johann_sebastian_bach_air.ogg—are served from the same directory. As shown in Figure 3-2, viewing
this in a browser supporting the audio tag will show a simple control and play bar representing the audio
to play. When the user clicks the play button, the audio track starts as expected.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

72

Figure 3-2. Simple audio controls

The controls attribute tells the browser to display common user controls for starting, stopping, and
seeking in the media clip, as well as volume control. Leaving out the controls attribute hides them, and
leaves the clip with no way for the user to start playing.

The content between the audio tags is text representation of what the browser will display if it does
not support the media tag. This is what you and your users will see if they are running an older browser.
It also gives the opportunity to include an alternate renderer for the media, such as a Flash player plugin
or a direct link to the media file.

Using the Source
Finally, we come to the most important attribute: src. In the simplest setup, a single src attribute points
to the file containing the media clip. But what if the browser in question does not support that container
or codec (in this case, Ogg and Vorbis)? Then, an alternate declaration can be used that includes
multiple sources from which the browser can choose (see the example file audio_multisource.html):

<audio controls>
 <source src="johann_sebastian_bach_air.ogg">
 <source src="johann_sebastian_bach_air.mp3">
 An audio clip from Johann Sebastian Bach.
</audio>

In this case, we include two new source elements instead of the src attribute on the audio tag. This

allows the browser to choose which source best suits the playback capabilities it has and use the best fit
as the actual media clip. Sources are processed in order, so a browser that can play multiple listed source
types will use the first one it encounters.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

73

■ Note Place the media source files with the best user experience or lowest server load highest in any
source list.

Running this clip in a supported browser may not change what you see. But if a browser supports
the MP3 format and not the Ogg Vorbis format, the media playback will now be supported. The beauty
of this declaration model is that as you write code to interact with the media file, it doesn’t matter to you
which container or codec was actually used. The browser provides a unified interface for you to
manipulate the media, no matter which source was matched for playback.

However, there is another way to give the browser hints about which media source to use. Recall
that a container for media can support many different codec types, and you will understand that a
browser may be misled into which types it does or does not support based on the extension of the
declared source file. If you specify a type attribute that does not match your source, the browser may
refuse to play the media. It may be wise to include the type only if you know it with certainty. Otherwise,
it is better to omit this attribute and let the browser detect the encoding. Also note that the WebM format
allows only one audio codec and one video codec. That means the .webm extension or the video/webm
content-type tells you everything you need to know about the file. If a browser can play .webm, it should
be able to play any valid .webm file, as shown in the following code example (and in the example file
audio_type.html):

<audio controls>
 <source src="johann_sebastian_bach_air.ogg" type="audio/ogg; codecs=vorbis">
 <source src="johann_sebastian_bach_air.mp3" type="audio/mpeg">
 An audio clip from Johann Sebastian Bach.
</audio>

As you can see, the type attribute can declare both the container and codec type. The values here

represent Ogg Vorbis and MP3, respectively. The full list is governed by RFC 4281, a document
maintained by the Internet Engineering Task Force (IETF), but some common combinations are listed in
Table 3-2.

Table 3-2. Media types and attribute values

Type Attribute Value

Theora video and Vorbis audio in an Ogg
container

type='video/ogg; codecs="theora, vorbis"'

Vorbis audio in an Ogg container type='audio/ogg; codecs=vorbis'

Simple baseline H.264 video and low complexity
AAC audio in an MP4 container

type='video/mp4; codecs="avc1.42E01E,
mp4a.40.2"'

MPEG-4 visual simple profile and low
complexity AAC audio in an MP4 container

type='video/mp4; codecs="mp4v.20.8,
mp4a.40.2"'

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

74

Taking Control
You’ve already seen that the default playback controls can be displayed by using the controls attribute
in the video or audio tag. As you might expect, leaving out this attribute will not display controls when
the media is displayed, but it will also not show anything at all in the case of audio files, as the only visual
representation of an audio element is its controls. (A video without controls still displays the video
content.) Leaving out the controls attribute should not display any content that affects the normal
rendering of the page. One way to cause the media to play is to set another attribute in the tag: autoplay
(see the example file audio_no_control.html):

<audio autoplay>
 <source src="johann_sebastian_bach_air.ogg" type="audio/ogg; codecs=vorbis">
 <source src="johann_sebastian_bach_air.mp3" type="audio/mpeg">
 An audio clip from Johann Sebastian Bach.
</audio>

By including the autoplay attribute, the media file will play as soon as it is loaded, without any user

interaction. However, most users will find this highly annoying, so use autoplay with caution. Playing
audio without prompting may be intended to create an atmospheric effect or, worse, to force an
advertisement on the user. But it also interferes with other audio playing on the user’s machine, and can
be quite detrimental to users who rely on audible screen readers to navigate web content.

If the built-in controls do not suit the layout of your user interface, or if you need to control the
media element using calculations or behaviors that are not exposed in the default controls, there are
many built-in JavaScript functions and attributes to help you, too. Table 3-3 lists some of the most
common functions.

Table 3-3. Common control functions

Function Behavior

load() Loads the media file and prepares it for playback. Normally does not need
to be called unless the element itself is dynamically created. Useful for
loading in advance of actual playback.

play() Loads (if necessary) and plays the media file. Plays from the beginning
unless the media is already paused at another position.

pause() Pauses playback if currently active.

canPlayType(type) Tests to see whether the video element can play a hypothetical file of the
given MIME type.

The canPlayType(type) function has a non-obvious use case: by passing in a MIME type of an

arbitrary video clip to a dynamically created video element, you can use a simple script to determine
whether the current browser supports that type. For example, the following code provides a quick way to
determine whether the current browser can support playing videos with MIME type of fooType without
displaying any visible content in the browser window:

var supportsFooVideo = !!(document.createElement('video').canPlayType(‘fooType’));

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

75

Table 3-4 shows a few of the read-only attributes on media elements.

Table 3-4. Read-only media attributes

Read-only attribute Value
duration The duration of the full media clip, in seconds. If the full duration is not

known, NaN is returned.

paused Returns true if the media clip is currently paused. Defaults to true if the
clip has not started playing.

ended Returns true if the media clip has finished playing.

startTime Returns the earliest possible value for playback start time. This will usually
be 0.0 unless the media clip is streamed and earlier content has left the
buffer.

error An error code, if an error has occurred.

currentSrc Returns the string representing the file that is currently being displayed or
loaded. This will match the source element selected by the browser.

Table 3-5 shows some of the attributes on the media elements that allow scripts to modify them and

affect the playback directly. As such, they behave similar to functions.

Table 3-5. Scriptable attribute values

Attribute Value
autoplay Sets the media clip to play upon creation or query whether it is set to autoplay.

loop Returns true if the clip will restart upon ending or sets the clip to loop (or not
loop).

currentTime Returns the current time in seconds that has elapsed since the beginning of the
playback. Sets currentTime to seek to a specific position in the clip playback.

controls Shows or hides the user controls, or queries whether they are currently visible.

volume Sets the audio volume to a relative value between 0.0 and 1.0, or queries the
value of the same.

muted Mutes or unmutes the audio, or determines the current mute state.

autobuffer Tells the player whether or not to attempt to load the media file before
playback is initiated. If the media is set for auto-playback, this attribute is
ignored.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

76

Between the various functions and attributes, it is possible for a developer to create any media
playback user interface and use it to control any audio or video clip that is supported by the browser.

Working with Audio
If you understand the shared attributes for both audio and video media elements, you’ve basically seen
all that the audio tag has to offer. So let’s look at a simple example that shows control scripting in action.

Audio Activation
If your user interface needs to play an audio clip for users, but you don’t want to affect the display with a
playback timeline or controls, you can create an invisible audio element—one with the controls
attribute unset or set to false—and present your own controls for audio playback. Consider the
following simple code, also available in the sample code file audioCue.html:

<!DOCTYPE html>
<html>
 <link rel="stylesheet" href="styles.css">
 <title>Audio cue</title>

 <audio id="clickSound">
 <source src="johann_sebastian_bach_air.ogg">
 <source src="johann_sebastian_bach_air.mp3">
 </audio>

 <button id="toggle" onclick="toggleSound()">Play</button>

 <script type="text/javascript">
 function toggleSound() {
 var music = document.getElementById("clickSound");
 var toggle = document.getElementById("toggle");

 if (music.paused) {
 music.play();
 toggle.innerHTML = "Pause";
 }
 else {
 music.pause();
 toggle.innerHTML ="Play";
 }
 }
 </script>
</html>

Once again, we are using an audio element to play our favorite Bach tune. However, in this example

we hide user controls and don’t set the clip to autoplay on load. Instead, we have created a toggle button
to control the audio playback with script:

<button id="toggle" onclick="toggleSound()">Play</button>

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

77

Our simple button is initialized to inform the user that clicking it will start playback. And each time

the button is pressed, the toggleSound() function is triggered. Inside the toggleSound() function, we first
gain access to the audio and button elements in the DOM:

if (music.paused) {
 music.play();
 toggle.innerHTML = "Pause";
}

By accessing the paused attribute on the audio element, we can check to see whether the user has

already paused playback. The attribute defaults to true if no playback is initiated, so this condition will
be met on the first click. In that case, we call the play() function on the clip and change the text of the
button to indicate that the next clip will pause:

else {
 music.pause();
 toggle.innerHTML ="Play";
}

Conversely, if the music clip is not paused (if it is playing), we will actively pause() it and change the

button text to indicate that the next click will restart play. Seems simple, doesn’t it? That’s the point of
the media elements in HTML5: to create simple display and control across media types where once a
myriad of plugins existed. Simplicity is its own reward.

Working with Video
Enough with simplicity. Let’s try something more complicated. The HTML5 video element is very similar
to the audio element, but with a few extra attributes thrown in. Table 3-6 shows some of these attributes.

Table 3-6. Additional video attributes

Attribute Value

poster The URL of an image file used to represent the video content before it has
loaded. Think “movie poster.” This attribute can be read or altered to
change the poster.

width, height Read or set the visual display size. This may cause centering, letterboxing,
or pillaring if the set width does not match the size of the video itself.

videoWidth,
videoHeight

Return the intrinsic or natural width and height of the video. They cannot
be set.

The video element has one other key feature that is not applicable to the audio element: it can be

provided to many functions of the HTML5 Canvas. (See Chapter 2 for more information about HTML5
Canvas.)

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

78

Creating a Video Timeline Browser
In this more complex example, we’ll show how a video element can have its frames grabbed and
displayed in a dynamic canvas. To demonstrate this capability, we’ll build a simple video timeline
viewer. While the video plays, periodic image frames from its display will be drawn onto a nearby
canvas. When the user clicks any frame displayed in the canvas, we’ll jump the playback of the video to
that precise moment in time. With only a few lines of code, we can create a timeline browser that users
can use to jump around inside a lengthy video.

Our sample video clip is the tempting concession advert from the mid-20th century movie theaters,
so let’s all go to the lobby to get ourselves a treat (see Figure 3-3).

Figure 3-3. The video timeline application

Adding the Video and the Canvas Element
We start with a simple declaration to display our video clip:

<video id="movies" autoplay oncanplay="startVideo()" onended="stopTimeline()"
autobuffer="true" width="400px" height="300px">
 <source src="Intermission-Walk-in.ogv" type='video/ogg; codecs="theora, vorbis"'>
 <source src="Intermission-Walk-in_512kb.mp4"
 type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
</video>

As most of this markup will look familiar to you from the audio example, let’s focus on the

differences. Obviously, the <audio> element has been replaced with <video>, and the <source> elements
point to the Ogg and MPEG movies that will be selected by the browser.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

79

The video has, in this case, been declared to have autoplay so that it starts as soon as the page loads.
Two additional event handler functions have been registered. When the video is loaded and ready to
begin play, the oncanplay function will trigger and start our routine. Similarly, when the video ends, the
onended callback will allow us to stop creating video frames.

Next, we’ll add a canvas called timeline into which we will draw frames of our video at regular
intervals.

<canvas id="timeline" width="400px" height="300px">

Adding Variables
In the next section of our demo, we begin our script by declaring some values that will let us easily tweak
the demo and make the code more readable:

// # of milliseconds between timeline frame updates
var updateInterval = 5000;

// size of the timeline frames
var frameWidth = 100;
var frameHeight = 75;

// number of timeline frames
var frameRows = 4;
var frameColumns = 4;
var frameGrid = frameRows * frameColumns;

updateInterval controls how often we will capture frames of the video—in this case, every five

seconds. The frameWidth and frameHeight set how large the small timeline video frames will be when
displayed in the canvas. Similarly, the frameRows, frameColumns, and frameGrid determine how many
frames we will display in our timeline:

// current frame
var frameCount = 0;

// to cancel the timer at end of play
var intervalId;

var videoStarted = false;

To keep track of which frame of video we are viewing, a frameCount is made accessible to all demo

functions. (For the sake of our demo, a frame is one of our video samples taken every five seconds.) The
intervalId is used to stop the timer we will use to grab frames. And finally, we add a videoStarted flag to
make sure that we only create one timer per demo.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

80

Adding the updateFrame Function
The core function of our demo—where the video meets the canvas—is where we grab a video frame and
draw it onto our canvas:

// paint a representation of the video frame into our canvas
function updateFrame() {
 var video = document.getElementById("movies");
 var timeline = document.getElementById("timeline");

 var ctx = timeline.getContext("2d");

 // calculate out the current position based on frame
 // count, then draw the image there using the video
 // as a source
 var framePosition = frameCount % frameGrid;
 var frameX = (framePosition % frameColumns) * frameWidth;
 var frameY = (Math.floor(framePosition / frameRows)) * frameHeight;
 ctx.drawImage(video, 0, 0, 400, 300, frameX, frameY, frameWidth, frameHeight);

 frameCount++;
}

As you’ve seen in Chapter 2, the first thing to do with any canvas is to grab a two-dimensional

drawing context from it:

var ctx = timeline.getContext("2d");

Because we want to populate our canvas grid with frames from left to right, top to bottom, we need

to figure out exactly which of the grid slots will be used for our frame based on the number of the frame
we are capturing. Based on the width and height of each frame, we can then determine exact X and Y
coordinates at which to begin our drawing:

var framePosition = frameCount % frameGrid;
var frameX = (framePosition % frameColumns) * frameWidth;
var frameY = (Math.floor(framePosition / frameRows)) * frameHeight;

Finally, we reach the key call to draw an image onto the canvas. We’ve seen the position and scaling

arguments before in our canvas demos, but instead of passing an image to the drawImage routine, we
here pass the video object itself:

ctx.drawImage(video, 0, 0, 400, 300, frameX, frameY, frameWidth, frameHeight);

Canvas drawing routines can take video sources as images or patterns, which gives you a handy way

to modify the video and redisplay it in another location.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

81

■ Note When a canvas uses a video as an input source, it draws only the currently displayed video frame. Canvas
displays will not dynamically update as the video plays. Instead, if you want the canvas content to update, you
must redraw your images as the video is playing.

Adding the startVideo Function
Finally, we update frameCount to reflect that we’ve taken a new snapshot for our timeline. Now, all we
need is a routine to regularly update our timeline frames:

function startVideo() {

 // only set up the timer the first time the
 // video is started
 if (videoStarted)
 return;

 videoStarted = true;

 // calculate an initial frame, then create
 // additional frames on a regular timer
 updateFrame();
 intervalId = setInterval(updateFrame, updateInterval);

Recall that the startVideo() function is triggered as soon as the video has loaded enough to begin

playing. First, we make sure that we are going to handle the video start only once per page load, just in
case the video is restarted:

 // only set up the timer the first time the
 // video is started
 if (videoStarted)
 return;

 videoStarted = true;

When the video starts, we will capture our first frame. Then, we will start an interval timer—a timer

that repeats continuously at the specified update interval—which will regularly call our updateFrame()
function. The end result is that a new frame will be captured every five seconds:

 // calculate an initial frame, then create
 // additional frames on a regular timer
 updateFrame();
 intervalId = setInterval(updateFrame, updateInterval);

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

82

Handling User Input
Now all we need to do is handle user clicks the individual timeline frames:

// set up a handler to seek the video when a frame
// is clicked
var timeline = document.getElementById("timeline");
timeline.onclick = function(evt) {
 var offX = evt.layerX - timeline.offsetLeft;
 var offY = evt.layerY - timeline.offsetTop;

 // calculate which frame in the grid was clicked
 // from a zero-based index
 var clickedFrame = Math.floor(offY / frameHeight) * frameRows;
 clickedFrame += Math.floor(offX / frameWidth);

 // find the actual frame since the video started
 var seekedFrame = (((Math.floor(frameCount / frameGrid)) *
 frameGrid) + clickedFrame);

 // if the user clicked ahead of the current frame
 // then assume it was the last round of frames
 if (clickedFrame > (frameCount % 16))
 seekedFrame -= frameGrid;

 // can't seek before the video
 if (seekedFrame < 0)
 return;

Things get a little more complicated here. We retrieve the timeline canvas and set a click-handling

function on it. The handler will use the event to determine which X and Y coordinates were clicked by
the user:

 var timeline = document.getElementById("timeline");
 timeline.onclick = function(evt) {
 var offX = evt.layerX - timeline.offsetLeft;
 var offY = evt.layerY - timeline.offsetTop;

We then use the frame dimensions to figure out which of the 16 frames was clicked by the user:

 // calculate which frame in the grid was clicked
 // from a zero-based index
 var clickedFrame = Math.floor(offY / frameHeight) * frameRows;
 clickedFrame += Math.floor(offX / frameWidth);

The clicked frame should be only one of the most recent video frames, so determine the most recent

frame that corresponds to that grid index:

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

83

 // find the actual frame since the video started
 var seekedFrame = (((Math.floor(frameCount / frameGrid)) *
 frameGrid) + clickedFrame);

If the user clicks ahead of the current frame, jump back one complete cycle of grid frames to find the

actual time:

 // if the user clicked ahead of the current frame
 // then assume it was the last round of frames
 if (clickedFrame > (frameCount % 16))
 seekedFrame -= frameGrid;

And finally, we have to safeguard against any case in which the user clicks a frame that would be

before the start of the video clip:

 // can't seek before the video
 if (seekedFrame < 0)
 return;

Now that we know what point in time the user wants to seek out, we can use that knowledge to

change the current playback time. Although this is the key demo function, the routine itself is quite
simple:

 // seek the video to that frame (in seconds)
 var video = document.getElementById("movies");
 video.currentTime = seekedFrame * updateInterval / 1000;

 // then set the frame count to our destination
 frameCount = seekedFrame;

By setting the currentTime attribute on our video element, we cause the video to seek to the

specified time and reset our current frame count to the newly chosen frame.

■ Note Unlike many JavaScript timers that deal with milliseconds, the currentTime of a video is specified in
seconds.

Adding the stopTimeline Function
All that remains for our video timeline demo is to stop capturing frames when the video finishes playing.
Although not required, if we don’t take this step, the demo will continue capturing frames of the finished
demo, blanking out the entire timeline after a while:

// stop gathering the timeline frames
function stopTimeline() {
 clearInterval(intervalId);
}

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

84

The stopTimeline handler will be called when another of our video handlers—onended—is triggered
by the completion of video playback.

Our video timeline is probably not full-featured enough to satisfy power users, but it took only a
short amount of code to accomplish. Now, on with the show.

Practical Extras
Sometimes there are techniques that don’t fit into our regular examples, but which nonetheless apply to
many types of HTML5 applications. We present to you some short, but common, practical extras here.

Background Noise in a Page
Many a web site has attempted to entertain its viewers by playing audio by default for any visitors. While
we don’t condone this practice, HTML5 audio support makes it quite easy to achieve this:

<!DOCTYPE html>
<html>
 <link rel="stylesheet" href="styles.css">
 <title>Background Music</title>

 <audio autoplay loop>
 <source src="johann_sebastian_bach_air.ogg">
 <source src="johann_sebastian_bach_air.mp3">
 </audio

 <h1>You're hooked on Bach!</h1>

</html>

As you can see, playing a looping background sound is as easy as declaring a single audio tag with

the autoplay and loop attributes set (see Figure 3-4).

Figure 3-4. Using autoplay to play music when a page loads

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

85

LOSING VIEWERS IN THE <BLINK> OF AN EYE

Brian says: “With great power comes great responsibility, and just because you can, doesn’t mean you
should. If you want an example, just remember the <blink> tag!”

Don’t let the power of easy audio and video playback seduce you into using it where it isn’t appropriate. If
you have a compelling reason to enable media with autoplay—perhaps a media browser in which the
user is expecting content to start on load—make sure to provide a clear means for disabling that feature.
Nothing will turn users from your site faster than annoying content that they can’t easily turn off.”

Mouseover Video Playback
Another way to use simple scripting effectively with video clips is to trigger the play and pause routines,
based on mouse movement over the video. This could be useful in a site that needs to display many
video clips and let the user choose which ones to play. The video gallery can display short preview clips
on when a user moves the mouse over them and a full video display when the user clicks. It is quite easy
to achieve this affect using a code sample similar to the following (see the example file
mouseoverVideo.html):

<!DOCTYPE html>
<html>
 <link rel="stylesheet" href="styles.css">
 <title>Mouseover Video</title>

 <video id="movies" onmouseover="this.play()" onmouseout="this.pause()"
 autobuffer="true"
 width="400px" height="300px">
 <source src="Intermission-Walk-in.ogv" type='video/ogg; codecs="theora, vorbis"'>
 <source src="Intermission-Walk-in_512kb.mp4" type='video/mp4; codecs="avc1.42E01E,
 mp4a.40.2"'>
 </video>
</html>

By simply setting a few extra attributes, the preview playback can trigger when a user points at the

video, as shown in Figure 3-5.

CHAPTER 3 ■ WORKING WITH HTML5 AUDIO AND VIDEO

86

Figure 3-5. Mouseover video playback

Summary
In this chapter, we have explored what you can do with the two important HTML5 elements audio and
video. We have shown you how they can be used to create compelling web applications. The audio and
video elements add new media options to HTML5 applications that allow you to use audio and video
without plugins, while at the same time providing a common, integrated, and scriptable API.

First, we discussed the audio and video container files and codecs and why we ended up with the
codecs supported today. We then showed you a mechanism for switching to the most appropriate type
of content for the browser to display.

Next, we showed you how you can use control audio and video programmatically using the APIs and
finally we looked at how you can use of the HTML5 Audio and Video in your applications.

In the next chapter, we'll show how you can use geolocation to tailor your application's output to
the whereabouts of your users with a minimal amount of code.

	Chapter 3 Working with HTML5 Audio and Video
	Overview of HTML5 Audio and Video
	Video Containers
	Audio and Video Codecs
	The Codec Wars and the Tentative Truce

	Audio and Video Restrictions
	Browser Support for HTML5 Audio and Video

	Using the HTML5 Audio and Video APIs
	Checking for Browser Support
	Understanding Media Elements
	The Basics: Declaring Your Media Element
	Using the Source
	Taking Control

	Working with Audio
	Audio Activation

	Working with Video
	Creating a Video Timeline Browser
	Adding the Video and the Canvas Element
	Adding Variables
	Adding the updateFrame Function
	Adding the startVideo Function
	Handling User Input
	Adding the stopTimeline Function

	Practical Extras
	Background Noise in a Page
	Mouseover Video Playback

	Summary

