
Beyond the Basics in CSS
and Scripting

In Chapters 5, 6, and 7, you learned how to use CSS to make your website attractive and easy
to maintain with styles. In this chapter, we will look at styling your content for different media.
In several places in this book, I have pointed out that you have more control over how pages
display when printed than over how they display on the screen. Using a print media stylesheet
allows you to specify how a page should print. You can reformat a page so that only the parts
of the page you choose are printed and so that you use print measurements, such as margins
in inches or centimeters and type in points.

In Chapter 10, we created two contact forms. The first was a standard HTML form and the
second used ASP.NET. In both cases, the form we created was simple, and the visitor could sub-
mit the form without filling in any of the form fields. Having empty forms submitted is usually
not desirable. You can prevent form fields from being submitted without content by validating
your form before submitting the form for processing. ASP.NET has built-in validation controls,
which you can easily use in Expression Web, but these controls are only available if you have
ASP.NET on your web server.

In this chapter, we will add form field validation to our ASP.NET forms using the built-in
validation controls. For those who do not have ASP.NET, simple form–to–e-mail scripts were
provided in Chapter 10, and we will add simple JavaScript code to ensure that these HTML
forms have content before they are submitted.

This chapter will conclude by using ASP.NET to password protect a folder on our website.
The Appendix will look at some of the third-party add-ins available for Expression Web.

Alternative Stylesheet Types
In this book, we have been creating one stylesheet that will be used whether the visitor is read-
ing the page on a conventional web browser, a pocket PC, a cell phone, a printout, or with
some sort of assistive technology such as a screen reader. This is not the only way you can use
stylesheets. You can serve a different stylesheet depending on what type of device is being
used to access your web page.

313

C H A P T E R 1 3

By using media stylesheets, you can target specific devices or methods of viewing without
having to change the HTML. You can control how a page will be rendered or viewed using the
following media types:

• all: This is the default type applied to all media if you do not specify a media type.

• aural: This media type is intended for use with speech synthesizers or screen readers
but is supported by only a few screen readers. See the W3C section on aural stylesheets
at http://www.w3.org/TR/REC-CSS2/aural.html for details.

• braille: This rarely used media type sends instructions to tactile Braille feedback devices.

• embossed: Use this media type for Braille printers.

• handheld: For PDAs, some of the new smart phones, and other devices with small
screens and limited bandwidth, use this media type.

• print: Stylesheets for printing are the best supported media type. This type of stylesheet
provides instructions for printers and uses measurements appropriate for printing.
More information is available on the W3C paged media section: http://www.w3.org/TR/
REC-CSS2/page.html.

• projection: For projected presentations, such as projectors or print to transparencies,
use this media type.

• screen: This type is best suited for computer screens using a web browser.

• tty: For media using a fixed-pitch character grid, such as teletypes, terminals, or
portable devices with limited display capabilities, use the tty type. Devices that use
the tty media type generally do not support pixels as a unit of measurement.

• tv: Use the tv type for television-type devices, such as MSNTV; a game console, such as
Xbox or PlayStation; or other devices using low-resolution, limited scroll ability screens,
such as traditional CRT televisions.

Media type names are case insensitive, but if you are using XHTML, it is case sensitive, so
lowercase names is a good practice. Note that not all media types are well supported.

Applying Different Media Types
You may write styles for various media in the <head> section by specifying the media attribute
in the <style> element as follows:

<style type="text/css" media="tty">
<style type="text/css" media="tv">
<style type="text/css" media="projection">
<style type="text/css" media="handheld">
<style type="text/css" media="print">
<style type="text/css" media="braille">
<style type="text/css" media="aural">
<style type="text/css" media="all">
<style type="text/css" media="screen">

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING314

If you just want to have one or two styles that would apply to a specific media style, you
can use the @media rule. You use this rule to define different types of stylesheets as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Media Example</title>
<style type="text/css">
@media screen {
p {
font-size: small;
color: blue;
font-family: Tahoma, Arial, sans-serif

}
body {
margin: 0;
padding: 10px;

}
}
@media print {
p {
font-size: 10pt;

}
body {
font-family: "Times New Roman", Times, serif;
margin: 1in; color: black;

}
}
@media projection {
p {
font-size: x-large;
color: red;
font-family: Arial, Helvetica, sans-serif;

}
}
</style>

</head>
<body>
<h1>Altering the Paragraph Tag for Media</h1>
<p>This paragraph should appear blue on the screen with small text
and 10px margins.</p>
<p>When viewed on a projector the text would be larger and red with
the default browser margins. </p>
<p>For print the page should have 1inch margins and 10pt type with
black type. </p>

</body>
</html>

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 315

An alternative method of adding media styles is to use linked stylesheets with the media
attribute:

<link rel="stylesheet" media="aural" href="aural.css" type="text/css">
<link rel="stylesheet" media="screen" href="screen.css" type="text/css">
<link rel="stylesheet" media="print" href="print.css" type="text/css">
<link rel="stylesheet" href="site.css" type="text/css">

Print Stylesheets
A separate style for printing is the most commonly used media stylesheet. Pages generally
contain elements that are not necessary when you are printing a page. After all, a menu of
hyperlinks does not help when you are viewing a printed page, and decorative images that
would waste ink are another item you might prefer not to print. In addition, a printed page
using measurements appropriate to print, such as points and margins in inches instead of
pixels or ems, may be a better option. In Chapter 9, we created a web page that looks like
Figure 13-1 when viewed in a browser.

Figure 13-1. A web page viewed in a browser without a print stylesheet applied.

You would think the page shown in Figure 13-1 would print on one page, but as Figure 13-2
shows, without a print stylesheet the web page would equal two printed pages, and since back-
ground images do not print, the page is not attractive when printed.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING316

Figure 13-2. Without a print stylesheet, the web page prints on two pages and without background
images. A single stylesheet can lead to pages that do not print properly.

However, if we add a media="print" stylesheet that removes the navigation and makes
the content of the side menu full width, the page will print as shown in Figure 13-3, which
not only looks better but also fits on one page.

Figure 13-3. The same page with a print stylesheet attached

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 317

The stylesheets are attached in the following order:

<link rel="stylesheet" type="text/css" href="few-site.css" />
<link rel="stylesheet" type="text/css" href="print.css" media="print" />

The styles from the main stylesheet that we will be changing in the print stylesheet are
as follows:

#masthead h1 {
padding: .5em 1em;
margin: 0;
font-size: 1.5em;

}
.tagline {
font-size: .75em;

}
#menu {
background: url('images/menu-bg.gif') repeat-x bottom #FDB928;
height: 45px;

}
#container {
border-right: solid 6px #000000;
border-left: solid 6px #000000;
padding: 0;
margin: 0;
background-color: #000000;
color: #CEDBAE;

}
#leftcol {
background: #000000 url('images/book-corner.jpg') no-repeat;
float: left;
width: 150px;
padding: 100px 4px 10px 10px;
font-size: .88em;

}
#main_content {
padding: .1em 1em;
margin: 0 0 0 165px;
background-color: #F4F5EF;
color: #000000;

}
#footer {
margin: 0px;
padding: .1em 1em;
font-size: .8em;
border: solid 1px #666666;

}

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING318

The new style definitions in our print stylesheet are

body {
font-size: 12pt;

}
#masthead h1 {
font-size: 20pt;

}
.tagline {
font-size: 14pt;

}
#menu {
width: 0;
height: 0;
overflow: hidden;

}
#container {
border: none;

}
#leftcol {
width: 100%;
padding: 0;
font-size: 1em;

}
#main_content {
padding: 0;
margin: 0;

}
#footer {
font-size: 9pt;
border: none;

}

Changes to the Print Layout
By changing the menu to have a height and width of 0 with overflow hidden, all browsers
will collapse the space, and your menu will not print. Setting the width of the left column to
100 percent takes the content to the full width of the printed pages. The last adjustment to
the page layout was to remove the left margin from the maincontent <div> so that it would
also print the full width of the page. All of the borders were removed by using border: none
for each of the divs where borders were specified in the original stylesheet.

Changes to Text
A print font size of 12pt was specified as the default, and the left-side text was reset from
.88em, which would be just under 11pt text, to the same size as the main content text. All
other font sizes were changed from resizable screen measurements to points as well. The
<h1> and tagline text were changed from orange to black text to print better on white paper

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 319

and avoid wasting color ink. Remember that background colors and images do not print by
default. This means you should either use print preview in your browser or actually print the
web pages that you believe your visitors may want to print. Examples of pages that are com-
monly printed are directions, receipts, form confirmation, product pages, and price sheets.

You should use print stylesheets whenever you expect your pages to be printed.

Validating your Forms
Form validation is used to make sure that your visitor has completed the form fields needed
for you to respond to a request or fulfill the purpose of the form and is something many peo-
ple want to do before a form is submitted. There are two basic types of form validation. The
first is client-side validation, which happens before the form is submitted to the form’s pro-
cessing script. The second happens on the server before the form is processed and sends an
e-mail or performs another action.

Client-side validation takes place in the visitor’s browser, which makes it very fast and
allows you to provide immediate feedback to a visitor who did not fill in required information
or formatted the information incorrectly. This method requires JavaScript to be enabled
in the visitor’s browser. While the vast majority of web surfers (90 percent is the generally
accepted figure as provided by http://www.w3schools.com/browsers/browsers_stats.asp and
thecounter.com) do have JavaScript available in their browsers, a significant number of visitors
may still submit forms without having the form field contents validated.

As a result, many people use both client-side and server-side form validation. ASP.NET
provides both by default: it adds JavaScript validation to your forms, but if validation fails
there because of a lack of JavaScript support, the form field contents are checked on the
server before being submitted for processing.

ASP.NET Form Validation Controls
ASP.NET validation controls are found in the Toolbox. To use the validation controls, expand the
Validation section of the ASP.NET Controls in the Toolbox task pane, as shown in Figure 13-4.

Figure 13-4. Available ASP.NET validation controls

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING320

The control you should use depends on what type of validation your form fields need.
Available controls are as follows:

• CompareValidator control compares the form field entry against a preset value or
against the value of another control using less than, equals, or greater than. Common
uses of this validator are checking that two e-mail form fields contain the same value or
are of a specific data type.

• CustomValidator control checks the form field entry against code that you write yourself.

• RangeValidator control checks that a visitor’s entry is between a minimum and a maxi-
mum pair of numbers, alphabetic characters, or dates.

• RegularExpressionValidator control checks that the form field contents match a
pattern defined by a regular expression. This allows you to check for predictable
sequences of characters, such as those in e-mail addresses, telephone numbers, or
zip and postal codes.

• RequiredFieldValidator control prevents the form from being submitted when the
form fields are empty.

• ValidationSummary control does not validate form fields but can be used with the other
validation controls to display the error messages from all the validation controls on the
page in one block instead of next to the fields being validated.

ASP.NET Validation Controls Tag Properties
Before you can use the ASP.NET validation controls, you must have an ASP.NET form with
ASP.NET form fields and labels. In this section, I will be using the form.aspx page we created
in Chapter 10 with the forms.css stylesheet applied.

With each of the ASP.NET validation controls, the values and properties are set in the Tag
Properties task pane. There are six sections of properties you can set for each control. They are
as follows:

• Accessibility, shown in Figure 13-5, allows you to set an access key and tab index for
your form fields or validation controls. To avoid conflicts with the user’s settings, do
not set either of these properties.

Figure 13-5. ASP.NET validation controls Accessibility properties

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 321

• Appearance, shown in Figure 13-6, will be the same on every validation control with
the exception of the ValidationSummary control, which will display the ErrorMessage
property of the individual validation types. By default, the error messages are red
when displayed. You can change the color using the ForeColor property, but if you
wish to change the default display, it is best to create a CSS class and apply it to the
error message using the CssClass property. For all of the validation controls except
ValidationSummary, you must replace the default error message in the ErrorMessage
property.

Figure 13-6. Replace the default error message with one appropriate for your form field.

• Behavior is where you set properties that differ among the types of validation controls.
Later in this section, we will be looking at each of the validation controls individually.
However, the following properties in the Behavior section remain constant among the
validation controls:

• ControlToValidate: Here, you select the control to be validated on each of the vali-
dation controls except for the ValidationSummary control. Use the drop-down list
to make sure you get the correct field, as shown in Figure 13-7.

• Enabled: The default is True. If you change this to False, the control will not function.

• EnableTheming: The default is True. This allows you to apply a Visual Studio theme
to your site.

• EnableViewState: The default is True. Do not change the default if you want to
allow the server to keep track of the status of the validation field.

• InitialValue: This property is blank and should be left as such.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING322

Figure 13-7. All of the form controls available on the page will be available in the drop-down list.

Figure 13-8. Behavior options for Validation Controls

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 323

• SetFocusOnError: The default is False. If you set this to True, when the validation
routine finds an error, it will take the visitor directly to the error message instead
of going to the top of the page. When you use the ValidationSummary control, you
should set this property to True.

• SkinID: This property allows you to associate the control with a skin or theme ID.
As with the EnableTheming property, you can safely leave the defaults alone. Skins
and themes are created in Visual Studio.

• ToolTip: This sets the title attribute to provide additional information if the visitor
mouses over the control.

• ValidationGroup: By default, this property is blank. Leave it that way.

• Data contains only one property, Expressions, which would be used if you were
connecting to a database or other data source to validate against (see Figure 13-9).

Figure 13-9. The only Data option for validation controls is Expressions.

• Layout, shown in Figure 13-10, has two properties: Height and Width, which should be
contained in a CSS class instead of being set individually for each control.

Figure 13-10. Layout options

• Misc has only one property—ID, as shown in Figure 13-11. You should change its name
to a more meaningful one than the default, which is the type of validation control. As
you add more validation controls of the same type to your page, a number that incre-
ments will be added to the default to avoid duplicate names.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING324

Figure 13-11. Change the default name for the control ID.

■TIp Decide on a naming convention and stick with it for ease of maintenance.

Individual Validation Control Properties
ASP.NET has a variety of validation controls available. You can check if the form field is empty
or has content. You can also check if the information is the correct type, such as a date or
e-mail address. In addition, you can determine that the content matches either another form
field or a static value. Each of the six validation controls are addressed individually in the fol-
lowing sections.

RequiredFieldValidator

The RequiredFieldValidator does exactly what its name says—it checks for content in the
form field before the form is submitted for processing. It does not check the contents of the
form field, only whether there is something in the field. Make sure that you provide a mean-
ingful error message, as shown in Figure 13-12.

Figure 13-12. Remember to insert the error message for each validation control.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 325

RegularExpressionValidator

A regular expression is a string that describes or matches a set of strings, according to certain
syntax rule; it’s similar to using wild cards to match text. Expression Web includes some of
the common regular expressions used to validate form information on the Web. Use the
RegularExpressionValidator to ensure that any e-mail address submitted using the contact
form is in the proper format. In addition to e-mail addresses, you can validate URLs, phone
number formats used in various countries, postal or zip codes, and other common form data
that follows a regular pattern.

■Note You can only validate the form of the e-mail. You can not use the regular expression validation con-
trol to confirm that the address is a real address. The only reliable way to validate a live e-mail address is to
send an e-mail and get a response from the e-mail account holder.

To use the ValidationExpression control, click once to bring up the three dots in the
ValidationExpression property in the Tag Properties task pane. Click again to launch the
Regular Expression Editor shown in Figure 13-13.

Figure 13-13. Many commonly used validation expressions are available from the Regular
Expression Editor.

■Tip You can have more than one validation control on a form field. In the case of our simple form, we may
want to use the RequiredFieldValidator to make sure that the e-mail field is not empty.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING326

Compare Validator
The compare validator compares the contents of the form field to either the contents of
another field or a value you supply.

• To compare one field with another in the same form, select the form field for compari-
son from ControlToCompare property.

• To compare the ControlToValidate field with a value specified in the ValueToCompare
property, choose the type of comparison to make from the Operator drop-down as
shown in Figure 13-14.

Figure 13-14. Select the two form fields you wish to compare.

Required Range Validator
You would use a required range validator to place an upper and lower limit, such as a mini-
mum and maximum order quantity or a date range, as shown in Figure 13-15. In our simple
form example, there is no field that would be appropriate for the required range validator.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 327

Figure 13-15. Use a minimum and maximum value for the form field contents.

Validation Summary
Up until this point, each of the validation controls we have been adding is displayed where
the control is placed on the page. While having the error message next to the form fields tells
the visitor which form field was missed or incorrectly filled out, this can lead to problems
with page display not only in Expression Web, as shown in Figure 13-16, but also in the
browser even before the error messages are displayed, as shown in Figure 13-17.

Figure 13-16. Form with validation in Design view

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING328

Figure 13-17. The same form displayed in Internet Explorer 7

The gaps you see in Figure 13-17 are where the validation messages take up space but are
not displayed until the form is submitted. When the form is submitted, depending on which
error message is triggered, the display may look even stranger, as shown in Figure 13-18.

Figure 13-18. When the second validation error message displays, there may be mysterious gaps.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 329

You can prevent this sort of unattractive display by using the validation summary control,
the properties of which are shown in Figure 13-19. The summary can be displayed as a list, a
bulleted list, or a single paragraph, based on the DisplayMode property. The summary will be
displayed on the web page as a bulleted list without changing the defaults.

Figure 13-19. The default provides a bulleted list and an error message where the control is
located.

Exercise 13-1. Using ASP.NET Form Validation

In Chapter 10, we created a simple form with four ASP.NET form controls. In this exercise, you will add validation
for each of the form fields and use the ValidationSummary control to display the error messages. The form
code before we begin is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING330

<head runat="server">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 13</title>
<link rel="stylesheet" type="text/css" href="form.css" />
</head>

<body>
<form id="form1" runat="server">

<asp:Label runat="server" Text="Name: " id="lblsname"
AssociatedControlID="sname"></asp:Label>
<asp:TextBox runat="server" id="sname">
</asp:TextBox>

<asp:Label runat="server" Text="Email: " id="lblemail"
AssociatedControlID="email"></asp:Label>
<asp:TextBox runat="server" id="email">

</asp:TextBox>

<asp:Label runat="server" Text="Confirm Email: " id="lblconfirmemail"
AssociatedControlID="email"></asp:Label>
<asp:TextBox runat="server" id="confirmemail">

</asp:TextBox>

<asp:Label runat="server" Text="Message: " id="lblmessage"
AssociatedControlID="message"></asp:Label>
<asp:TextBox runat="server" id="message" Width="300px" Rows="10"
TextMode="MultiLine"></asp:TextBox>
<p class="submit">
<asp:Button runat="server" text="Submit" id="subimit" /></p>

</form>
</body>
</html>

The stylesheet referenced in the HTML code for this exercise is the same one created in Chapter 10 and is
optional. If you do not use that stylesheet, your form will not be inside the shaded area shown in this exercise’s
screen images.

Before you begin adding validation controls, you need to add a label and form field for a second e-mail address
just below the existing e-mail form field so that you can compare the e-mail address to check for entry errors.

<asp:Label runat="server" Text=" Confirm Email: " id="lblconfirmemail"
AssociatedControlID="email"></asp:Label>
<asp:TextBox runat="server" id="confirmemail">
</asp:TextBox>

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 331

1. Begin by dragging a RequiredFieldValidator control out to the right of each of your form fields, as
shown in Figure 13-20.

Figure 13-20. Configure the RequiredFieldValidator properties for the sname field.

2. The properties we need to change for the Name form field are as follows:

• ErrorMessage: Name Required: Set the text to display when the control displays.

• Display: Dynamic: By changing the display property from static to dynamic, no space will be taken
up by the error message unless there is an error.

• ControlToValidate: Use the drop-down list to select the sname form field.

• ID: RequiredSname: This means you will be able to tell which field the RequiredFieldValidator is
validating.

3. Repeat step 2 for the Email, Confirm Email, and Message form fields, except that you should set Display
to None on the Message form field. When the Display property is set to None, a ValidationSummary
control must be used, which we will add later in this exercise. Make sure that you select the appropriate
form field from the ControlToValidate drop-down for every validation control you use.

4. Next, drag out the RegularExpression validator, and drop it to the right of where the Email Required
text shows in Design view. Type the ErrorMessage text, set Display to None, and set ID to RegExemail.
When we use a ValidationSummary control and place an the asterisk in the Text property, an asterisk
will display next to the e-mail form field, and the full message will appear in the summary message box.
Next, click the three dots in ValidationExpression property to launch the Regular Expression Editor,
and choose Internet e-mail address, as shown in Figure 13-21. Click OK.

5. Now, drag a CompareValidator control to the right of the confirmemail field. Type the ErrorMessage,
set Display to None, place an asterisk in the Text property, and set ID to Compemail (see Figure 13-22).

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING332

Figure 13-21. Expression Web includes the regular expression code for e-mail address
validation.

Figure 13-22. Compare e-mail addresses entered in the form.

6. The last validation control we need to add is the ValidationSummary control. Drag it to the top of your
form, well above the Name label, before you let go; otherwise, the control tends to land between the Name
label and the sname textbox control.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 333

7. While there is no need to change any of the default properties of the ValidationSummary control, you
may prefer not to have your error list display bullets if you choose to use an asterisk as the Text property
for the e-mail regular expression validation.

8. Save and view your form, which should look like Figure 13-23 in Design view.

Figure 13-23. In Design view, you will see the error message or text properties unless Display
is set to None.

9. When viewed in the browser, the form will display the same as it did before ASP.NET validation was added,
as shown in Figure 13-24.

Figure 13-24. Error messages appear only after the form is submitted without text or with a
malformed e-mail address.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING334

10. See what happens when you skip form fields or enter an invalid e-mail address, as shown in Figure 13-22.
Try changing the Display properties on the different validation controls to Static and see what difference
that makes.

Figure 13-25. Errors appear inline and in the summary area when Display is set
to Dynamic.

HTML Forms Validation
In the previous section, we used the ASP.NET validation controls. You must have ASP.NET
support on your web server to use them on your website. So what do you do if you do not
have ASP.NET support on your web server?

The options are to

• Use JavaScript for client-side validation before the form is submitted.

• Use classic ASP, PHP, or some other server-side technology supported by your web
server that will check the data before continuing to process the form.

• Use a combination of JavaScript on the client side plus server-side scripting. This is
how the ASP.NET validation controls work.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 335

In this book, we will limit the non-ASP.NET forms validation to required field validation
using client-side JavaScript. In Chapter 10, we created a form named contact; this is the code
we will validate:

<form method="post" action="sendmail.asp" name="contact">
<p>
<label id="lblsname" for="sname">Name:</label>
<input name="sname" type="text" id="sname" />

<label id="lblemail" for="email">Email: </label>
<input name="email" type="text" id="email" />

<label id="lblmessage" for="message" id="message">Message:</label>
<textarea name="message" cols="30" rows="10"></textarea>

</p>
<p class="submit">
<input name="submit1" id="submit1" type="submit" value="submit" />

</p>
</form>

In the form, we have three fields with the names of sname, email, and message. Simple
required field validation can be performed using the following JavaScript code that checks for
the presence of any content in each of the form fields specified in the if statements:

<script language="javascript" type="text/javascript">
function validateForm() {
with (document.contact) {
var alertMsg = "The following REQUIRED fields\nhave been left empty:\n";
if (sname.value == "") alertMsg += "\nName";
if (email.value == "") alertMsg += "\nEmail";
if (message.value == "") alertMsg += "\nMessage";
if (alertMsg != "The following REQUIRED fields\nhave been left empty:\n") {
alert(alertMsg);
return false;

} else {
return true;

}
}

}
</script>

For forms with different form field names, in the following code, replace fieldname and
Error-Message with the name of the form field you wish to validate and the message you want
displayed in the alert box:

if (fieldname.value == "") alertMsg += "\nError-Message";

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING336

Add or remove the if line in the preceding code as necessary for the fields in your form.
In order to run this JavaScript script, we must change the <form> element and replace

<form method="post" action="sendmail.asp" name="contact">

with

<form method="post" action="sendmail.asp" name="contact"
onsubmit="return validateForm()">

Since these alerts appear in a separate alert box on top of your visitor’s browser window, I
recommend adding information to your form to tell the visitor which form fields are required.
That way, your visitor is more likely to fill out the required fields before submitting the form.

While an asterisk is frequently used to indicate a required field, it is a better practice to
spell out “required” next to the form to make it clear.

Password Protecting a Folder
The ability to password protect a section of a website is something many web designers wish to
do for one or more folders in their websites. In some cases, you can accomplish this by using
the control panel provided by your web host, but if you have ASP.NET 2.0 on your web server,
you can control access to folders in your site using the web.config file and a login form.
Whenever your site visitor tries to access an .aspx page in the folder, they will be directed to
a login.aspx page in the main section of your website. If they provide the correct user name
and password, the page they requested will be displayed. Only .aspx pages can be protected
in this manner; HTML pages can still be viewed.

The web.config file is a special XML file that holds information about your website.
Depending on your hosting provider, you may already have a web.config file in your website
from when your web hosting was set up. If you have an existing web.config file, make a backup
copy before you proceed. If you do not have an existing web.config file, you will need to
create one.

Unlike all of the other code you have been able to download from http://
foundationsofexpressionweb.com, the code for this last section of this chapter is not in the
exercise section but in the extras folder. To download the code to password protect a folder
on your site, you must go to http://foundationsofexpressionweb.com/extras and log in with
the following credentials:

• User ID: book

• Password: chapter13

Creating a web.config File
If you do not have a web.config file, create one by selecting File ➤ New ➤ Page, and from the
ASP.NET section, choosing Web Configuration, as shown in Figure 13-26. Save the file created
as web.config.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 337

Figure 13-26. Web Configuration creates a web.config file.

Expression Web creates a basic web.config file with basic settings and explanatory text
surrounded by comments so that your web server does not attempt to execute the code.
Without the extra information in the comments, the web.config file created is as follows:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<appSettings/>
<connectionStrings/>
<system.web>
<compilation debug="false"/>
<authentication mode="Windows"/>
<!--
<customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
<error statusCode="403" redirect="NoAccess.htm"/>
<error statusCode="404" redirect="FileNotFound.htm"/>

</customErrors>
-->

</system.web>
</configuration>

■Tip The <customErrors> section is used if you want to design your own custom page to display when
the visitor tries to access a page that does not exist. Simply replace the FileNotFound.htm file with the
name of the file you create.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING338

To create a protected area, we must replace the default code in the <authentication
mode="Windows"/> section and add a <location> section so that your <system.web> section is
as follows:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<appSettings/>
<connectionStrings/>
<system.web>
<authentication mode="Forms">
<forms loginUrl="login.aspx" timeout="30" >
<credentials passwordFormat="Clear">
<user name="book" password="chapter13" />

</credentials>
</forms>

</authentication>
</system.web>
<connectionStrings/>
<location path="extras">
<system.web>
<authorization>
<deny users="?" />

</authorization>
</system.web>

</location>
</configuration>

This code changes the method of authentication from Windows operating system to
forms based and sets a login expiration time of 30 minutes after the last new password-
protected page is accessed.

<credentials> says how the password is sent. Here, it is sent as clear text, but if you are
protecting really sensitive information, you should use one of the encoded password methods
such as SHA1 or MD5.

The user name and password specify the login name and password required. You
can have more than one user name and password by repeating the <user name="book"
password="chapter13" /> line with different values for name and password immediately
below the current location, for example:

<user name="book" password="chapter13" />
<user name="foundations" password="expression" />
<user name="admin" password="%fi?257" />

The <location> section specifies which folder in your website is protected. In this
case, it is the extras folder off the root. If you have not done so already, try it out at http://
foundationsofexpressionweb.com/extras.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 339

This is where you will find bonus material for people who own this book. When you
attempt to access this section you will be redirected to the login.aspx page. Use the following
credentials discussed earlier to confirm it is working:

• User ID: book

• Password: chapter13

■Note The user name and password are case sensitive, and no spaces are allowed. Make sure you type
them correctly as book and chapter13.

If your website has a web.config file provided by your hosting provider, check with your
provider before you edit the file to make sure that you do not break any functions or database
connections on your site.

The completed web.config file should now look like this:

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<appSettings/>
<connectionStrings/>
<system.web>
<authentication mode="Forms">
<forms loginUrl="login.aspx" timeout="30" >
<credentials passwordFormat="Clear">
<user name="book" password="chapter13" />

</credentials>
</forms>

</authentication>
</system.web>
<location path="extras">
<system.web>
<authorization>
<deny users="?" />

</authorization>
</system.web>

</location>
<!--
Note you can have more than one system.web section in your
web.config file as long as they do not conflict.
-->

<system.web>

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING340

<!--
Set compilation debug="true" to insert debugging
symbols into the compiled page. Because this
affects performance, set this value to true only
during development.
-->
<compilation debug="false"/>

<!--
The <customErrors> section enables configuration
of what to do if/when an unhandled error occurs
during the execution of a request. Specifically,
it enables developers to configure html error pages
to be displayed in place of a error stack trace.

<customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
<error statusCode="403" redirect="NoAccess.htm"/>
<error statusCode="404" redirect="FileNotFound.htm"/>

</customErrors>
-->

</system.web>
</configuration>

Now that we have created a secured area, next we will need to create a login form to allow
those with the specified credentials to access the protected folder.

Exercise 13-2. Creating a Login Form

In this exercise, we’ll create a login form that looks like the one shown in Figure 13-27. Unlike the contact form we
created in Chapter 10, the textboxes in this login form must have the same names as shown in the code at the end
of this exercise. The only optional form field is the checkbox that sets a cookie that keeps the visitor logged in.

Figure 13-27. Login form with validation

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 341

Follow these steps to create the login form:

1. Start by creating a four-row, three-column table.

2. Drag three ASP.NET label controls into the first column.

3. Drag two ASP.NET textbox controls to the second column with an ASP.NET checkbox in the third row of the
second column.

4. The last row contains only an ASP.NET button.

5. The form is finished with an ASP.NET label below the table to hold an error message if the credentials sup-
plied are incorrect.

6. Make a note of the control names in the previous code, and use the Tag Properties task pane to set your
control properties to match.

7. With two required field validation controls added for the two textboxes, the complete code for our login form
is as follows:

<%@ Page Language="C#" %>
<%@ Import Namespace="System.Web.Security " %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Log In</title>
<style type="text/css">
.error {
color: red;
font-weight: bold;

}
</style>

</head>
<body>
<form id="form1" runat="server">
<table>
<tr>
<td>
<asp:Label runat="server" Text="User ID" id="lblname"
AssociatedControlID="loginName"></asp:Label>

</td>
<td>
<asp:TextBox runat="server" id="loginName"></asp:TextBox>

</td>
<td>

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING342

<asp:RequiredFieldValidator runat="server"
ErrorMessage="* user name required" id="requser" CssClass="error"
ControlToValidate="loginName">
</asp:RequiredFieldValidator>

</td>
</tr>
<tr>
<td>
<asp:Label runat="server" Text="Password:" id="lblpassword"
AssociatedControlID="Password"></asp:Label>

</td>
<td>
<asp:TextBox runat="server" id="Password"></asp:TextBox>

</td>
<td>
<asp:RequiredFieldValidator runat="server"
ErrorMessage="* password required" id="reqpasswrod"
ControlToValidate="Password" CssClass="error">
</asp:RequiredFieldValidator>

</td>
</tr>
<tr>
<td>
<asp:Label runat="server" Text="Stay logged in:" id="Label3">
</asp:Label>

</td>
<td>
<asp:CheckBox runat="server" id="PersistCookie" />

</td>
<td> </td>

</tr>
<tr>
<td> </td>
<td>
<asp:Button runat="server" text="Login" id="login" onclick="Login" />

</td>
<td> </td>

</tr>
</table>
<asp:Label runat="server" id="msg" CssClass="error"></asp:Label>

</form>
</body>
</html>

When viewed in a browser, we see the simple login form shown in Figure 13-28.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 343

Figure 13-28. A login form that can be styled how you choose.

There remains one small piece of ASP.NET code to add in the <head> section of the page; it checks the login
name and password against the ones you specified in the web.config file:

<script runat="server">
public void Login (Object src, EventArgs e)
{
if (FormsAuthentication.Authenticate (loginName.Text, Password.Text))
FormsAuthentication.RedirectFromLoginPage(loginName.Text,

PersistCookie.Checked);
else
msg.Text ="invalid login: please try again.";

}
</script>

If they match, you will be transferred to the page you tried to access in the protected folder. If not, msg.Text will
be displayed on the login form.

Your folder is now password protected, and nothing else is required, since the user’s
login will time out after 30 minutes or the time you set in the <forms loginUrl="login.aspx"
timeout="30" > line in your web.config file.

Summary
In this chapter, we have moved beyond the basics of creating a website. The concept of media-
specific stylesheets was introduced. The ways that print stylesheets can allow you to decide
how your web pages will print when your visitor chooses to print was demonstrated.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING344

Next, we moved on to validating the fields in our web forms to help you get the informa-
tion necessary to respond to inquiries from your site visitors. We used ASP.NET 2.0 validation
controls, which validate first on the client and again on the server. For situations when
ASP.NET 2.0 is not available to us, we used JavaScript for client-side validation of HTML forms.

Our last exercise showed how to password protect a section of our website so that only
those who know the User ID and password can see the .aspx pages in the folder.

CHAPTER 13 ■ BEYOND THE BASICS IN CSS AND SCRIPTING 345

