
15 VALIDATING DATABASE INPUT
AND USER AUTHENTICATION

Dreamweaver provides you with the basic functionality of inserting and updating records
in a database, but it’s up to you to make sure that the data entered by a user meets the cri-
teria you envisaged when designing the database structure. When designing database
forms, you must remember the GIGO principle—garbage in, garbage out. Unless you con-
trol carefully what you allow to go into a database, a lot of your results will be useless
garbage. Many developers rely on JavaScript validation to filter user input before it’s sub-
mitted to the database, but JavaScript is easily turned off in the browser leaving your site
vulnerable. JavaScript validation, such as that provided by Spry validation widgets (see
Chapter 9), should be regarded as a convenience offered to the user. The only way to
make sure data is safe to insert into a database is to validate it with PHP.

In this chapter, we’re going to get down and dirty with PHP code. If you don’t come from
a programming background, that thought might fill you with horror, but you should never
deploy dynamic code on a website without understanding what it’s for. In any case, PHP is
not difficult. A major reason for its popularity is that it’s relatively easy to learn. If the code
looks strange to you, it’s because it’s unfamiliar. The more you work with it, the more
familiar—and easier—it becomes. If you feel inspired to study PHP more, for a hands-on
approach take a look at my PHP Solutions: Dynamic Web Design Made Easy (friends of ED,
ISBN: 978-1-59059-731-6). Or if you prefer a reference book, grab hold of Beginning PHP
and MySQL: From Novice to Professional, Third Edition by W. Jason Gilmore (Apress, ISBN:
978-1-59059-862-7).

We’ll start by examining the code that Dreamweaver created when you built the insert and
update forms in the previous chapter. There’s no need to study every line of code. The key
thing is to recognize the code Dreamweaver generates, where it puts it, and what it’s for.
This makes it easy to adapt the code to do much more than the basic functionality pro-
vided by the server behaviors. I’ll also show you how to create simple server behaviors of
your own to speed up the process of creating interactive web pages.

By the end of this chapter you will have enhanced the insert and update forms and made
them much more user-friendly by preventing invalid input, displaying error messages, and
preserving user input when it fails validation. Once the forms have been updated, you’ll be
able to use the user registration system to control access to sensitive or protected areas of
your site.

In this chapter, you’ll learn about the following:

Recognizing the code generated by Dreamweaver server behaviors

Preventing the creation of duplicate usernames

Building your own custom server behaviors

Preserving information related to an individual visitor with PHP sessions

Restricting access to your pages

This chapter builds on the user registration system created in the previous chapter, so it
assumes you have built register_user.php, list_users.php, update_user.php, and
delete_user.php. However, to make sure everyone begins from the same starting point, I
have included versions of each file in the download files for this chapter. Let’s begin by
examining the code that Dreamweaver generated for you.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

638

Analyzing the code generated by
Dreamweaver

My first attempt at developing a database-driven website was with Dreamweaver UltraDev
4 using ASP. It was a disaster. There were two major problems. First, I didn’t realize the
importance of removing server behaviors cleanly through the Server Behaviors panel if I
changed my mind about how I wanted the page to work. Second, the code didn’t look any-
thing like the ASP in any of the books I consulted. I was so frustrated; I went away and
learned to hand-code everything in PHP.

Even if you have studied some PHP, you might find the code generated by Dreamweaver
overwhelming at first sight. However, it’s actually quite straightforward, and it’s organized
in blocks that are relatively easy to recognize. It needs to be, because Dreamweaver needs
to recognize them in order to let you edit or remove them through the Server Behaviors
panel. Once you learn to recognize the blocks, you can begin to modify them yourself to
add much greater functionality and flexibility to your websites. Wherever possible, I try to
leave Dreamweaver’s code blocks intact, because that preserves the ability to edit them
through the Server Behaviors panel. However, that’s not always possible, but if you keep a
cool head, you’ll quickly find that Dreamweaver speeds up development by creating the
basic code for you to improve upon. I have no difficulty hand-coding a database query, but
Dreamweaver accomplishes in seconds what it would take me many minutes to type.

As I said before, I don’t intend to go through the code line by line, nor will I cover all the
code generated by Dreamweaver when building the user registration system in the previous
chapter. This is intended as a quick overview so you can recognize the code associated with
the main server behaviors. It should also help you troubleshoot some common problems.

Inspecting the server behavior code

I suggest you open the pages in Code view as you read through this section to help famil-
iarize yourself with the code. Copies of the finished pages from the previous chapter are in
examples/ch15. The insert and update pages are called register_user_start.php and
update_user_start.php, because they will be used as the starting point for building the
server-side validation later in this chapter. The other two pages, list_users.php and
delete_user.php, don’t need further improvement, so their names are unchanged.

Connecting to the database
If you open each of the pages, you’ll see that they all begin with the following line of code:

<?php require_once('../../Connections/connAdmin.php'); ?>

If your site definition uses links relative to the site root, require_once() is replaced by
virtual() like this:

<?php virtual('/Connections/connAdmin.php'); ?>

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

639

15

This includes the login details for the MySQL user account. If this code or the include file
is missing, the rest of the script cannot connect to the database, so nothing will work. As
explained in the previous chapter, virtual() is supported only by the Apache web server.
So, a page that works perfectly on Apache will suddenly stop working if you move the site
to any other web server.

Preventing SQL injection
Immediately following the line of code that includes the database connection details is the
lengthy block of code shown in Figure 15-1. This defines a custom function called
GetSQLValueString(), which prepares values submitted through a form or query string
for insertion into a database query. Its main task is to prevent a malicious attack known as
SQL injection, which attempts to pass spoof values to a database in the hope of extract-
ing confidential information or corrupting the data.

Figure 15-1. The GetSQLValueString() function helps protect your database from malicious attack.

The function also ensures that strings are correctly enclosed in quotes when incorporated
in a SQL query.

Inserting a record into a database
Figure 15-2 shows the rest of the code Dreamweaver inserted above the DOCTYPE declara-
tion in register_user_start.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

640

The first four lines (34–37) set a variable called $editFormAction to the name of the cur-
rent page and preserve any query string in the URL. The variable is used later in the page
to set the value of the action attribute in the insert form. You can normally leave this
block of code alone unless you want to add anything to the query string.

Immediately following these four lines of code is the core of the Insert Record server
behavior.

The server behavior is wrapped in a conditional statement that makes sure the code is run
only when the insert form has been submitted. It’s easy to tell that this is an Insert Record
server behavior because all the variables begin with $insert (Dreamweaver’s variables and
functions use names that make it easy to guess their purpose). As you can see on lines
41–45 of Figure 15-2, the value of each form field is passed to the GetSQLValueString()
function to prepare it for insertion in the SQL query.

Lines 40–45 build the SQL query; line 47 selects the correct database; and line 48 executes
the query, inserting the new record into the database table.

The remaining lines redirect the user to the next page (in this case, list_users.php), pre-
serving any values in the query string. The actual redirect is performed by the header()
function on line 55.

If you don’t specify a page to redirect to after the record is inserted, the code shown on
lines 50–55 is omitted.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

641

15

Figure 15-2. The Insert Record server behavior inserts a record and redirects the user to the next page.

Understanding why a redirect doesn’t work
A question that turns up regularly in online forums is why an insert or update form doesn’t
redirect the user to the next page after inserting or updating the record. The key to under-
standing the problem lies in knowing how the header() function works. I have mentioned
this several times already, but it confuses so many people, it’s worth repeating here. The
header() function cannot do its job if any output is sent to the browser before you call
the function.

This means you can’t use echo, print, or any other function that outputs content any-
where before a call to header(). Nor can any HTML appear before header(). Other things
that prevent header() from working are using the byte-order mark or whitespace outside
PHP tags. A common cause of failure is extra whitespace at the end of an include file (see
“Avoiding the ‘headers already sent’ error” in Chapter 12).

Updating a database record
Now take a look at update_user_start.php. Figure 15-3 shows the code immediately fol-
lowing the GetSQLValueString() function. Compare it with the code in Figure 15-2. It’s
almost identical. The differences are that all the variables begin with $update and the SQL
query built on lines 40–46 uses the UPDATE command rather than INSERT.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

642

Figure 15-3. The Update Record server behavior code is almost identical to the Insert Record server behavior.

Everything else works exactly the same way as an Insert Record server behavior.

Deleting a record
Figure 15-4 shows the Delete Record server behavior in delete_user.php. It’s easy to rec-
ognize because all the variables begin with $delete. It simply deletes a record and redi-
rects to another page.

Figure 15-4.
The Delete Record server
behavior deletes a record
without confirmation.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

643

15

The key point to note about this server behavior, as I explained in the previous chapter, is
that the conditional statement surrounding the server behavior checks only that the vari-
able being used to identify the record exists. If it does, it goes ahead and deletes the record.

In the previous chapter, I told you to set the Primary key value in the Delete Record dialog
box to Form Variable. This makes the server behavior use the $_POST array and gives you
the opportunity to confirm that the correct record is being deleted. If, on the other hand,
you use the default setting, URL Parameter, the server behavior uses the $_GET array. This
results in the record being deleted immediately without confirmation.

Distinguishing between Form Variable and URL Parameter
A lot of server behavior dialog boxes ask you to specify the origin of a variable. The two
most frequently used values are Form Variable and URL Parameter, so it’s important to
understand the difference.

Form Variable: This uses the $_POST array and takes the value from a form submit-
ted using the post method.

URL Parameter: This uses the $_GET array and takes the value from a query string at
the end of a URL or from a form submitted using the get method.

If a server behavior doesn’t pick up a variable, check that you haven’t selected the wrong one.

Many beginners get mixed up between get and post, but it makes a crucial difference to
how your page works. If you’re still unclear about the difference, skip back to Chapter 9
and refresh your memory.

Retrieving database records with a recordset
Figure 15-5 shows the remaining code inserted above the DOCTYPE declaration in
update_user_start.php. This is the code for the getUser recordset.

Figure 15-5.
Dreamweaver
uses the
recordset name
to create the
variables.

If you cast your mind back to the previous chapter, I told you that you needed to create
the recordset before using the Record Update Form Wizard, yet the recordset code has
been inserted after the Update Record server behavior. This is the way that Dreamweaver
works—the code for a recordset is always inserted immediately above the DOCTYPE decla-
ration. Normally, this is fine, but a recordset often produces information that can be use-
ful for validation and needs to be moved. The good news is that Dreamweaver doesn’t
mind you moving the code, just as long as you keep it all together.

The first thing to notice about a recordset is that the names of all the variables are based
on the name you give the recordset. So, giving a recordset a name that describes its pur-
pose makes it a lot easier to recognize the right code. This is what the variables mean
(recordsetName changes depending on the name you give the recordset):

$colname_recordsetName: This is the variable being used as a filter for the recordset. In
the getUser recordset, you set the primary key, user_id, as the filter, so this holds the
value of user_id passed in through the query string of the URL. As you’ll see in later
chapters, you can use more than one variable to filter results. When you use more
than one variable, colname is replaced by the variable name you choose yourself.

$query_recordsetName: This contains the SQL query used to create the recordset.

$recordsetName: This contains the results of the database query.

$row_recordsetName: This is an array that contains the results from the current
record. Dreamweaver automatically gets the first record so that it’s ready for dis-
play inside the page.

$totalRows_recordsetName: This contains the number of records retrieved from
the database. This is extremely useful in determining whether the query produced
any results.

The basic recordset code is on lines 63–67 of Figure 15-5. All recordsets contain these five
lines of code. The code shown on lines 59–62 defines the variable for the filter. If more
than one variable is used as a filter, each one is defined in the same way.

Creating a repeat region
The code used to create a repeat region is very simple. It consists of just two lines wrapped
around the code that you want to repeat. Figure 15-6 shows the repeat region that you
applied to the second table row in list_users.php. The two lines that repeat the table row
are highlighted on lines 62 and 70. They create a simple do . . . while loop (see
Chapter 10). Dreamweaver uses a do . . . while loop because the first record is already

All the server behavior code you have looked at so far is placed above the DOCTYPE dec-
laration. This is perfectly OK because it doesn’t send any output to the browser, except
when redirecting the user to another page. When adapting server behaviors or writing
PHP code of your own, don’t put anything above the DOCTYPE that will send output to
the browser, because it will render your CSS in quirks mode, possibly breaking your
design. The only exception is when debugging code. Sometimes, it’s useful to display the
value of variables to see why your code isn’t working as expected, but you should
remove the debugging code when you have finished testing.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

644

stored in $row_recordsetName, as explained in the preceding section. The code inside the
parentheses at the end of the loop on line 70 gets the next row of results from the recordset.

Figure 15-6. The code for a repeat region is simple, but its location is vital.

Usually when a repeat region goes haywire, it’s the result of selecting the wrong elements
in Design view before applying the server behavior. A quick look at the code should con-
firm what the problem is.

Adding server-side validation
The user registration form created by the Record Insertion Form Wizard has several prob-
lems. Figure 15-7 shows what happens if you submit the form without filling in any fields
(top screenshot) or if a username is used more than once (bottom screenshot).

Figure 15-7. The default error messages are not user-friendly.

Setting all columns to NOT NULL in the table definition prevents anyone from submitting the
form without filling in each field, but there’s no guarantee that the right type of information
will be input. As things currently stand, a single space would satisfy the form’s definition of a
required field. Applying a unique index to the username column certainly prevents duplicate
entries, but the error message isn’t very informative. More important, the form has disap-
peared, and the only way to get back to it is to click the back button in the browser.

Of course, you could prevent this sort of problem by applying the Spry validation widgets
that you studied in Chapter 9. This would probably be sufficient for most bona fide users,
but the Web is a dangerous place filled with people with less honorable intentions. Anyone
intent on a malicious attack normally disables JavaScript, and even if the information in

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

645

15

your database remains intact, it could easily be filled with unwanted garbage. So, it’s
important to validate input on the server before inserting it into your database.

The registration form created by the Dreamweaver wizard needs the following improvements:

All required fields must contain specified minimum content.

When a field fails to validate, a suitable error message must be displayed.

Existing input must be preserved when an error occurs.

Let’s begin by making sure that each field is filled in with a minimum amount of content.

Verifying that required fields have been filled in

All fields are required, so you need to check that they contain at least something. If a
problem is detected, the validation code needs to prevent the INSERT command from
being executed. The series of tests that you’ll add to the code in register_user.php per-
form only simple checks on the user input. You can make them much more rigorous. The
purpose of the following exercises is to demonstrate the principles behind server-side val-
idation, rather than incorporate exhaustive tests. The level of testing you choose depends
entirely on what the form is for. An insurance proposal form is likely to warrant far more
rigorous validation than one for a community forum.

Adding server-side validation to the Insert Record server behavior is easy to implement,
but it involves editing the server behavior, so it’s no longer accessible through the Server
Behaviors panel. The idea of losing access to server behaviors through the panel instills ter-
ror into the mind of most newcomers to dynamic design, but it’s important to remember
that Dreamweaver server behaviors cannot do everything. To get the best out of them, you
frequently need to amend the code. If you cling tenaciously to the dialog box interface,
you’ll be severely limited in what you can achieve.

This section uses the PHP functions, trim(), empty(), and strlen(), to trim whitespace
from user input and check whether it’s empty or how many characters it contains. If any
problems are encountered, error messages are created for display later in the registration
form. You can continue using register_user.php from the previous chapter. Alternatively,
copy register_user_start.php from examples/ch15 to workfiles/ch15, and rename it
register_user.php.

1. With register_user.php open in the Document window, switch to Code view. The
validation code should run only if the form has been submitted. Locate the follow-
ing code (it should be on or around line 39):

if ((isset($_POST["MM_insert"])) && ($_POST["MM_insert"] == "form1")) {

This conditional statement checks the value of a hidden field to see whether the
insert form has been submitted. So, if you place the validation code inside the
braces of this conditional statement, your new code runs only at the same time as
the Insert Record server behavior. Doing so means that the server behavior ceases

Checking required fields

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

646

to be editable through a dialog box, but this is a sacrifice you must make in the
interests of data integrity.

Place your cursor at the end of this line, and press Enter/Return a couple of times
to make room for the validation code, as shown in the following screenshot:

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

647

15

Insert the following code:

// Initialize array for error messages
$error = array();
// Remove whitespace and check first and family names
$_POST['first_name'] = trim($_POST['first_name']);
$_POST['family_name'] = trim($_POST['family_name']);
if (empty($_POST['first_name']) || empty($_POST['family_name'])) {
$error['name'] = 'Please enter both first name and family name';

}

This initializes $error as an empty array. PHP treats an array with zero elements as
false (see “The truth according to PHP” in Chapter 10), so this can be used later to
test whether any errors have been found and, if so, to prevent the Insert Record
server behavior from attempting to execute the INSERT query.

The remaining lines use trim() to remove leading and trailing whitespace from the
first_name and family_name fields and then pass them to empty(). If either field
has no value, an appropriate message is added to the $error array.

2. The next check makes sure that the username contains at least six characters. It
uses the PHP function strlen(), which determines the number of characters in any
string passed to it. Add the following code immediately after the code in the
preceding step:

// Check the username for length
$_POST['username'] = trim($_POST['username']);
if (strlen($_POST['username']) < 6) {
$error['length'] = 'Please select a username that contains at least ➥

6 characters';
}

You might wonder why I haven’t reassigned the values of the $_POST array vari-
ables to shorter ones, as with the mail processing script in Chapter 11. It’s
because they’re required by the Insert Record server behavior. Changing them
here would involve further changes to the code generated by Dreamweaver,
increasing not only your workload but also the likelihood of errors creeping in.

3. A similar check is done next on the password. The following code goes immediately
after the code in the previous step:

// set a flag that assumes the password is OK
$pwdOK = true;
// trim leading and trailing white space
$_POST['pwd'] = trim($_POST['pwd']);
// if less than 6 characters, create alert and set flag to false
if (strlen($_POST['pwd']) < 6) {
$error['pwd_length'] = 'Your password must be at least 6 characters';
$pwdOK = false;

}

This code starts by setting a variable that assumes the password is OK. After trim-
ming any whitespace, strlen() is used to check that the trimmed password con-
tains at least six characters. If it doesn’t, an error message is added to the $error
array, and $pwdOK is set to false. You’ll see the purpose of the $pwdOK variable in
the next section.

If you would like to check your code so far, compare it against register_user_01.php
in examples/ch15.

Verifying and encrypting the password

Since the password won’t appear onscreen, you should get the user to type it in twice to
confirm the spelling. Also, to keep the password secure, it should be encrypted before it’s
stored in the database. Encryption is important because it keeps the passwords secret,
even if someone manages to compromise the security of the database and expose the
stored passwords.

In this section, you’ll add an extra field for the user to retype the password to ensure that
both versions match. You’ll also encrypt the password before it’s passed to the SQL query.
Continue working with the same file as in the preceding section.

1. Adding a new field for the user to confirm the password means adding a new row
to the table that contains the registration form. You can do this in several ways.
Start by switching back to Design view and clicking inside the table cell that con-
tains the Administrator label. If you have a good memory for keyboard shortcuts,
the quickest and easiest way to add a new table row is to press Ctrl+M/Cmd+M.
This always inserts a new row above the current one.

Alternative ways of adding a new row are to use the menu system. Modify ➤ Table
➤ Insert Row does the same as the keyboard shortcut: the new row goes above the
current one. Modify ➤ Table ➤ Insert Rows or Columns opens a dialog box that lets
you specify the number of rows or columns to be inserted and on which side of the

Improving password validation

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

648

current selection to put them. Finally, the Layout tab of the Insert bar offers a visual
way of doing it.

Use whichever method you prefer to create a new row between Password and
Administrator. Then type Confirm password as the label in the left cell, and insert a
text field in the right cell. Name the text field conf_pwd, and set Type to Password
in the Property inspector (form creation was covered in Chapter 9).

2. You can now compare the content of the pwd and conf_pwd fields. Switch to Code
view, and add the following code immediately after the code you inserted in step 3
of the previous section:

$error['pwd_length'] = 'Your password must be at least 6 characters';
$pwdOK = false;

}
// if no match, create alert and set flag to false
if ($_POST['pwd'] != trim($_POST['conf_pwd'])) {
$error['pwd'] = "Your passwords don't match";
$pwdOK = false;

}

This trims whitespace off both ends of $_POST['conf_pwd'] and compares the
result with $_POST['pwd']. There’s no need to pass the original password to
trim() because that was already done in the previous section and the value
reassigned to $_POST['pwd']. Also, there’s no need to store the result of
trim($_POST['conf_pwd']), because you’re using it only to make sure the two
entries match. If they do, this conditional statement will be ignored. However, if
there’s a mismatch, an error message is created, and $pwdOK is set to false.

3. Finally, if $pwdOK is still true, you can encrypt the password by passing it to the
sha1() function like this (the code goes immediately after the code in the previous
step):

// if password OK, encrypt it
if ($pwdOK) {
$_POST['pwd'] = sha1($_POST['pwd']);

}
The sha1() function converts any string passed to it into a 40-character hexadeci-
mal number—in effect, encrypting the string ready for insertion into the database.

You can check your code, if necessary, against register_user_02.php in
examples/ch15.

The table layout for the insert form created by the wizard doesn’t use <label>
tags, so choose the No label tag option in the Input Tag Accessibility Attributes dia-
log box. Using the wizard is best avoided except when you’re developing a pro-
totype as a proof of concept, which will be rebuilt using your own forms and
designs later. I’ll show you how to apply Insert Record and Update Record server
behaviors to custom-built forms in the next chapter.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

649

15

Dealing with duplicate usernames

Dreamweaver has a server behavior called Check New User that queries your database to
find out whether a username is already in use. Unfortunately, it’s badly designed and guar-
anteed to enrage visitors to your site. If it finds a duplicate username, it takes the visitor to
another page and wipes out all the information that had been entered into the form.
Applying a unique index to the username column, as you did in the previous chapter, is a
much more elegant way of handling the situation, but you need a way to prevent the form
from disappearing when a duplicate entry is detected. This is done by checking the error
code returned by MySQL.

The following instructions show you how to amend the Insert Record server behavior to
generate a user-friendly error message when the INSERT query fails as the result of a dupli-
cate username being submitted. Continue working with the same file.

1. Approximately ten lines below the last section of code you have just inserted,
locate the line that looks like this (it should be on or around line 80):

$Result1 = mysql_query($insertSQL, $connAdmin) or die(mysql_error());

What this line does is execute the INSERT query; but if there’s a problem, the sec-
tion highlighted in bold displays an error message and brings all further processing
to a halt.

The draconian-sounding function die() tells a PHP script to terminate immediately
if it encounters an error. It takes a single argument: the error message you want to
display onscreen. In this case, the message is generated by another function,
mysql_error(), which gives you access to the most recent error message from
MySQL.

Instead of bringing the script to a halt, it’s far more user-friendly to redisplay the
form ready for the user to submit an alternative username.

2. Remove the section highlighted in bold so the line of code looks like this:

$Result1 = mysql_query($insertSQL, $connAdmin);

Make sure you don’t lose the semicolon at the end of the line.

3. In addition to mysql_error(), PHP has a function called mysql_errno(), which
returns an error code from MySQL. Although error messages are easier for human
beings to understand, it’s easier for PHP to work with numbers. Add the conditional
statement highlighted in bold, as shown here:

$Result1 = mysql_query($insertSQL, $connAdmin);
if (!$Result1 && mysql_errno() == 1062) {
$error['username'] = $_POST['username'] . ' is already in use. ➥

Please choose a different username.';
} elseif (mysql_error()) {

Creating an error message for duplicate usernames

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

650

$error['dbError'] = 'Sorry, there was a problem with the database. ➥

Please try later.';
}
$insertGoTo = "list_users.php";

If the Insert Record server behavior succeeds, $Result1 is true. So, placing the
negative operator (!) in front of $Result1 tests whether it is not true—in other
words, whether it fails. A duplicate value entered into a unique index column pro-
duces the MySQL error code 1062. So if the Insert Record server behavior fails and
the error code is 1062, you know it’s because of a duplicate value.

The code inside the first conditional statement uses $_POST['username'], the
value submitted from the registration form, to create an error message and stores
the message in $error['username'].

You should never display the contents of MySQL error messages in a live web page,
because it can reveal information that might be helpful to an attacker. So, the sec-
ond conditional statement checks for any other MySQL error and creates a generic
error message.

If you encounter problems when testing the page, substitute the line of code in the
second conditional statement with the following:

$error['dbError'] = mysql_error();

This gives you access to the MySQL error message. Once you have identified the
problem, replace mysql_error() with the neutral message.

4. If the database returns an error, you need to prevent the script from redirecting
the user to the next page, so wrap the code that redirects the page in a final else
statement like this:

$error['dbError'] = 'Sorry, there was a problem with the database.
Please try later.';
} else {
$insertGoTo = "list_users.php";
if (isset($_SERVER['QUERY_STRING'])) {
$insertGoTo .= (strpos($insertGoTo, '?')) ? "&" : "?";
$insertGoTo .= $_SERVER['QUERY_STRING'];

}
header(sprintf("Location: %s", $insertGoTo));

}
}

By placing the redirection code in the final else block of the conditional state-
ment, the redirect goes ahead only if the database doesn’t return an error (you can
see the full chain of conditions in Figure 15-8).

You can check your code so far against register_user_03.php in examples/ch15.

MySQL error messages can appear rather cryptic. Chapter 17 contains advice on
understanding them and troubleshooting problems with SQL queries.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

651

15

Displaying the error messages

Now that the checks are complete, you need to build the logic that determines whether
the record is inserted in the database. If there are no errors, the new record is inserted
into the database, and the user is redirected to the next page. However, if errors are
detected, the INSERT command is ignored, and the form needs to be redisplayed with the
appropriate error messages.

This section completes the validation process by wrapping the code that inserts the record
in a conditional statement to prevent it from being executed if any errors are discovered.
You will also add code to the insert form to display any error messages. Continue working
with the same file.

1. If no errors have been found, the $error array will contain zero elements, which, as
you know, PHP treats as false. Wrap the remaining section of the Insert Record
server behavior code with this conditional statement (the exact location is shown in
Figure 15-8):

// if no errors, insert the details into the database
if (!$error) {
// Insert Record server behavior code

}

Building the error detection logic

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

652

Figure 15-8. The conditional statement prevents the record from being inserted if any errors are found.

The negation operator (an exclamation mark) gives you the reverse meaning of a
value. So if $error is an empty array, this test equates to true, and the Insert
Record server behavior is executed. If errors are found, the test equates to false,
and the server behavior is ignored.

2. Scroll down to the page heading (around line 106) just below the <body> tag, and
insert the following code block between the heading and the opening <form> tag:

<h1>Register user </h1>
<?php
if (isset($error)) {
echo '';
foreach ($error as $alert) {
echo "<li class='warning'>$alert\n";

}
echo '';

}
?>
<form action="<?php echo $editFormAction; ?>" method="post" ➥

name="form1" id="newUser">

This begins by checking whether the $error array exists, because it’s created only
when the form is submitted. If it doesn’t exist, the whole block is ignored. If it does
exist, a foreach loop iterates through the array and assigns each element to the
temporary variable $alert, which is used to display the error messages as a bulleted
list. (See Chapter 10 if you need to refresh your memory about foreach loops.)

3. Save register_user.php, and load it into a browser. Click the Insert record button
without filling in any fields. The page should reload and display the following
warnings:

4. Now try filling in all fields, but with a username that is already registered. This time,
you should see something similar to this:

If you have any problems, check your code against register_user_04.php in
examples/ch15. The page contains no style rules, but if you add a warning class,
you could make the error messages stand out in bold, red text.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

653

15

This has improved the insert form considerably, but imagine the frustration of being
forced to fill in all the details again because of a mistake in just one field. What you really
need is a server behavior to provide the same solution you used in the contact form in
Chapter 11. There isn’t one, but you can make it yourself.

Building custom server behaviors
One reason for the great success of Dreamweaver is that, in addition to its massive range
of features, it’s also extensible. You can build your own server behaviors to take the
tedium out of repetitive tasks.

To redisplay the contents of a text field after a form has been submitted, all you need to
do is insert a PHP conditional statement between the quotes of the <input> element’s
value attribute like this:

value="<?php if (isset($_POST['field'])) {echo htmlentities(➥

$_POST['field'], ENT_COMPAT, UTF-8);} ?>"

This checks whether the $_POST array element exists. If it does, it’s passed to
htmlentities() to avoid any problems with quotes, and the resulting output is inserted
into the value attribute using echo. It’s very similar to the snippet you created in
Chapter 11. Apart from field, the code never changes. This consistency makes it ideal for
creating a new server behavior, which involves the following steps:

1. Create a unique name for each block of code that the server behavior will insert
into your page. The Server Behavior Builder generates this automatically for you.

2. Type the code into the Server Behavior Builder, replacing any changeable values
with Dreamweaver parameters. The parameters act as placeholders until you insert
the actual value through a dialog box when the server behavior is applied.

3. Tell Dreamweaver where to insert the code.

4. Design the server behavior dialog box.

Creating a Sticky Text Field server behavior

These instructions show you how to create your own server behavior to insert a condi-
tional statement in the value attribute of a text field to preserve user input in any page.
You must have a PHP page open in the Document window before you start.

1. In the Server Behaviors panel, click the plus button, and select New Server Behavior.
In the dialog box that opens, make sure that Document type is set to PHP MySQL.
Type Sticky Text Field in the Name field, and click OK.

2. This opens the Server Behavior Builder dialog box. Click the plus button next to
Code blocks to insert. Dreamweaver suggests a name for the new code block based

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

654

3. The Code block area in the center is where you insert the PHP code that you want
to appear on the page. The value of field will change every time, so you need to
replace it with a parameter. Parameter names must not contain any spaces, but
they are used to label the server behavior dialog box, so it’s a good idea to choose
a descriptive name, such as FieldName. To insert a parameter, click the Insert
Parameter in Code Block button at the appropriate point in the code, type the name
in the dialog box, and click OK. Dreamweaver places it in the code with two @ char-
acters on either side. You can also type the parameters in the code block directly
yourself. Whichever method you use, replace the dummy text in the Code block
area with this:

<?php if (isset($_POST['@@FieldName@@'])) {
echo htmlentities($_POST['@@FieldName@@'], ENT_COMPAT, 'UTF-8');} ?>

I am using the optional second and third arguments to htmlentities(), as
described in Chapter 11. If you want to encode single quotes or are using a dif-
ferent encoding from Dreamweaver’s default UTF-8, change the second and
third arguments to suit your own requirements (see Tables 11-1 and 11-2 for the
available options).

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

655

15

Figure 15-9. The Server Behavior Builder makes it easy to create your own server behaviors.

on the name of the new server behavior. Click OK to accept it. Dreamweaver fills in
the remaining fields of the Server Behavior Builder, as shown in Figure 15-9.

4. As soon as you add any parameters in the Code block area, the label on the OK but-
ton changes to Next, but first you need to tell Dreamweaver where you want the
code to appear in the page. It needs to be applied to the value attribute of <input>
tags, so select Relative to a Specific Tag from the Insert code drop-down menu.

5. This reveals two more drop-down menus. Select input/text for Tag, and select As the
Value of an Attribute for Relative position.

6. This triggers the appearance of another drop-down menu labeled Attribute. Select
value. The bottom section of the Server Behavior Builder should now look like this:

This specifies that the code you entered in step 3 should be applied as the value
attribute of a text field. Click Next at the top right of the Server Behavior Builder dia-
log box.

7. To be able to use your new server behavior, you need to create a dialog box where
you can enter the values that will be substituted for the parameters. Dreamweaver
does most of the work for you, and on this occasion, the suggestions in the
Generate Behavior Dialog Box dialog box are fine, so just click OK.

Creating a server behavior for Sticky Text Areas

The server behavior you have just built works only with text fields, so it’s worth building
another to handle text areas. Unlike text fields, text areas don’t have a value attribute.

1. Repeat steps 1 and 2 of the previous section, only this time call the new server
behavior Sticky Text Area.

2. In step 3 of the previous section, enter the following code in the Code block area:

<?php if (isset($_POST['@@TextArea@@'])) {echo ➥

htmlentities($_POST['@@TextArea@@'], ENT_COMPAT, 'UTF-8');} ?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

656

I have split the code over two lines because of printing constraints, but you should
enter the code all on a single line to avoid adding any whitespace between the
<textarea> tags when this code is executed. Although the value is inserted directly
between the tags as plain text, it’s still a good idea to use htmlentities() to pre-
vent malicious users from attempting to embed executable script, such as JavaScript,
in your page.

3. Fill in the bottom section of the Server Behavior Builder, as shown in the following
screenshot. This places the content of the $_POST variable between the opening
and closing <textarea> tags.

4. Click Next, and accept the defaults suggested for the server behavior dialog box.

Both server behaviors will be available in all PHP sites from the menu in the Server
Behaviors panel.

Completing the user registration form
Now that you have built your own server behaviors, you can complete register_user.php.
What remains to be done is to redisplay the user’s input if any errors are detected by the
server-side validation. In the case of the text fields, this is done by the Sticky Text Field
server behavior that you have just built. However, the radio buttons need to be handled dif-
ferently. First, let’s deal with the text fields.

Preserving user input in text fields

Applying the Sticky Text Field server behavior to each text field ensures that data already
inserted won’t be lost through the failure of any validation test.

This section shows you how to use the Sticky Text Field server behavior. Continue working
with register_user.php from earlier in the chapter.

1. In Design view, select the first_name text field. Click the plus button in the Server
Behaviors panel. The new server behaviors are now listed. Select Sticky Text Field.

2. The Sticky Text Field dialog box appears. If you have selected the first_name text
field correctly, the input/text tag field should automatically select first_name. If it’s

Applying the Sticky Text Field server behavior

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

657

15

not selected, activate the drop-down menu to select it. Type the field’s name in
FieldName, as shown here, and click OK:

3. Dreamweaver inserts a dynamic content placeholder inside the text field in Design
view. Open Split view, and as the next screenshot shows, the conditional statement
you created in the Code block area of the Server Behavior Builder has been inserted,
but @@FieldName@@ has been replaced by the actual name of the field:

4. Apply the Sticky Text Field server behavior to the family_name and username fields.
Dreamweaver doesn’t include password fields in the drop-down menu, so you can’t
apply the server behavior to them. In any case, the password is encrypted by
sha1(), so you shouldn’t attempt to redisplay it.

5. All instances of Sticky Text Field are now listed in the Server Behaviors panel. If you
ever need to edit one, highlight it and double-click, or use the minus (–) button to
remove it cleanly from your code.

6. Save register_user.php, and load it into a browser. Test it by entering an incom-
plete set of details. This time, the content of text fields is preserved. Check your
code, if necessary, against register_user_05.php in examples/ch15.

Applying a dynamic value to a radio group

The Administrator radio buttons still don’t respond to the changes. We’ll fix that next.
Dreamweaver lets you bind the value of radio buttons to a dynamic value, such as from a
recordset or a variable. You can type the variable directly into the dialog box, but
Dreamweaver also lets you define superglobal variables, such as from the $_POST and
$_GET arrays, for use throughout the site.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

658

In this section, you’ll define the $_POST variable that contains the value of the selected
radio button and apply it to the radio button group so that it displays the value selected
by the user when an error is detected. Continue working with register_user.php from
the previous section.

1. When any errors are detected, you need
checked="checked" to be inserted in the tag of
the radio button that the user selected. Since the
radio group is called admin_priv, the value you
want is contained in $_POST['admin_priv'].
Although you can type this directly into the
Dynamic Radio Group dialog box, Dreamweaver
lets you define $_POST, $_GET, and other super-
global variables in the Bindings panel.

In the Bindings panel, click the plus button to dis-
play the menu shown alongside.

Dreamweaver uses generic names because the
same menu applies to other server-side lan-
guages. As explained earlier, Form Variable refers
to the $_POST array, and URL Variable refers to the $_GET array. You want to define
a $_POST variable, so click Form Variable.

2. Type admin_priv in the Name field of the Form
Variable dialog box, and click OK. The new
dynamic variable is now listed in the Bindings
panel like this:

3. Select one of the radio buttons in Design view,
and click the Dynamic button in the Property
inspector.

4. The admin_priv radio group will be automatically selected in the Dynamic Radio
Group dialog box and grayed out, because the Record Insertion Form Wizard
bound the value of the radio group to n. Change the binding by clicking the light-
ning bolt icon to the right of the Select value equal to field. Then choose admin_priv
from the Dynamic Data panel (click the tiny plus sign or triangle alongside Form if
you can’t see admin_priv). Click OK twice to close both panels.

5. The problem with binding the value of the radio button group to
$_POST['admin_priv'] is that this variable doesn’t exist when the registration form
first loads. As a result, neither radio button is selected. If PHP error reporting is set
to its highest level, this displays unsightly error messages. And even if the display of
errors is turned off, you’re still left without a default radio button checked, which
could lead to the user forgetting to select one and generating another error. So,
this needs to be fixed—and it involves another journey into Code view.

Making the radio buttons sticky

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

659

15

Dreamweaver uses a rather unusual PHP function called strcmp() to check
whether $_POST['admin_priv'] is y or n. The function takes two arguments and
returns 0 if they’re exactly the same. Since 0 equates to false, the negation opera-
tor (!) converts it to true. If you find the logic difficult to follow, just take my word
for it—it works.

6. You need to check whether the form has been submitted. Although the POST array
is always set, it will be empty if the form hasn’t been submitted. And as you should
know by now, an empty array equates to false. Amend the beginning of both sec-
tions of radio button code (shown on lines 147 and 151 in the preceding screen-
shot) like this:

<input <?php if ($_POST && !(strcmp($_POST['admin_priv'],

7. Save the page, and load it into your browser. The radio buttons should now be
back to normal. The only problem is that you don’t have a default checked value
when the page first loads. In one respect, it shouldn’t be a problem, because you
set a default value when defining the users table earlier. Unfortunately,
Dreamweaver server behaviors treat unset values as NULL, causing your form to fail
because admin_priv was defined as “not null.”

8. Change the code for the No radio button shown on line 151 in the preceding
screenshot like this (the change made in step 6 is also shown in bold):

<input <?php if (($_POST && !(strcmp($_POST['admin_priv'],"n"))) ➥

|| !$_POST) {echo "checked=\"checked\"";} ?> name="admin_priv" ➥

type="radio" value="n" />

I have enclosed the original test (as adapted in step 6) in an extra pair of parenthe-
ses to ensure that it’s treated as a single unit. Then I added a second test:

|| !$_POST

This tests whether the $_POST array is empty. The result is this (in pseudocode):

if ((the form has been sent AND admin_priv is "n")
OR the form has not been sent) {mark the button "checked"}

9. Just one thing remains to be tidied up. If your PHP configuration has magic quotes
turned on (and many hosting companies seem to use this setting), your sticky text
fields will end up with backslashes escaping apostrophes in users’ names. So, scroll

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

660

In Design view, highlight one of the radio buttons so that you can easily locate the
relevant code, and switch to Code view. The radio button code looks like this:

down to the section of code that displays the error messages, and insert a new line
just before the closing curly brace. Open the Snippets panel, and insert the POST
stripslashes snippet that you installed in the PHP-DWCS4 folder in Chapter 11. The
amended code at the top of the body of the page should now look like this:

<?php
if (isset($error) && $error) {
echo '';
foreach ($error as $alert) {
echo "<li class='warning'>$alert\n";

}
echo '';
// remove escape characters from POST array
if (PHP_VERSION < 6 && get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;

}
$_POST = array_map('stripslashes_deep', $_POST);

}
}
?>

10. Save register_user.php. You now have a user registration form that performs all
the necessary checks before entering a new record into your database, but all the
input fields will still be populated if an error is detected.

Check your code, if necessary, against register_user_06.php in examples/ch15.

Building server-side validation into a simple user registration form has taken a lot of effort.
You could have used the version from the previous chapter right away, but before long,
you would have ended up with a lot of unusable data in your database, not to mention
the frustration of users when an input error results in all their data being wiped from the
screen. The more time you spend refining the forms that interact with your database,
the more time you will save in the long run.

Applying server-side validation to the
update form

The validation tests required by the update form are the same as those for the insert form,
so there’s considerably less new script involved. However, you need to take the following
points into consideration:

The password has been encrypted, so it can no longer be displayed in the update
form. The code needs to be amended so that the password is updated only if a

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

661

15

value is inserted into the form. If the password fields are left empty, the original
password is retained.

When the update form first loads, it populates the form fields with values from the
database, but you need to preserve any changes if the server-side validation
detects errors when the form is submitted. This means adapting the Sticky Text
Field server behavior to work with an update form.

Right, let’s get to work.

Merging the validation and update code

Much of the work involved in adapting the code created by the Record Update Form
Wizard can be done by copying and pasting the server-side validation code from the
insert form.

These instructions show how to apply the same validation tests to update_user.php. You can
use your own version from the previous chapter. Alternatively, copy update_user_start.php
from examples/ch15 to workfiles/ch15, and rename it update_user.php. Continue working
with the amended version of register_user.php from the preceding section. However, if
you want to start with a clean copy, use register_user_06.php in examples/ch15.

1. Open both register_user.php and update_user.php in Code view.

2. In update_user.php, locate the conditional statement that controls the update
server behavior, and insert a couple of blank lines, as shown in the following screen-
shot. This is where you will paste the validation script from register_user.php.

Adapting update_user.php

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

662

3. Switch to register_user.php, and copy the validation script shown highlighted in
Figure 15-10.

4. Paste the code into update_user.php in the location indicated in the screenshot in
step 2.

5. There’s just one change you need to make to the validation script you have pasted
into update_user.php. When a user’s record is being updated, you want either to
preserve the same password or to set a new one. The simplest way to handle this is
to decide that if pwd is left blank, the existing password will be maintained.
Otherwise, the password needs to be checked and encrypted as before.

Amend the password validation code as follows (new code shown in bold):

$_POST['pwd'] = trim($_POST['pwd']);
// if password field is empty, use existing password
if (empty($_POST['pwd'])) {
$_POST['pwd'] = $row_getUser['pwd'];

} else {
// otherwise, conduct normal checks
// if less than 6 characters, create alert and set flag to false
if (strlen($_POST['pwd']) < 6) {
$error['pwd_length'] = 'Your password must be at least 6➥

characters';
$pwdOK = false;

}

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

663

15

Figure 15-10. Most of the validation script can be copied and pasted into the update page.

// if no match, create alert and set flag to false
if ($_POST['pwd'] != trim($_POST['conf_pwd'])) {
$error['pwd'] = 'Your passwords don\'t match';
$pwdOK = false;

}
// if new password OK, encrypt it
if ($pwdOK) {
$_POST['pwd'] = sha1($_POST['pwd']);

}
}

This checks whether $_POST['pwd'] is empty. If it is, the value of the existing pass-
word is taken from the getUser recordset and assigned to $_POST['pwd']. Because
the existing password is already encrypted, there is no need to pass it to sha1(). If
$_POST['pwd'] isn’t empty, the else clause executes the checks inherited from
register_user.php.

6. You now need to prevent the update query from being executed if there are any
errors. This involves wrapping the section of code immediately below the validation
script in a conditional statement in the same way as in register_user.php.
Figure 15-11 shows where to insert the code.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

664

Figure 15-11. The conditional statement prevents the update code from being run if there are validation
errors.

7. You also need to make the same changes as before to the code that runs the
update query to catch any database errors and prevent the page from being redi-
rected if any are found. Remove or die(mysql_error()) shown on line 89 of
Figure 15-11, and amend the code on lines 89–96 like this:

$Result1 = mysql_query($updateSQL, $connAdmin);
if (!$Result1 && mysql_errno() == 1062) {
$error['username'] = $_POST['username'] . ' is already in use. ➥

Please choose a different username.';
} elseif (mysql_error()) {
$error['dbError'] = 'Sorry, there was a problem with the ➥

database. Please try later.';
} else {
$updateGoTo = "list_users.php";
if (isset($_SERVER['QUERY_STRING'])) {
$updateGoTo .= (strpos($updateGoTo, '?')) ? "&" : "?";
$updateGoTo .= $_SERVER['QUERY_STRING'];

}
header(sprintf("Location: %s", $updateGoTo));

}
}

You can copy and paste the first two conditions from register_user.php, because
they are identical. Don’t forget to add the closing curly brace after the code that
redirects to the next page.

8. That deals with the changes to the validation script in Code view, but the update
form doesn’t have the password confirmation field. You also need to add some
text to inform the user to leave the password fields blank if the same password is
to be kept.

So, switch to Design view, and add (leave blank if unchanged) to the Password label.

9. The original update form showed the password in plain text, so select the pwd field,
and change the Type radio button from Single line to Password in the Property
inspector.

10. Create a new table row between Password and Administrator. Type Confirm password
as the label in the left cell, and insert a text field in the right cell. Name the text
field conf_pwd, and set Type to Password in the Property inspector.

11. The change you made to the password validation in step 6 compares
$_POST['pwd'] with $row_getUser['pwd']. However, as I explained at the begin-
ning of the chapter, Dreamweaver always inserts the code for recordsets immedi-
ately above the DOCTYPE declaration. Consequently, $row_getUser['pwd'] won’t
have been created unless you move the recordset script to an earlier position.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

665

15

Cut the recordset code shown on lines 105–113 of the following screenshot, and
paste it in the position indicated (I used Code Collapse to hide most of the valida-
tion script).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

666

12. Save the page, and leave it open for the next section. There have been a lot of impor-
tant changes, so check your code against update_user_01.php in examples/ch15.

The final set of changes you need to make to the update page involves removing the exist-
ing code that binds the values from the database to the input fields and replacing it with
code that not only displays the values retrieved from the database but also preserves the
user’s input if there are any errors when the update form is submitted. The Sticky Text
Field server behavior won’t work in these circumstances, but it’s easy to adapt.

Adapting the Sticky Text Field server behavior

As you have already seen, it’s only when the form has been submitted—and errors
detected—that the Sticky Text Field code executes. So if the $_POST variables haven’t been
set, you know the form hasn’t been submitted and that you need to display the values
stored in the database instead.

Dreamweaver always uses the following naming convention to refer to the results of a
recordset: $row_RecordsetName['FieldName']. So, all that’s needed is to add an else
clause to the existing code:

<?php if (isset($_POST['field'])) {
echo htmlentities($_POST['field'], ENT_COMPAT, 'UTF-8');

} else {
echo htmlentities($row_RecordsetName['FieldName'], ENT_COMPAT, ➥

'UTF-8');
} ?>

Most of the settings are identical to the Sticky Text Field server behavior that you built ear-
lier, so you can use the existing server behavior to create the new one.

1. Make sure you have a PHP page open, and click the plus button in the Server
Behaviors panel. Select New Server Behavior.

2. Name the new server behavior Sticky Edit Field, and place a check mark in the box
labeled Copy existing server behavior. This will populate a drop-down menu with the
names of server behaviors you have already built (unfortunately, the dialog box
won’t let you base a new server behavior on one of Dreamweaver’s). Select Sticky
Text Field, and click OK.

3. Edit the contents of the Code block area like this:

<?php if (isset($_POST['@@FieldName@@'])) {
echo htmlentities($_POST['@@FieldName@@'], ENT_COMPAT, 'UTF-8');

} else {
echo htmlentities($row_@@RecordsetName@@['@@FieldName@@'], ➥

ENT_COMPAT, 'UTF-8');
} ?>

Dreamweaver will use the new parameter—@@RecordsetName@@—in combination
with @@FieldName@@ to build a variable like $row_getUser['family_name'].

4. Click Next. Dreamweaver warns you that the server behavior’s HTML file already
exists and asks whether you want to overwrite it. The HTML file is actually a copy,
so there’s no problem overwriting it. It controls the server behavior’s dialog box,
which needs to be redesigned, so the answer is Yes.

5. In the Generate Behavior Dialog Box dialog box, reset Display as for RecordsetName
by clicking to the right of the existing value and selecting Recordset Menu. Set
FieldName to Recordset Field Menu, and reorder the items as shown here. Click OK.

To create a similar server behavior for text areas, name it Sticky Edit Area, and select Sticky
Text Area in step 2. The code block in step 3 is identical for both Sticky Edit Area and Sticky
Text Area.

Sometimes Dreamweaver prevents you from using the same parameter name in
more than one server behavior. If that happens, change both instances of
@@FieldName@@ to @@Field@@.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

667

15

Binding the field values to the update form

Now that you have the Sticky Edit Field server behavior, you can bind the results of the
getUser recordset to the form fields so that the existing values are ready for editing but
will be replaced by the user’s input if the update process fails for any reason. The text
fields are quite easy, but the radio button group needs special handling.

These instructions show how to apply the Sticky Edit Field server behavior and adapt the
code in the radio button group. Continue working with update_user.php from before.

1. Before you can apply the Sticky Edit Field server
behavior, you need to remove the existing code
from the form fields. In the Server Behaviors
panel, Shift-click to select the Dynamic Text Field
entries for first_name, family_name, username,
and pwd. Then click the minus button, as shown
in the screenshot alongside, to remove them
cleanly from the update form.

2. In Design view, select the first_name field, click
the plus button in the Server Behaviors panel,
and select Sticky Edit Field.

Since getUser is the only recordset on this page, it’s selected automatically in the
Sticky Edit Field dialog box, but make sure you choose the right one if you use this
server behavior on a page that has two or more recordsets. Select the field’s name
from the FieldName drop-down menu, as shown here:

3. Apply the Sticky Edit Field server behavior in the same way to the family_name and
username fields. In Design view, the form should end up looking like the following
screenshot, with dynamic text placeholders in the first three fields.

Completing the update form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

668

The dynamic text placeholders in the three fields look the same as before in Design
view, but if you inspect the underlying code in Split view, you’ll see that Dreamweaver
has inserted the code you used to build the Sticky Edit Field server behavior.

4. The radio buttons present an interesting challenge. When the page first loads, you
want the value stored in the database for admin_priv to be selected; but if the
form is submitted with errors and the value of admin_priv has been changed, you
want the new value to be shown.

Select one of the radio buttons in Design view to help locate the code for the radio
group; then switch to Code view to actually see it. The code looks like this:

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

669

15

Let’s first map out in terms of pseudocode what needs to happen inside the Yes
radio button’s <input> tag. The logic goes like this:

if (the form has NOT been submitted
AND the value of admin_priv in the database is "y") {
mark the button "checked"

} elseif (the form has been submitted
AND the form value of admin_priv is "y") {

mark the button "checked"
}

You can create this code by copying and pasting the existing conditional statements
and making a few changes. It’s not difficult, but you need to follow the next steps
carefully.

5. When the page first loads, the form hasn’t been submitted, so the $_POST array will
have zero elements (and therefore equate to false). This means the first check can
be performed by inserting !$_POST into the conditional statement like this:

if (!$_POST && !(strcmp(htmlentities($row_getUser['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"y"))) {echo "checked=\"checked\"";}

6. You now need to deal with the alternative scenario. Begin by copying the amended
conditional statement and pasting it immediately after the closing curly brace. So,
now you have two identical conditional statements.

7. You want the second statement to run only if the first one fails, so change the sec-
ond if to elseif.

8. In the alternative scenario, you want $_POST to be true, so remove the negative
operator from in front of $_POST.

9. You also want the value of admin_priv to come from the form input, rather than
the database, so change $row_getUser['admin_priv'] to $_POST['admin_priv'].

10. Repeat steps 5–9 for the No button. The completed radio button code looks like
this:

<td><input type="radio" name="admin_priv" value="y"
<?php if (!$_POST && !(strcmp(htmlentities($row_getUser['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"y"))) {echo "checked=\"checked\"";}
elseif ($_POST && !(strcmp(htmlentities($_POST['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"y"))) {echo "checked=\"checked\"";} ?> />
Yes</td>
</tr>
<tr>
<td><input type="radio" name="admin_priv" value="n"

<?php if (!$_POST && !(strcmp(htmlentities($row_getUser['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"n"))) {echo "checked=\"checked\"";}
elseif ($_POST && !(strcmp(htmlentities($_POST['admin_priv'], ➥

ENT_COMPAT, 'utf-8'),"n"))) {echo "checked=\"checked\"";} ?> />
No</td>

11. One more thing, and you’re done. Copy the code that displays the error messages
from register_user.php (shown on lines 107–123 of the following screenshot),
and paste it just above the update form in update_user.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

670

12. Save update_user.php. Compare your code with update_user_02.php in
examples/ch15 if you have any problems.

You can now update existing records by loading list_users.php into a browser and click-
ing the EDIT link alongside the username of the account you want to change. Adapting the
update form has also required considerable effort. It’s a pity that Dreamweaver doesn’t
offer more help in the way of server-side validation, but if you value your data, you need
to customize the code that Dreamweaver creates for you.

You might want to take a break at this stage, but now that you have a simple user regis-
tration system, you can use it to password protect various parts of your website. You’ll be
relieved to know that Dreamweaver’s user authentication server behaviors don’t need any-
where near the same level of customization. They rely on the use of PHP sessions, so
before showing you how to build a login system, let’s take a quick look at sessions and
what they’re for.

What sessions are and how they work
The Web is a brilliant illusion. When you visit a well-designed website, you get a great feel-
ing of continuity, as though flipping through the pages of a book or a magazine. Everything
fits together as a coherent entity. The reality is quite different. Each part of an individual
page is stored and handled separately by the web server. Apart from needing to know
where to send the relevant files, the server has no interest in who you are, nor is it inter-
ested in the PHP script it has just executed. PHP garbage collection (yes, that’s what it’s
actually called) destroys variables and other resources used by a script as soon as they’re
no longer required. But it’s not like garbage collection at your home, where it’s taken
away, say, once a week. With PHP, it’s instant: the server memory is freed up for the next
task. Even variables in the $_POST and $_GET arrays persist only while being passed from
one page to the next. Unless the information is stored in some other way, such as a hidden
form field, it’s lost.

To get around these problems, PHP (in common with other server-side languages) uses
sessions. A session ensures continuity by storing a random identifier on the web server
and on the visitor’s computer (as a cookie). Because the identifier is unique to each visitor,
all the information stored in session variables is directly related to that visitor and cannot
be seen by anyone else.

The security offered by sessions is adequate for most user authentica-
tion, but it is not 100-percent foolproof. For credit card and other
financial transactions, you should use an SSL connection verified by a
digital certificate. To learn more about this and other aspects of build-
ing security into your PHP sites, Pro PHP Security by Chris Snyder and
Michael Southwell (Apress, ISBN: 978-1-59059-508-4) is essential read-
ing. Although aimed at readers with an intermediate to advanced
knowledge of PHP, it contains a lot of practical advice of value to all
skill levels.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

671

15

Creating PHP sessions

Creating a session is easy. Just put this command in every PHP page that you want to use in
a session:

session_start();

Once you call that command, the page has access to the visitor’s session variables. This
command should be called only once in each page, and it must be called before the PHP
script generates any output, so the ideal position is immediately after the opening PHP tag.
If any output is generated before the call to session_start(), the command fails, and the
session won’t be activated for that page. Even a single blank space, newline character, or
byte-order mark is considered output. This is the same issue that affects the header()
function, if any output is generated before you call the function. The solution is the same
and was described in “Avoiding the ‘Headers already sent’ error” in Chapter 12.

Creating and destroying session variables

You create a session variable by adding it to the $_SESSION superglobal array in the same
way you would assign an ordinary variable. Say you want to store a visitor’s name and dis-
play a greeting. If the name is submitted in a login form as $_POST['name'], you assign it
like this:

$_SESSION['name'] = $_POST['name'];

$_SESSION['name'] can now be used in any page that begins with session_start().
Because session variables are stored on the server, you should get rid of them as soon as
they are no longer required by your script or application. Unset a session variable like this:

unset($_SESSION['name']);

To unset all session variables—for instance, when you’re logging someone out—set the
$_SESSION superglobal array to an empty array, like this:

$_SESSION = array();

Destroying a session

By itself, unsetting all the session variables effectively prevents any of the information
from being reused, but you should also destroy the session with the following command:

session_destroy();

Do not be tempted to try unset($_SESSION). It not only clears the current session but
also prevents any further sessions from being stored.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

672

By destroying a session like this, there is no risk of an unauthorized person gaining access
either to a restricted part of the site or to any information exchanged during the session.
However, a visitor may forget to log out, so it’s not always possible to guarantee that the
session_destroy() command will be triggered, which is why it’s so important not to store
sensitive information in a session variable.

Checking that sessions are enabled

Sessions should be enabled by default in PHP. A quick way to check is to load
session1.php in examples/ch15 into a browser. Type your name in the text field, and click
the Submit button. When session2.php loads, you should see your name and a link to the
next page. Click the link. If session3.php displays your name and a confirmation that ses-
sions are working, your setup is fine. Click the link to page 2 to destroy the session.

If you don’t see the confirmation on the third page, create a PHP page containing the sin-
gle line of code <?php phpinfo(); ?> to display details of your PHP configuration. Make
sure that session.save_path points to a valid folder that the web server can write to. Also
make sure that a software firewall or other security system is not blocking access to the
folder specified in session.save_path.

Registering and authenticating users
As you have just seen, session variables enable you to keep track of a visitor. If you can
identify visitors, you can also determine whether they have the right to view certain pages.
Dreamweaver has four user authentication server behaviors, as follows:

Log In User: This queries a database to check whether a user is registered and has
provided the correct password. You can also check whether a user belongs to a
particular group to distinguish between, say, administrators and ordinary users.

Restrict Access to Page: This prevents visitors from viewing a page unless they
have logged in and (optionally) have the correct group privileges. Anyone not
logged in is sent to the login page but can be automatically redirected to the orig-
inally selected page after login.

Log Out User: This brings the current session to an end and prevents the user
from returning to any restricted page without first logging back in again.

Check New Username: This checks whether a particular username is already in
use. I don’t recommend using it, because it’s rather badly designed. Using a unique
index and testing for MySQL error 1062, as described earlier in this chapter, is more
user-friendly.

You may find the deprecated functions session_register() and
session_unregister() in old scripts. Use $_SESSION['variable_name']
and unset($_SESSION['variable_name']) instead.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

673

15

Creating a login system

Now that you have a way of registering users, you need to create a way for them to log in
to restricted areas of your site. Building the login system is a lot simpler than building the
registration system.

The first element of a login system is the form where registered users enter their username
and password. To keep things simple, the following instructions use a dedicated login
page, but you can embed the login form on any public page of a site.

1. Create a PHP page called login.php in workfiles/ch15. Lay out the page with a
form, two text fields, and a submit button, as shown here. Since you’ll be apply-
ing a server behavior, there is no need to set the action or method attributes of
the form.

2. The Log In User server behavior expects you to designate two pages: one that the
user will be taken to if the login is successful and another if it fails. Create one page
called success.php, and enter some content to indicate that the login was success-
ful. Call the other page loginfail.php, and insert a message telling the user that
the login failed, together with a link back to login.php.

3. Make sure login.php is the active page in the Dreamweaver workspace. Click the
plus button in the Server Behaviors panel, and select User Authentication ➤ Log In
User. (You can also apply the server behavior from the Data tab of the Insert bar or
from the Data Objects submenu of the Insert menu.)

Creating the login page

The login system uses encrypted passwords. You must encrypt the pass-
words of records that were created with the forms from the previous
chapter before server-side validation was added. Do this by clicking
the EDIT link in list_users.php and reentering the password in the
update form.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

674

4. The Log In User dialog box has a lot of options,
but their meaning should be obvious, at least for
the first two sections. Select the connAdmin con-
nection, the users table, and the username and
password columns, using the settings shown
alongside.

The third section asks you to specify which pages
to send the user to, depending on whether the
login succeeds or fails. Between the text fields for
the filenames is a check box labeled Go to previ-
ous URL (if it exists). This works in conjunction with
the Restrict Access to Page server behavior that
you will use shortly. If someone tries to access a
restricted page without first logging in, the user is
redirected to the login page. If you select this
option, after a successful login, the user will be
taken directly to the page that originally refused
access. Unless you always want users to view a
specific page when first logging in, this is quite a user-friendly option.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

675

15

The final section of the dialog box allows you to specify whether access should be
restricted on the basis of username and password (the default) or whether you also
want to specify an access level. The access level must be stored in one of your data-
base columns. For this login page, set Get level from to admin_priv. Click OK to apply
the server behavior.

5. A drawback with the Dreamweaver Log In User server behavior is that it has no
option for handling encrypted passwords, so you need to make a minor adjustment
by hand. Open Code view, and place your cursor immediately to the right of the
opening PHP tag on line 2. Press Enter/Return to insert a new line, and type the fol-
lowing code:

if (isset($_POST['pwd'])) { $_POST['pwd'] = sha1($_POST['pwd']); }

This checks whether the form has been submitted, and it uses sha1() to encrypt
the password. I have reassigned the value back to $_POST['pwd'] so that
Dreamweaver continues to recognize the server behavior; this way, you can still
edit it through the Server Behaviors panel. Although Dreamweaver doesn’t object
to you placing the line of code here, it will automatically remove it if you ever
decide to remove the server behavior.

6. Save login.php. You can check your code against login.php in examples/ch15.

It’s important to realize that you’re not decrypting the version of the password
stored in the database. You can’t—the sha1() function performs one-way
encryption. You verify the user’s password by encrypting it again and comparing
the two encrypted versions.

Now that you have a means of logging in registered users, you can protect sensitive pages
in your site. When working with PHP sessions, there is no way of protecting an entire folder.
Sessions work on a page-by-page basis, so you need to protect each page individually.

1. Open success.php. Click the plus button in the Server Behaviors panel, and select
User Authentication ➤ Restrict Access to Page.

2. In the Restrict Access to Page dialog box, select the radio button to restrict access
based on Username, password, and access level. Then click the Define button.

3. The Define Access Levels dialog box lets you specify acceptable values. What may
come as a bit of a surprise is that it’s not the column name that Dreamweaver is
interested in but the value retrieved from the column. Consequently, it’s not
admin_priv that you enter here but y or n.

As you might have noticed, although Dreamweaver gives you the option to specify
different access levels, the Log In User server behavior sends all successful logins to
the same page. If you have different login pages for each type of user, this is fine;
you select the appropriate value. So, for an administrator’s login page, just enter y
in the Name field, and click the plus button to register it in the Access levels area.

However, if you want to use the same login form for everyone, you need to regis-
ter all access levels for the first page and then use PHP conditional logic to distin-
guish between different types of users. So, for success.php, also enter n in the
Name field, and click the plus button to register it. Then click OK.

4. After defining the access levels, hold down the Shift key, and select them all in the
Select level(s) field. Then, either browse to login.php, or type the filename directly
in the field labeled If access denied, go to. The dialog box should look like this:

5. Click OK to apply the server behavior, and save success.php.

6. Try to view the page in a browser. Instead of success.php, you should see
login.php. You have been denied access and taken to the login page instead.

7. Enter a username and password that you registered earlier, and click Log in. You
should be taken to success.php. You can check your code against success_01.php
in examples/ch15.

Restricting access to individual pages

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

676

When developing pages that will be part of a restricted area, I find it best to leave the
application of this server behavior to the very last. Testing pages becomes an exercise in
frustration if you need to be constantly logging in and out.

I’ll come back to the question of how to deal with different access levels, but first, let’s
look at logging out.

The Dreamweaver Log Out User server behavior is quick and easy to apply. It automatically
inserts a logout link in your page, so you need to position your cursor at the point you
want the link to be created.

1. Press Enter/Return to create a new paragraph in success.php.

2. Click the plus button in the Server Behaviors panel, and select User Authentication ➤
Log Out User.

3. The Log Out User dialog box gives you the option to log out when a link is clicked
or when the page loads. In this case, you want the default option, which is to log
out when a link is clicked and to create a new logout link. Browse to login.php, or
type the filename directly into the field labeled When done, go to. Click OK.

4. Save success.php, and load the page into a browser. Click the Log out link, and you
will be taken back to the login page. Type the URL of success.php in the browser
address bar, and you will be taken back to the login page until you log in again. You
can check your code against success_02.php in examples/ch15.

Displaying different content depending on access levels

As I mentioned earlier, PHP sessions are the technology that lies behind the user authenti-
cation server behaviors. The Log In User server behavior creates the following two session
variables that control access to restricted pages:

$_SESSION['MM_Username']: This stores the user’s username.

$_SESSION['MM_UserGroup']: This stores the user’s access level.

You can use these in a variety of ways. The simplest, and perhaps most important, use is to
present different content on the first page after logging in. The following exercises are
based on success.php but can be used with any page that begins with session_start()
after a user has logged in.

1. In success.php, insert two paragraphs: one indicating that it’s for administrators, the
other indicating that it’s for non-administrators. The actual content is unimportant.

The following instructions assume you have created at least one administrator and an
ordinary user in the users table.

Logging out users

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

677

15

2. Switch to Code view, and add the PHP code highlighted in bold around the two
paragraphs like this:

<?php if ($_SESSION['MM_UserGroup'] == 'y') { ?>
<p>Content and links for administators</p>
<?php } else { ?>
<p>Content and links for non-administrators</p>
<?php } ?>

This is simple PHP conditional logic. If the value of $_SESSION['MM_UserGroup'] is
y, display the HTML inside the first set of curly braces. If it’s not, show the other
material. There’s only one paragraph in each conditional block, but you can put as
much as you want.

3. Save the page, and log in as an administrator. You’ll see only the first paragraph.
Log out and log back in as an ordinary user. This time you’ll see the second para-
graph. You can compare your code with success_03.php in examples/ch15.

Any content that you want to be seen by both groups should go outside this PHP condi-
tional statement. (In success_03.php, you’ll see that the page heading and the log out link
are common to both groups.) By using this sort of branching logic in the first page, you
can restrict access to subsequent pages according to the specific access level. So, the links
in the first section would point to pages that only administrators are permitted to see.

Greeting users by name

Since the user’s username is stored in $_SESSION['MM_Username'], you could use that to
display a greeting, but it’s much friendlier to use the person’s real name. All that’s needed
is a simple recordset.

1. In success.php, create a recordset using the following settings in Simple mode:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

678

By setting Filter to username = Session Variable MM_Username, the recordset
retrieves the values of the first_name and family_name columns for the currently
logged in user.

2. Open the Bindings panel, and drag the first_name and family_name dynamic text
placeholders into the page like this:

When the page loads, the dynamic text placeholders will be replaced by the values
drawn from the recordset. You can check your code against success_04.php.

Of course, if you want other details about the user, such as user_id, amend the settings in
the Recordset dialog box to retrieve all the columns you need.

Creating your own $_SESSION variables from user details
To avoid the need to create a recordset on every page, store these details as $_SESSION
variables. The code needs to be inserted after the recordset code, which Dreamweaver
places immediately above the DOCTYPE declaration. The pattern Dreamweaver uses for
recordset results looks like this:

$row_recordsetName['fieldName']

So, to create $_SESSION variables from first_name and family_name in session.php, you
would add the following code immediately before the closing PHP tag above the DOCTYPE
declaration:

$_SESSION['first_name'] = $row_getName['first_name'];
$_SESSION['family_name'] = $row_getName['family_name'];

You’re not restricted to using the same element names for the variables. You could do this
instead:

$_SESSION['full_name'] = $row_getName['first_name'].' '. ➥

$row_getName['family_name'];

You can see this code in action in success_05.php in examples/ch15.

Redirecting to a personal page after login
You might want to provide users with their own personal page or folder after logging in.
This is very easy to do, particularly if you base the name of the personal name or folder on
the username. Before the Log In User server behavior creates the session variables, it
stores the submitted username as $loginUsername, so you can use this variable to redirect
users to pages or folders based on their username.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

679

15

If the name of the personal page is in the form username.php, enter the following in the
Log In User dialog box in the field labeled If login succeeds, go to (see step 4 of “Creating
the login page”):

$loginUsername.php

If the personal page is in a folder named after the username, use the following:

$loginUsername/index.php

This assumes that the folder is a subfolder of the folder where the login page is located.
If the username is dpowers, these values would redirect the user to dpowers.php and
dpowers/index.php, respectively.

Encrypting and decrypting passwords

These are common questions: What happens when a user forgets his or her password?
How can I send a reminder? If you encrypt passwords using sha1(), as described in this
chapter, you can’t. The sha1() algorithm is one-way; you can’t decrypt it. Although
this sounds like a disadvantage, it actually ensures a considerable level of security. Since
the password cannot be decrypted, even a corrupt system administrator has no way of
discovering another person’s password. The downside is that you can’t send out password
reminders.

If a password is forgotten, you need to verify the user’s identity and issue a new password.
You can also create a form for users to change their own passwords after logging in. It’s
simply a question of using $_SESSION['MM_Username'] as the filter for the Update Record
server behavior. Don’t worry if you feel that’s currently beyond your capability. In the next
chapter, you’ll learn about the four basic SQL commands that are the key to database
management.

However, it is possible to store passwords using two-way encryption. For more informa-
tion, see my book PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN:
978-1-59059-731-6) and the MySQL documentation at http://dev.mysql.com/doc/
refman/5.0/en/encryption-functions.html.

Chapter review
If you’re beginning to wobble because of the constant need to dive into Code view, take
heart. This has been a tough chapter. The danger with Dreamweaver server behaviors is
they make it very easy to create record insertion and update forms, giving you a false
sense of achievement. If you’re just creating a dynamic website as a hobby, you might be
happy with minimum checks on what’s inserted into your database. But even if it’s a
hobby, do you really want to waste your time on a database that gets filled with unusable
data? And if you’re doing it professionally, you simply can’t afford to.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

680

PHP is like the electricity or kitchen knives in your home: handled properly, it’s very safe;
handled irresponsibly, it can do a lot of damage. Get to know what the code you’re putting
into your pages is doing. The more hands-on experience you get, the easier it becomes. A
lot of PHP coding is simple logic: if this, do one thing; else do something different.

Take a well-earned rest. In the next chapter, we’ll delve into the mysteries of SQL, the lan-
guage used to communicate with most databases, and joining records from two or more
tables.

VALIDATING DATABASE INPUT AND USER AUTHENTICATION

681

15

