
C H A P T E R 1

■ ■ ■

1

Overview of HTML5

This book is about HTML5 Programming. Before you can understand HTML5 programming, however,
you need to take a step back and understand what HTML5 is, a bit of the history behind it, and the
differences between HTML4 and HTML5.

In this chapter, we get right to the practical questions to which everyone wants answers. Why
HTML5, and why all the excitement just now? What are the new design principles that make HTML5
truly revolutionary—but also highly accommodating? What are the implications of a plugin-free
paradigm; what’s in and what’s out? What’s new in HTML, and how does this kick off a whole new era for
web developers? Let’s get to it.

The Story So Far—The History of HTML5
HTML goes back a long way. It was first published as an Internet draft in 1993. The ’90s saw an
enormous amount of activity around HTML, with version 2.0, versions 3.2, and 4.0 (in the same year!),
and finally, in 1999, version 4.01. In the course of its development, the World Wide Web Consortium
(W3C) assumed control of the specification.

After the rapid delivery of these four versions though, HTML was widely considered a dead-end; the
focus of web standards shifted to XML and XHTML, and HTML was put on the back burner. In the
meantime, HTML refused to die, and the majority of content on the web continued to be served as
HTML. To enable new web applications and address HTML’s shortcomings, new features and
specifications were needed for HTML.

Wanting to take the web platform to a new level, a small group of people started the Web Hypertext
Application Working Group (WHATWG) in 2004. They created the HTML5 specification. They also began
working on new features specifically geared to web applications—the area they felt was most lacking. It
was around this time that the term Web 2.0 was coined. And it really was like a second new web, as static
web sites gave way to more dynamic and social sites that required more features—a lot more features.

The W3C became involved with HTML again in 2006 and published the first working draft for
HTML5 in 2008, and the XHTML 2 working group stopped in 2009. Another year passed, and that is
where we stand today. Because HTML5 solves very practical problems (as you will see later), browser
vendors are feverishly implementing its new features, even though the specification has not been
completely locked down. Experimentation by the browsers feeds back into and improves the
specification. HTML5 is rapidly evolving to address real and practical improvements to the web
platform.

CHAPTER 1 ■ OVERVIEW OF HTML5

2

MOMENTS IN HTML

Brian says: “Hi, I’m Brian, and I’m an HTML curmudgeon.

I authored my first home page back in 1995. At the time, a ‘home page’ was something you created to talk
about yourself. It usually consisted of badly scanned pictures, <blink> tags, information about where you
lived and what you were reading, and which computer-related project you were currently working on.
Myself and most of my fellow ‘World Wide Web developers’ were attending or employed by universities.

At the time, HTML was primitive and tools were unavailable. Web applications hardly existed, other than a
few primitive text-processing scripts. Pages were coded by hand using your favorite text editor. They were
updated every few weeks or months, if ever.

We’ve come a long way in fifteen years.

Today, it isn’t uncommon for users to update their online profiles many times a day. This type of
interaction wouldn’t have been possible if not for the steady, lurching advances in online tools that built on
each previous generation.

Keep this in mind as you read this book. The examples we show here may seem simplistic at times, but
the potential is limitless. Those of us who first used tags in the mid-1990s probably had no idea that
within ten years, many people would be storing and editing their photos online, but we should have
predicted it.

We hope the examples we present in this book will inspire you beyond the basics and to create the new
foundation of the Web for the next decade.”

The Myth of 2022 and Why It Doesn’t Matter
The HTML5 specification that we see today has been published as a working draft—it is not yet final. So
when does it get cast in stone? Here are the key dates that you need to know. The first is 2012, which is
the target date for the candidate recommendation. The second date is 2022, which is the proposed
recommendation. Wait! Not so fast! Don’t close this book to set it aside for ten years before you consider
what these two dates actually mean.

The first and nearest date is arguably the most important one, because once we reach that stage,
HTML5 will be complete. That’s just two years away. The significance of the proposed recommendation
(which we can all agree is a bit distant) is that there will then be two interoperable implementations.
This means two browsers equipped with completely interoperable implementations of the entire
specifications—a lofty goal that actually makes the 2022 deadline seem ambitious. After all, we haven’t
even achieved that in HTML4.

What is important, right now, is that browser vendors are actively adding support for many very cool
new features. Depending on your audience, you can start using many of these features today. Sure, any
number of minor changes will need to be made down the road, but that’s a small price to pay for
enjoying the benefits of living on the cutting edge. Of course, if your audience uses Internet Explorer 6.0,
many of the new features won’t work and will require emulation—but that’s still not a good reason to
dismiss HTML5. After all, those users, too, will eventually be jumping to a later version. Many of them
will probably move to Internet Explorer 9.0 right away, and Microsoft promises to design that browser

CHAPTER 1 ■ OVERVIEW OF HTML5

3

with increased HTML5 support. In practice, the combination of new browsers and improving emulation
techniques means you can use many HTML5 features today or in the very near future.

Who Is Developing HTML5?
We all know that a certain degree of structure is needed, and somebody clearly needs to be in charge of
the specification of HTML5. That challenge is the job of three important organizations:

• Web Hypertext Application Technology Working Group (WHATWG): Founded in
2004 by individuals working for browser vendors Apple, Mozilla, Google, and
Opera, WHATWG develops HTML and APIs for web application development and
provides open collaboration of browser vendors and other interested parties.

• World Wide Web Consortium (W3C): The W3C contains the HTML working group
that is currently charged with delivering the HTML5 specification.

• Internet Engineering Task Force (IETF): This task force contains the groups
responsible for Internet protocols such as HTTP. HTML5 defines a new
WebSocket API that relies on a new WebSocket protocol, which is under
development in an IETF working group.

A New Vision
HTML5 is based on various design principles, spelled out in the WHATWG specification, that truly
embody a new vision of possibility and practicality.

• Compatibility

• Utility

• Interoperability

• Universal access

Compatibility and Paving the Cow Paths
Don’t worry; HTML5 is not an upsetting kind of revolution. In fact, one of its core principles is to keep
everything working smoothly. If HTML5 features are not supported, the behavior must degrade
gracefully. In addition, since there is about 20 years of HTML content out there, supporting all that
existing content is important.

A lot of effort has been put into researching common behavior. For example, Google analyzed
millions of pages to discover the common ID names for DIV tags and found a huge amount of repetition.
For example, many people used DIV id="header" to mark up header content. HTML5 is all about solving
real problems, right? So why not simply create a <header> element?

Although some features of the HTML5 standard are quite revolutionary, the name of the game is
evolution not revolution. After all, why reinvent the wheel? (Or, if you must, then at least make a
better one!)

CHAPTER 1 ■ OVERVIEW OF HTML5

4

Utility and the Priority of Constituencies
The HTML5 specification is written based upon a definite Priority of Constituencies. And as priorities go,
“the user is king.” This means, when in doubt, the specification values users over authors, over
implementers (browsers), over specifiers (W3C/WHATWG), and over theoretical purity. As a result,
HTML5 is overwhelmingly practical, though in some cases, less than perfect.

Consider this example. The following code snippets are all equally valid in HTML5:

id="prohtml5"
id=prohtml5
ID="prohtml5"

Sure, some will object to this relaxed syntax, but the bottom line is that the end user doesn’t really

care. We’re not suggesting that you start writing sloppy code, but ultimately, it’s the end user who suffers
when any of the preceding examples generates errors and doesn’t render the rest of the page.

HTML5 has also spawned the creation of XHTML5 to enable XML tool chains to generate valid
HTML5 code. The serializations of the HTML or the XHTML version should produce the same DOM
trees with minimal differences. Obviously, the XHTML syntax is a lot stricter, and the code in the last two
examples would not be valid.

Secure by Design
A lot of emphasis has been given to making HTML5 secure right out of the starting gate. Each part of the
specification has sections on security considerations, and security has been considered up front. HTML5
introduces a new origin-based security model that is not only easy to use but is also used consistently by
different APIs. This security model allows us to do things in ways that used to be impossible. It allows us
to communicate securely across domains without having to revert to all kinds of clever, creative, but
ultimately insecure hacks. In that respect, we definitely will not be looking back to the good old days.

Separation of Presentation and Content
HTML5 takes a giant step toward the clean separation of presentation and content. HTML5 strives to
create this separation wherever possible, and it does so using CSS. In fact, most of the presentational
features of earlier versions of HTML are no longer supported (but will still work!), thanks to the
compatibility design principle mentioned earlier. This idea is not entirely new, though; it was already in
the works in HTML4 Transitional and XHTML1.1. Web designers have been using this as a best practice
for a long time, but now, it is even more important to cleanly separate the two. The problems with
presentational markup are:

• Poor accessibility

• Unnecessary complexity (it’s harder to read your code with all the inline styling)

• Larger document size (due to repetition of style content), which translates into
slower-loading pages

CHAPTER 1 ■ OVERVIEW OF HTML5

5

Interoperability Simplification
HTML5 is all about simplification and avoiding needless complexity. The HTML5 mantra? “Simple is
better. Simplify wherever possible.” Here are some examples of this:

• Native browser ability instead of complex JavaScript code

• A new, simplified DOCTYPE

• A new, simplified character set declaration

• Powerful yet simple HTML5 APIs

We’ll say more about some of these later.
To achieve all this simplicity, the specification has become much bigger, because it needs to be

much more precise—far more precise, in fact, than any previous version of the HTML specification. It
specifies a legion of well-defined behaviors in an effort to achieve true browser interoperability by 2022.
Vagueness simply will not make that happen.

The HTML5 specification is also more detailed than previous ones to prevent misinterpretation. It
aims to define things thoroughly, especially web applications. Small wonder, then, that the specification
is over 900 pages long!

HTML5 is also designed to handle errors well, with a variety of improved and ambitious error-
handling plans. Quite practically, it prefers graceful error recovery to hard failure, again giving A-1 top
priority to the interest of the end user. For example, errors in documents will not result in catastrophic
failures in which pages do not display. Instead, error recovery is precisely defined so browsers can
display “broken” markup in a standard way.

Universal Access
This principle is divided into three concepts:

• Accessibility: To support users with disabilities, HTML5 works closely with a
related standard called Web Accessibility Initiative (WAI) Accessible Rich Internet
Applications (ARIA). WAI-ARIA roles, which are supported by screen readers, can
be already be added to your HTML elements.

• Media Independence: HTML5 functionality should work across all different devices
and platforms if at all possible.

• Support for all world languages: For example, the new <ruby> element supports
the Ruby annotations that are used in East Asian typography.

A Plugin–Free Paradigm
HTML5 provides native support for many features that used to be possible only with plugins or complex
hacks (a native drawing API, native sockets, and so on). Plugins, of course, present problems:

• Plugins cannot always be installed.

• Plugins can be disabled or blocked (for example, the Apple iPad does not ship with
a Flash plugin).

CHAPTER 1 ■ OVERVIEW OF HTML5

6

• Plugins are a separate attack vector.

• Plugins are difficult to integrate with the rest of an HTML document (because of
plugin boundaries, clipping, and transparency issues).

Although some plugins have high install rates, they are often blocked in controlled corporate
environments. In addition, some users choose to disable these plugins due to the unwelcome
advertising displays that they empower. However, if users disable your plugin, they also disable the very
program you’re relying on to display your content.

Plugins also often have difficulty integrating their displays with the rest of the browser content,
which causes clipping or transparency issues with certain site designs. Because plugins use a self-
contained rendering model that is different from that of the base web page, developers face difficulties if
pop-up menus or other visual elements need to cross the plugin boundaries on a page. This is where
HTML5 comes on the scene, smiles, and waves its magic wand of native functionality. You can style
elements with CSS and script with JavaScript. In fact, this is where HTML5 flexes its biggest muscle,
showing us a power that just didn’t exist in previous versions of HTML. It’s not just that the new
elements provide new functionality. It’s also the added native interaction with scripting and styling that
enables us to do much more than we could ever do before.

Take the new canvas element, for example. It enables us to do some pretty fundamental things that
were not possible before (try drawing a diagonal line in a web page in HTML4). However, what’s most
interesting is the power that we can unlock with the APIs and the styling we can apply with just a few
lines of CSS code. Like well-behaved children, the HTML5 elements also play nicely together. For
example, you can grab a frame from a video element and display it on a canvas, and the user can just
click the canvas to play back the video from the frame you just grabbed. This is just one example of what
a native code has to offer over a plugin. In fact, virtually everything becomes easier when you’re not
working with a black box. What this all adds up to is a truly powerful new medium, which is why we
decided to write a book about HTML5 programming, and not just about the new elements!

What’s In and What’s Out?
So, what really is part of HTML5? If you read the specification carefully, you might not find all of the
features we describe in this book. For example, you will not find HTML5 Geolocation and Web Workers
in there. So are we just making this stuff up? Is it all hype? No, not at all!

Many pieces of the HTML5 effort (for example, Web Storage and Canvas 2D) were originally part of
the HTML5 specification and were then moved to separate standards documents to keep the
specification focused. It was considered smarter to discuss and edit some of these features on a separate
track before making them into official specifications. This way, one small contentious markup issue
wouldn’t hold up the show of the entire specification.

Experts in specific areas can come together on mailing lists to discuss a given feature without the
crossfire of too much chatter. The industry still refers to the original set of features, including
Geolocation, as HTML5. Think of HTML5, then, as an umbrella term that covers the core markup, as well
as many cool new APIs. At the time of this writing, these features are part of HTML5:

• Canvas (2D and 3D)

• Channel messaging

• Cross-document messaging

• Geolocation

CHAPTER 1 ■ OVERVIEW OF HTML5

7

• MathML

• Microdata

• Server-Sent events

• Scalable Vector Graphics (SVG)

• WebSocket API and protocol

• Web origin concept

• Web storage

• Web SQL database

• Web Workers

• XMLHttpRequest Level 2

As you can see, a lot of the APIs we cover in this book are on this list. How did we choose which APIs
to cover? We chose to cover features that were at least somewhat baked. Translation? They’re available in
some form in more than one browser. Other (less-baked) features may only work in one special beta
version of a browser, while others are still just ideas at this point.

In this book, we will give you an up-to-date overview (at the time of this writing) of the browser
support available for each of the HTML5 features we cover. However, whatever we tell you will soon be
out of date, because this is very much a moving target. Don’t worry though; there are some excellent
online resources that you can use to check current (and future) browser support. The site
www.caniuse.com provides an exhaustive list of features and browser support broken down by browser
version and the site www.html5test.com checks the support for HTML5 features in the browser you use
to access it.

Furthermore, this book does not focus on providing you with the emulation workarounds to make
your HTML5 applications run seamlessly on antique browsers. Instead, we will focus primarily on the
specification of HTML5 and how to use it. That said, for each of the APIs we do provide some example
code that you can use to detect its availability. Rather than using user agent detection, which is often
unreliable, we use feature detection. For that, you can also use Modernizr—a JavaScript library that
provides very advanced HTML5 and CSS3 feature detection. We highly recommend you use Modernizr
in your applications, because it is hands down the best tool for this.

MORE MOMENTS IN HTML

Frank says: “Hi, I’m Frank, and I sometimes paint.

One of the first HTML canvas demonstrations I saw was a basic painting application that mimicked the
user interface of Microsoft Paint. Although it was decades behind the state of the art in digital painting and,
at the time, ran in only a fraction of existing browsers, it got me thinking about the possibilities it
represented.

When I paint digitally, I typically use locally installed desktop software. While some of these programs are
excellent, they lack the characteristics that make web applications so great. In short, they are
disconnected. Sharing digital paintings has, to date, involved exporting an image from a painting

CHAPTER 1 ■ OVERVIEW OF HTML5

8

application and uploading it to the Web. Collaboration or critiques on a live canvas are out of the question.
HTML5 applications can short-circuit the export cycle and make the creative process fit into the online
world along with finished images.

The number of applications that cannot be implemented with HTML5 is dwindling. For text, the Web is
already the ultimate two-way communication medium. Text-based applications are available in entirely
web-based forms. Their graphical counterparts, like painting, video editing, and 3D modeling software, are
just arriving now.

We can now build great software to create and enjoy images, music, movies, and more. Even better, the
software we make will be on and off the Web: a platform that is ubiquitous, empowering, and online.”

What’s New in HTML5?
Before we start programming HTML5, let’s take a quick look at what’s new in HTML5.

New DOCTYPE and Character Set
First of all, true to design principle 3—simplification—the DOCTYPE for web pages has been greatly
simplified. Compare, for example, the following HTML4 DOCTYPEs:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"�
 "http://www.w3.org/TR/html4/loose.dtd">

Who could ever remember any of these? We certainly couldn’t. We would always just copy and paste

some lengthy DOCTYPE into the page, always with a worry in the back of our minds, “Are you absolutely
sure you pasted the right one?” HTML5 neatly solves this problem as follows:

<!DOCTYPE html>

Now that’s a DOCTYPE you might just remember. Like the new DOCTYPE, the character set declaration

has also been abbreviated. It used to be

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

Now, it is:

<meta charset="utf-8">

Using the new DOCTYPE triggers the browser to display pages in standards mode. For example,

Figure 1-1 shows the information you will see if you open an HTML5 page in Firefox, and you click
Tools ➤ Page Info. In this example, the page is rendered in standards mode.

CHAPTER 1 ■ OVERVIEW OF HTML5

9

Figure 1-1. A page rendered in standards-compliant mode

When you use the new HTML5 DOCTYPE, it triggers browsers to render the page in standards-
compliant mode. As you may know, Web pages can have different rendering modes, such as Quirks,
Almost Standards, and Standards (or no-quirks) mode. The DOCTYPE indicates to the browser which
mode to use and what rules are used to validate your pages. In Quirks mode, browsers try to avoid
breaking pages and render them even if they are not entirely valid. HTML5 introduces new elements and
others (more on this in the next section) so that if you use deprecated elements, your page will not be
valid.

New and Deprecated Elements
HTML5 introduces many new markup elements, which it groups into seven different content types.
These are shown below in Table 1-1.

CHAPTER 1 ■ OVERVIEW OF HTML5

10

Table 1-1. HTML5 Content Types

Content Type Description

Embedded Content that imports other resources into the document, for example audio, video,
canvas, and iframe

Flow Elements used in the body of documents and applications, for example form, h1, and
small

Heading Section headers, for example h1, h2, and hgroup

Interactive Content that users interact with, for example audio or video controls, button, and
textarea

Metadata Elements—commonly found in the head section— that set up the presentation or
behavior of the rest of the document, for example script, style, and title

Phrasing Text and text markup elements, for example mark, kbd, sub, and sup

Sectioning Elements that define sections in the document, for example article, aside, and title

All of these elements can be styled with CSS. In addition, some of them, such as canvas, audio, and

video, can be used by themselves, though they are accompanied by APIs that allow for fine-grained
native programmatic control. These APIs will be discussed in much more detail later in this book.

It is beyond the scope of this book to discuss all these new elements, but the sectioning elements
(discussed in the next section) are new. The canvas, audio, and video elements are also new in HTML5.

Likewise, we’re not going to provide an exhaustive list of all the deprecated tags (there are many
good online resources online for this), but many of the elements that performed inline styling have been
removed in favor of using CSS, such as big, center, font, and basefont.

Semantic Markup
One content type that contains many new HTML5 elements is the sectioning content type. HTML5
defines a new semantic markup to describe an element’s content. Using semantic markup doesn’t
provide any immediate benefits, but it does simplify the design of your HTML pages, and in the future,
search engines will definitely be taking advantage of these elements as they crawl and index pages.

As we said before, HTML5 is all about paving the cow paths. Google analyzed millions of pages to
discover the common ID names for DIV tags and found a huge amount of repetition. For example, since
many people used DIV id="footer" to mark up footer content, HTML5 provides a set of new sectioning
elements that you can use in modern browsers right now. Table 1-2 shows the different semantic
markup elements.

CHAPTER 1 ■ OVERVIEW OF HTML5

11

Table 1-2. New sectioning HTML5 elements

Sectioning Element Description

header Header content (for a page or a section of the page)

footer Footer content (for a page or a section of the page)

section A section in a web page

article Independent article content

aside Related content or pull quotes

nav Navigational aids

All of these elements can be styled with CSS. In fact, as we described in the utility design principle

earlier, HTML5 pushes the separation of content and presentation, so you have to style your page using
CSS styles in HTML5. Listing 1-1 shows what an HTML5 page might look like. It uses the new DOCTYPE,
character set, and semantic markup elements—in short, the new sectioning content. The code file is also
available in the code/intro folder.

Listing 1-1. An Example HTML5 Page

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" >
 <title>HTML5</title>
 <link rel="stylesheet" href="html5.css">

</head>

<body>

 <header>
 <h1>Header</h1>
 <h2>Subtitle</h2>
 <h4>HTML5 Rocks!</h4>
 </header>

 <div id="container">

CHAPTER 1 ■ OVERVIEW OF HTML5

12

 <nav>
 <h3>Nav</h3>
 Link 1
 Link 2
 Link 3
 </nav>

 <section>
 <article>
 <header>
 <h1>Article Header</h1>
 </header>
 <p>Lorem ipsum dolor HTML5 nunc aut nunquam sit amet, consectetur adipiscing

 elit. Vivamus at est eros, vel fringilla urna.</p>
 <p>Per inceptos himenaeos. Quisque feugiat, justo at vehicula

 pellentesque, turpis lorem dictum nunc.</p>
 <footer>
 <h2>Article Footer</h2>
 </footer>
 </article>

 <article>
 <header>
 <h1>Article Header</h1>
 </header>
 <p>HTML5: "Lorem ipsum dolor nunc aut nunquam sit amet, consectetur adipiscing

 elit. Vivamus at est eros, vel fringilla urna. Pellentesque odio</p>

 <footer>
 <h2>Article Footer</h2>
 </footer>
 </article>

 </section>

 <aside>
 <h3>Aside</h3>
 <p>HTML5: "Lorem ipsum dolor nunc aut nunquam sit amet, consectetur adipiscing

 elit. Vivamus at est eros, vel fringilla urna. Pellentesque odio rhoncus</p>
 </aside>

 <footer>
 <h2>Footer</h2>
 </footer>
 </div>
</body>

</html>

CHAPTER 1 ■ OVERVIEW OF HTML5

13

Without styles, the page would be pretty dull to look at. Listing 1-2 shows some of the CSS code that
can be used to style the content. Note that this style sheet uses some of the new CSS3 features, such as
rounded corners (for example, border-radius) and rotate transformations (for example, transform:
rotate();). Note that CSS3—just like HTML5 itself—is still under development and is modularized with
subspecifications for easier browser uptake (for example, transformation, animation, and transition are
all areas that are in separate subspecifications).

Experimental CSS3 features are prefixed with vendor strings to avoid namespace conflicts should
the specifications change. To display rounded corners, gradients, shadows, and transformations, it is
currently necessary to use prefixes such as -moz- (for Mozilla), o- (for Opera), and -webkit- (for WebKit-
based browsers such as Safari and Chrome) in your declarations.

Listing 1-2. CSS File for the HTML5 Page

body {
 background-color:#CCCCCC;
 font-family:Geneva,Arial,Helvetica,sans-serif;
 margin: 0px auto;
 max-width:900px;
 border:solid;
 border-color:#FFFFFF;
}

header {
 background-color: #F47D31;
 display:block;
 color:#FFFFFF;
 text-align:center;
}

header h2 {
 margin: 0px;
}

h1 {
 font-size: 72px;
 margin: 0px;
}

h2 {
 font-size: 24px;
 margin: 0px;
 text-align:center;
 color: #F47D31;
}

h3 {
 font-size: 18px;
 margin: 0px;
 text-align:center;
 color: #F47D31;
}

CHAPTER 1 ■ OVERVIEW OF HTML5

14

h4 {
 color: #F47D31;
 background-color: #fff;
 -webkit-box-shadow: 2px 2px 20px #888;
 -webkit-transform: rotate(-45deg);
 -moz-box-shadow: 2px 2px 20px #888;
 -moz-transform: rotate(-45deg);
 position: absolute;
 padding: 0px 150px;
 top: 50px;
 left: -120px;
 text-align:center;

}

nav {
 display:block;
 width:25%;
 float:left;
}

nav a:link, nav a:visited {
 display: block;
 border-bottom: 3px solid #fff;
 padding: 10px;
 text-decoration: none;
 font-weight: bold;
 margin: 5px;
}

nav a:hover {
 color: white;
 background-color: #F47D31;
}

nav h3 {
 margin: 15px;
 color: white;
}

#container {
 background-color: #888;
}

section {
 display:block;
 width:50%;
 float:left;
}

CHAPTER 1 ■ OVERVIEW OF HTML5

15

article {
 background-color: #eee;
 display:block;
 margin: 10px;
 padding: 10px;
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 -webkit-box-shadow: 2px 2px 20px #888;
 -webkit-transform: rotate(-10deg);
 -moz-box-shadow: 2px 2px 20px #888;
 -moz-transform: rotate(-10deg);
}

article header {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 padding: 5px;

}

article footer {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 padding: 5px;
}

article h1 {
 font-size: 18px;
}

aside {
 display:block;
 width:25%;
 float:left;
}

aside h3 {
 margin: 15px;
 color: white;
}

aside p {
 margin: 15px;
 color: white;
 font-weight: bold;
 font-style: italic;
}

CHAPTER 1 ■ OVERVIEW OF HTML5

16

footer {
 clear: both;
 display: block;
 background-color: #F47D31;
 color:#FFFFFF;
 text-align:center;
 padding: 15px;
}

footer h2 {
 font-size: 14px;
 color: white;
}

/* links */
a {
 color: #F47D31;
}

a:hover {
 text-decoration: underline;
}

Figure 1-2 shows an example of the page in Listing 1-1, styled with CSS (and some CSS3) styles. Keep

in mind, however, that there is no such thing as a typical HTML5 page. Anything goes, really, and this
example uses many of the new tags mainly for purposes of demonstration.

CHAPTER 1 ■ OVERVIEW OF HTML5

17

Figure 1-2. An HTML5 page with all the new semantic markup elements

One last thing to keep in mind is that browsers may seem to render things as if they actually
understand these new elements. The truth is, however, that these elements could have been renamed
foo and bar and then styled, and they would have been rendered the same way (but of course, they
would not have any benefits in search engine optimization). The one exception to this is Internet
Explorer, which requires that elements be part of the DOM. So, if you want to see these elements in IE,
you must programmatically insert them into the DOM and display them as block elements.

Simplifying Selection Using the Selectors API
Along with the new semantic elements, HTML5 also introduces new simple ways to find elements in
your page DOM. Table 1-3 shows the previous versions of the document object allowed developers to
make a few calls to find specific elements in the page.

CHAPTER 1 ■ OVERVIEW OF HTML5

18

Table 1-3. Previous JavaScript Methods to Find Elements

Function Description Example

getElementById() Returns the element with the
specified id attribute value

<div id="foo">
getElementById("foo");

getElementsByName() Returns all elements whose name
attribute has the specified value

<input type="text" name="foo">
getElementsByName("foo");

getElementsByTagName() Return all elements whose tag name
matches the specified value

<input type="text">
getElementsByTagName("input");

With the new Selectors API, there are now more precise ways to specify which elements you would

like to retrieve without resorting to looping and iterating through a document using standard DOM. The
Selectors API exposes the same selector rules present in CSS as a means to find one or more elements in
the page. For example, CSS already has handy rules for selecting elements based on their nesting,
sibling, and child patterns. The most recent versions of CSS add support for more pseudo-classes—for
example, whether an object is enabled, disabled, or checked—and just about any combination of
properties and hierarchy you could imagine. To select elements in your DOM using CSS rules, simply
utilize one of the functions shown in Table 1-4.

Table 1-4. New QuerySelector methods

Function Description Example Result

querySelector() Return the first element
in the page which
matches the specified
selector rules(s)

querySelector("input.error"); Return the first
input field with a
style class of
“error”

querySelectorAll() Returns all elements
which match the
specified rule or rules

querySelectorAll("#results
td");

Return any table
cells inside the
element with id
results

It is also possible to send more than one selector rule to the Selector API functions, for example:

// select the first element in the document with the
// style class highClass or the style class lowClass
var x = document.querySelector(“.highClass”, “.lowClass”);

In the case of querySelector(), the first element that matches either rule is selected. In the case of

querySelectorAll(), any element matching any of the listed rules is returned. Multiple rules are comma-
separated.

CHAPTER 1 ■ OVERVIEW OF HTML5

19

The new Selector API makes it easy to select sections of the document that were painful to track
before. Assume, for example, that you wanted the ability to find whichever cell of a table currently had
the mouse hovering over it. Listing 1-3 shows how this is trivially easy with a selector. This file is also in
the code/intro directory.

Listing 1-3. Using the Selector API

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <title>Query Selector Demo</title>

 <style type="text/css">
 td {
 border-style: solid;
 border-width: 1px;
 font-size: 300%;
 }

 td:hover {
 background-color: cyan;
 }

 #hoverResult {
 color: green;
 font-size: 200%;
 }
 </style>
</head>

<body>
 <section>
 <!-- create a table with a 3 by 3 cell display -->
 <table>
 <tr>
 <td>A1</td> <td>A2</td> <td>A3</td>
 </tr>
 <tr>
 <td>B1</td> <td>B2</td> <td>B3</td>
 </tr>
 <tr>
 <td>C1</td> <td>C2</td> <td>C3</td>
 </tr>
 </table>

 <div>Focus the button, hover over the table cells, and hit Enter to identify them
 using querySelector('td:hover').</div>
 <button type="button" id="findHover" autofocus>Find 'td:hover' target</button>
 <div id="hoverResult"></div>

CHAPTER 1 ■ OVERVIEW OF HTML5

20

 <script type="text/javascript">
 document.getElementById("findHover").onclick = function() {
 // find the table cell currently hovered in the page
 var hovered = document.querySelector("td:hover");
 if (hovered)
 document.getElementById("hoverResult").innerHTML = hovered.innerHTML;
 }
 </script>
 </section>

</body>
</html>

As you can see from this example, finding the element a user is hovering over is a one-line exercise

using:

var hovered = document.querySelector("td:hover");

■ Note Not only are the Selector APIs handy, but they are often faster than traversing the DOM using the legacy
child retrieval APIs. Browsers are highly optimized for selector matching in order to implement fast style sheets.

It should not be too surprising to find that the formal specification of selectors is separated from the
specification for CSS at the W3C. As you’ve seen here, selectors are generally useful outside of styling.
The full details of the new selectors are outside the scope of this book, but if you are a developer seeking
the optimal ways to manipulate your DOM, you are encouraged to use the new Selectors API to rapidly
navigate your application structure.

JavaScript Logging and Debugging
Though they’re not technically a feature of HTML5, JavaScript logging and in-browser debugging tools
have been improved greatly over the past few years. The first great tool for analyzing web pages and the
code running in them was the Firefox add-on, Firebug.

Similar functionality can now be found in all the other browsers’ built-in development tools: Safari’s
Web Inspector, Google’s Chrome Developer Tools, Internet Explorer’s Developer Tools, and Opera’s
Dragonfly. Figure 1-3 shows the Google Chrome Developer Tools (use the shortcut key CTRL + Shift + J
to access this) that provide a wealth of information about your web pages; these include a debugging
console, a resource view, and a storage view, to name just a few.

CHAPTER 1 ■ OVERVIEW OF HTML5

21

Figure 1-3. Developer Tools view in Chrome

Many of the debugging tools offer a way to set breakpoints to halt code execution and analyze the
state of the program and the current state of the variables. The console.log API has become the de facto
logging standard for JavaScript developers. Many browsers offer a split-pane view that allows you to see
messages logged to the console. Using console.log is much better than making a call to alert(), since it
does not halt program execution.

window.JSON
JSON is a relatively new and increasingly popular way to represent data. It is a subset of JavaScript syntax
that represents data as object literals. Due to its simplicity and natural fit in JavaScript programming,
JSON has become the de facto standard for data interchange in HTML5 applications. The canonical API
for JSON has two functions, parse() and stringify() (meaning serialize or convert to string).

To use JSON in older browsers, you need a JavaScript library (several can be found at
http://json.org). Parsing and serializing in JavaScript are not always as fast as you would like, so to
speed up things, newer browsers now have a native implementation of JSON that can be called from
JavaScript. The native JSON object is specified as part of the ECMAScript 5 standard covering the next
generation of the JavaScript language. It is one of the first parts of ECMAScript 5 to be widely
implemented. Every modern browser has window.JSON, and you can expect to see quite a lot of JSON
used in HTML5 applications.

CHAPTER 1 ■ OVERVIEW OF HTML5

22

DOM Level 3
One of the most maligned parts of web application development has been event handling. While most
browsers support standard APIs for events and elements, Internet Explorer differs. Early on, Internet
Explorer implemented an event model that differed from the eventual standard. Internet Explorer 9 (IE9)
will support DOM Level 2 and 3 features, so you can finally use the same code for DOM manipulation
and event handling in all HTML5 browsers. This includes the ever-important addEventListener() and
dispatchEvent() methods.

Monkeys, Squirrelfish, and Other Speedy Oddities
The latest round of browser innovations isn’t just about new tags and new APIs. One of the most
significant recent changes is the rapid evolution of JavaScript/ECMAScript engines in the leading
browsers. Just as new APIs open up capabilities that were impossible in last-generation browsers,
speedups in the execution of the overall scripting engine benefit both existing web applications and
those using the latest HTML5 features. Think your browser can’t handle complex image or data
processing, or the editing of lengthy manuscripts? Think again.

For the last few years, browser vendors have been in a virtual arms race to see who could develop
the fastest JavaScript engine. While the earliest iterations of JavaScript were purely interpreted, the
newest engines compile script code directly to native machine code, offering speedups of orders of
magnitude compared to the browsers of the mid-2000s.

The action pretty much began when Adobe donated its just-in-time (JIT) compilation engine and
virtual machine for ECMAScript—code named Tamarin—to the Mozilla project in 2006. Although only
pieces of the Tamarin technology remain in the latest versions of Mozilla, the donation of Tamarin
helped spawn new scripting engines in each of the browsers, with names that are just as intriguing as the
performance they claim.

Table 1-5. Web Browser JavaScript Engines

Browser Engine Name Notes

Apple Safari 5 Nitro (otherwise know as
SquirrelFish Extreme)

Released in Safari 4 and refined in
version 5, it introduces byte code optimizations and a
context-threaded native compiler.

Google
Chrome 5

V8 Since Chrome 2, it uses generational garbage collection
for high memory scalability without interruptions.

Microsoft
Internet
Explorer 9

Chakra This focuses on background compilation and an
efficient type system and demonstrates a tenfold
improvement over IE8.

Mozilla Firefox 4 JägerMonkey Refined from version 3.5, this combines fast
interpretation with native compilation from trace trees.

Opera 10.60 Carakan This one uses register-based byte code and selective
native compilation and claims improvements of 75% on
version 10.50.

CHAPTER 1 ■ OVERVIEW OF HTML5

23

All in all, this healthy competition among browser vendors is bringing the performance of JavaScript

ever closer to that of native desktop application code.

STILL MORE MOMENTS IN HTML

Peter says: “Speaking of competition, and speedy oddities, my name is Peter and running is my thing—a
lot of running.

Ultra running is a great sport where you meet great people. While running the last miles of a 100-mile race
or a 165-mile trail run, you really get to know some very interesting people in a very new way. At that
point, you’re really stripped down to your essence, the place where great friendships can happen. There’s
still the element of competition, to be sure, but most of all there’s a deep sense of camaraderie. But I
digress here.

To keep track of how my friends are doing in races that I can’t attend (for example, when I am writing an
HTML5 book), I usually follow along on the race websites. Not surprisingly, the ‘live tracking’ options are
often quite unreliable.

A few years ago, I stumbled upon a site for a European race that had all the right ideas. They gave GPS
trackers to the front runners and then displayed these racers on a map (we’ll build some similar
demonstrations in this book using Geolocation and WebSocket). Despite the fact that it was quite a
primitive implementation (users had to actually click “refresh the page” to see updates!), I could instantly
see the incredible potential.

Now, just a few years later, HTML5 provides us with tools to build these sorts of live race tracking websites
with APIs such as Geolocation for location-aware applications and WebSockets for real-time updates.
There’s no doubt in my mind—HTML5 has crossed the finish line a winner!”

Summary
In this chapter, we have given you a general overview of the big essentials of HTML5.

We charted the history of its development and some of the important dates coming up. We also
outlined the four new design principles behind the HTML5 era that is now dawning: compatibility,
utility, interoperability, and universal access. Each one of these principles opens the door to a world of
possibilities and closes the door on a host of practices and conventions that are now rendered obsolete.
We then introduced HTML5’s startling new plugin-free paradigm and answered the question on the tip
of everyone’s tongue—what’s in and what’s out? We reviewed what’s new in HTML5, such as a new
DOCTYPE and character set, lots of new markup elements, and we discussed the race for JavaScript
supremacy.

In the next chapter, we’ll begin by exploring the programming side of HTML5, starting with the
Canvas API.

	Chapter 1 Overview of HTML5
	The Story So Far—The History of HTML5
	The Myth of 2022 and Why It Doesn’t Matter
	Who Is Developing HTML5?
	A New Vision
	Compatibility and Paving the Cow Paths
	Utility and the Priority of Constituencies
	Secure by Design
	Separation of Presentation and Content

	Interoperability Simplification
	Universal Access

	A Plugin–Free Paradigm
	What’s In and What’s Out?

	What’s New in HTML5?
	New DOCTYPE and Character Set
	New and Deprecated Elements
	Semantic Markup
	Simplifying Selection Using the Selectors API
	JavaScript Logging and Debugging
	window.JSON
	DOM Level 3
	Monkeys, Squirrelfish, and Other Speedy Oddities

	Summary

