
12 REDUCING YOUR WORKLOAD
WITH PHP INCLUDES

Wouldn’t it be wonderful if you could make changes to just a single page and have them
reflected through the site in the same way as CSS? Well, with PHP includes, you can. As the
name suggests, the contents of an include file are included and treated as an integral part
of the page. They can contain anything you would normally find in a PHP page: plain text,
HTML, and PHP code. The file name extension doesn’t even need to be .php, although for
security it’s common practice to use it.

Dreamweaver makes working with includes easy thanks to its ability to display the con-
tents of an include in Design view (or Live view for dynamic content).

In this chapter, you’ll learn about the following:

Using PHP includes for common page elements

Applying CSS to page fragments with design-time style sheets

Exporting a navigation menu to an external file

Adapting the mail processing script to work with other forms

Avoiding the “headers already sent” error with includes

To start with, let’s take a quick look at how you create a PHP include.

Including text and code from other files
The ability to include code from other files is a core part of PHP. All that’s necessary is to
use one of PHP’s include commands and tell the server where to find the file.

Introducing the PHP include commands

PHP has four separate commands for creating an include: include(), include_once(),
require(), and require_once(). Why so many? And what’s the difference?

They all do the same thing, but “require” is used in the sense of “mandatory”; everything
comes to a grinding halt if the external file is missing or can’t be opened. The “include”
pair of commands, on the other hand, soldier bravely on. The purpose of _once is to pre-
vent variables being accidentally overwritten and functions from being redefined (defining
the same function more than once triggers a fatal error). The PHP engine uses the first
instance it encounters and ignores any duplicates. If in doubt about which to use, choose
include_once() or require_once(). Using them does no harm and could avoid problems.

Telling PHP where to find the external file

The include commands take a single argument: a string containing the path of the external
file. While this sounds simple enough, it confuses many Dreamweaver users. PHP looks for
the external file in what’s known as the include_path. By default, this includes the current
directory (folder), although some hosting companies configure PHP to restrict you to

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

504

including files only from specified locations. In any case, PHP expects either a relative or an
absolute path to an include file. It won’t work with a path relative to the site root.

If Links relative to is set to Document in the Local Info category of your site definition (see
Figure 12-1), Dreamweaver automatically uses the correct path for include files. However,
if you have selected Site root as your default style for links, includes won’t work unless you
override the default setting to change the path to a document-relative one or take alter-
native measures to set the include_path.

Figure 12-1. Dreamweaver’s site definition dialog box lets you specify the default
format of internal links.

A practical exercise should clarify the situation.

In this exercise, you’ll see what happens if you use the wrong type of path for an include
file. You’ll also learn how to override the default setting so that you can use includes suc-
cessfully even if your site definition specifies using links relative to the site root.

1. Create a new subfolder called includes in your workfiles folder, and copy
include.txt from examples/includes to the new folder.

2. Go to File ➤ New. Select Blank Page and PHP for Page Type. Choose any of the pre-
defined layouts. The one I chose was 2 column fixed, left sidebar. This is only going to
be a test page, so you can leave Layout CSS on Add to Head. Click Create, and save
the file as include_test.php in workfiles/ch12.

3. Position your cursor at the beginning of the first paragraph under the Main Content
headline. Press Enter/Return to insert a new paragraph, and then press your up
keyboard arrow to move the insertion point into the empty paragraph.

4. Select the PHP tab on the Insert bar, and click the Include button as shown in the
following screenshot (alternatively use the menu option Insert ➤ PHP Objects ➤
Include). Dreamweaver opens Split view, inserts a PHP code block complete with an
include() command, and positions the insertion point between the parentheses,
ready for you to enter the path of the external file (it’s on line 72 in the following
screenshot).

Including a text file

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

505

12

5. The path needs to be a string, so enter a quotation mark (I prefer a single quote,
but it doesn’t matter, as long as the closing quote matches). Dreamweaver’s syntax
coloring turns all the subsequent code red, but this reverts to normal once you
have finished. Inserting the quotation mark places a tiny Browse icon at the inser-
tion point like this:

6. Click the Browse icon to open the Select File dialog box. Navigate to the
workfiles/includes folder, and select include.txt. Before clicking OK, check the
setting of Relative to at the bottom of the dialog box. It displays Document or Site
Root, depending on the default in your site definition (see Chapter 2 and Figure 12-1).
If necessary, change it to Site Root, as shown here, and click OK:

7. Type a closing quote after the path that has just been entered into the include()
command. Syntax coloring turns the rest of the code back to its normal color—a
useful reminder of the importance of matching quotes. Move your cursor further
along the line to remove the just before the closing </p> tag.

Bringing up the Browse icon automatically is a small but welcome productivity
improvement in Dreamweaver CS4. In previous versions, you needed to select
URL Browser from Code Hint Tools on the context menu.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

506

The code in that line should now look like this:

<p><?php include('/workfiles/includes/include.txt'); ?></p>

8. Click inside Design view. The content of the external text file should be displayed
just below the main heading. Magic . . . well, not quite.

9. Click the Live View button. Dreamweaver will ask whether you want to save the
page and update it on the testing server. Click Yes in both cases. You should see
something like Figure 12-2.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

507

12

Figure 12-2. If PHP can’t find the include file, it displays ugly warning messages.

The first warning says there was no such file or directory, but of course, there is.
The second warning gives a cryptic clue as to why PHP can’t open the file. The
include_path is where PHP looks for include files. The value shown on your com-
puter for include_path won’t necessarily be the same as in Figure 12-2; the default
on most web servers is . (a period), which is shorthand for the current working
directory, and either the main PHP folder or pear (PEAR—the PHP Extension and
Application Repository—is a library of extensions to PHP).

What these warnings are telling you is that PHP doesn’t understand a leading for-
ward slash as meaning the site root, so it starts from the current folder and ends up
in a nonexistent part of the site.

10. Switch off Live view, and delete the value between the parentheses of include().

11. Repeat steps 5 and 6 to include.txt again, but this time make sure that Relative to
is set to Document. Switch on Live view again, saving and updating the files when
prompted. The content of the include file should now be correctly displayed, as
shown in Figure 12-3.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

508

Figure 12-3. The include file is displayed correctly when a relative path is used.

12. Switch off Live view, and change the command from include to require like this:

<?php require('../includes/include/txt'); ?>

13. Test the page again in Live view. It should look identical to Figure 12-3.

14. Change the path to point to a nonexistent file, such as includ.txt. When you test
the page in Live view, it should look similar to Figure 12-2, but instead of the sec-
ond warning, you should see Fatal error. The other difference is that there’s no text
after the error message. As explained in “Understanding PHP error messages” in
Chapter 10, any output preceding a fatal error is displayed, but once the error is
encountered, everything else is killed stone dead.

Using site-root-relative links with includes

As you have just seen, PHP cannot find include files referenced by a link relative to the site
root. My recommendation is that, if you have selected links relative to the site root as your
default, you simply select Relative to Document in the Select File dialog box (as described in
step 11 of the preceding exercise) when creating an include.

Nevertheless, there are a couple of alternatives if you have a pressing reason for wanting
to use links relative to the site root. The problem is that they don’t work on all servers.

The virtual() function accepts both document-relative and site-root-relative paths and
can be used as a direct replacement for include() and require(). It works only when PHP
is run as an Apache module.

$_SERVER['DOCUMENT_ROOT'] is a predefined PHP variable that contains the path of the
server’s root folder, so adding it to the beginning of a site-root-relative link has the effect
of turning it into an absolute path. The following works on most servers:

<?php include($_SERVER['DOCUMENT_ROOT'].'/workfiles/includes/ ➥

include/txt'); ?>

Unfortunately, $_SERVER['DOCUMENT_ROOT'] isn’t supported by IIS running PHP in CGI mode.

To check whether your server supports either method, run server_check.php in
examples/ch12. If both are supported, you should see output similar to this:

The preceding screenshot shows the output from my local testing server, but it’s important
to test your remote server as well. If neither virtual() nor $_SERVER['DOCUMENT_ROOT']
is supported and you still want to use site-root-relative links, you need to define a
constant containing the path to the site root. A constant is like a variable, except that
once defined in a script, its value cannot be changed. Constants don’t begin with a dollar
sign, and by convention, they are always in uppercase. You define a constant like this:

define('SITE_ROOT', 'C:\inetpub\wwwroot\dwcs4');

You could then use SITE_ROOT with a site-root-relative link like this:

<?php include(SITE_ROOT.'/workfiles/includes/include/txt'); ?>

The disadvantage with this approach is that you need to include the definition of the con-
stant in every page that uses includes.

The restriction on site-root-relative links applies only to the include command.
Inside include files, all links should be site-root-relative. Document-relative
links inside an include file will be broken if the file is included at a different
level of the site hierarchy.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

509

12

Lightening your workload with includes
So far, you have seen only a fairly trivial use of an include to insert a block of text inside a
paragraph. This might be useful in a situation where you want to change the content of
part of a page on a frequent basis without going to the bother of building a database-
driven content management system. A much more practical use of includes is for content
that appears on many pages, for example a navigation menu or footer. Any changes made
to the include file are immediately reflected throughout the site.

Choosing the right file name extension for include files

As I explained at the beginning of the chapter, the external file doesn’t need to have a
.php file name extension. Many developers use .inc as the default file name extension to
make it clear that the file is an include. Although this a common convention, Dreamweaver
doesn’t automatically recognize an .inc file as containing PHP code, so you don’t get code
hints or syntax coloring. More importantly, browsers don’t understand .inc files. So, if
anybody accesses an .inc file directly through a browser (as opposed to it being included
as part of a PHP page), everything is displayed as plain text.

This is a potential security risk if you put passwords or other sensitive information in exter-
nal files. One way around this problem is to store include files outside the server root
folder. Many hosting companies provide you with a private folder, which cannot be
reached by a browser. As long as the PHP script knows where to find the external file and
has permission to access it, include files can be outside the server root. However, this cre-
ates problems for Dreamweaver site management.

A simpler, widely adopted solution is to use .inc.php as the file name extension. Browsers
and servers treat only the final .php as the file name extension and automatically pass the
file to the PHP engine if requested directly. The .inc is simply a reminder to you as the
developer that this is an include file.

As long as you store passwords and other sensitive information as PHP variables within PHP
code blocks and you use .php as the final file name extension, your data cannot be seen
by anyone accessing the page directly in a browser (of course, it will be revealed if your
code uses echo or print to display that information, but I assume you have the sense not
to do that).

Displaying HTML output

When PHP includes an external file, it automatically treats the contents of the external file
as plain text or HTML. This means that you can cut a section out of an existing page built
in HTML and convert it into an include file. In order to preserve your sanity, it’s important
to put only complete, logical elements in external files. Putting the opening part of a <div>
in one external file and the closing part in another file is a disaster waiting to happen. It
becomes impossible to keep track of opening and closing tags, and Dreamweaver is likely
to start trying to replace what it regards as missing tags.

Usually, I find the best approach is to build the complete page first and then convert com-
mon elements into include files.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

510

This exercise shows you how to extract the menu from the “Stroll along the Thames” site
in Chapter 6 and convert it into an include file. The menu bar currently contains only
dummy links. I’ll show you later in this chapter how to edit the menu to update the links.

1. Copy stroll_horiz.php and stroll.css from examples/ch12 to workfiles/ch12.
This is an identical copy of the completed page from Chapter 6. The only difference
is that the file name extension has been changed to .php so that the PHP engine
knows to process it and include the external files you are about to create. Test the
page in a browser to make sure it displays correctly. It should look like Figure 12-4.

Converting a navigation menu into an include

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

511

12

Figure 12-4. The menu is the same on every page of the site, so it is a prime candidate for an include file.

2. Create a new PHP file, and save it in the workfiles/includes folder as
menu.inc.php. You don’t need one of the CSS layouts, because you need a com-
pletely blank page. Switch to Code view in menu.inc.php, and delete everything,
including the DOCTYPE declaration. There should be nothing left in the page.

3. Switch to stroll_horiz.php in the Document window. Click anywhere inside the
navigation menu, and click <div#nav> in the Tag selector to select the entire
menu. Switch to Code view, and then cut the menu to your computer clipboard
(Ctrl+X/Cmd+X or Edit ➤ Cut).

You must be in Code view when cutting the menu to the clipboard. If you remain
in Design view, Dreamweaver cuts all the Spry-related code and pastes it into the
include file. You want to move only the HTML code and the Spry object initializa-
tion, but they’re in different parts of the page, so it has to be done in two steps.
Click No if Dreamweaver displays the warning shown in the preceding screenshot at
any time during the next few steps. Once you move the initialization script, the
warning message no longer appears.

4. Without moving the insertion point, click the Include button on the PHP tab of the
Insert bar (or use the menu alternative). This inserts a PHP code block and positions
your cursor between the parentheses of an include() command.

5. Type a single quote, and click the Browse icon to navigate to menu.inc.php in the
workfiles/includes folder in the same way as in “Including a text file” earlier in
the chapter. In the Select File dialog box, make sure Relative to is set to Document.
Click OK, and type a closing quote after the path. Save stroll_horiz.php.

6. Switch to menu.inc.php in the Document window. Make sure you are in Code view,
and paste the menu that you cut from stroll_horiz.php. (If you are in Design
view, you won’t get all the HTML code. Always cut and paste in the same view in
Dreamweaver—Design view to Design view or Code view to Code view.)

7. Go back to stroll_horiz.php, scroll down to the bottom of the page, and cut to
your clipboard the section of code highlighted on lines 53–57 in the following
screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

512

This is the initialization script for the Spry menu bar. Make sure you have the open-
ing and closing <script> tags.

8. Paste the Spry object initialization script into menu.inc.php after the closing
</div> tag. Save menu.inc.php, and close the file.

9. Switch to Design view in stroll_horiz.php. The menu should be visible as it was
before. If you can’t see the menu, open Preferences from the Edit menu
(Dreamweaver menu on a Mac), select the Invisible Elements category, and make
sure there’s a check mark in Server-Side includes: Show contents of included file.

10. Hover your mouse pointer over the navigation menu, and click the turquoise Spry
Menu Bar tab at the top-left corner. The Property inspector recognizes it as a
server-side include (SSI) and displays the name of the file, together with an Edit
button, as shown in Figure 12-5. If the Spry Menu Bar tab doesn’t appear, make sure
there’s a check mark alongside Invisible Elements in the View ➤ Visual Aids submenu.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

513

12

Figure 12-5. The Property inspector provides a direct link to edit the include file.

If the Related Files feature is enabled, clicking the Edit button in the Property
inspector opens the include file in Split view ready for editing. Frequently, though,
it’s better to open the include file as a separate file so that you can edit it in Design
view as well as in Code view. To do so, right-click the include file’s name in the
Related Files toolbar, and select Open as Separate File.

If you have disabled Related Files, clicking Edit opens the file in a separate tab.

11. Test stroll_horiz.php in a browser. It should look like Figure 12-4, and the menu
should work as before. You can check your code against stroll_horiz_menu.php
in examples/ch12 and menu.inc.php in examples/includes.

Putting the Spry object initialization script at the end of menu.inc.php results in it being
called earlier than it was in the original page, but it’s still in the right order and doesn’t
result in invalid code. It also prevents the warning in step 3 from being displayed every
time you open the parent page.

An added advantage is that you can edit the Spry menu through the Property inspector in
the same way as in Chapter 6. Even though the include file has no direct link to the Spry
menu bar external JavaScript file, Dreamweaver automatically finds it because the Spry assets
folder is specified in the site definition.

However, what you put in an external file doesn’t always have such benign consequences.

An annoying quirk in the way Dreamweaver handles PHP includes in Design
view is that the include command must be in its own PHP code block. If you put
any other PHP code in the same block—even a comment—Dreamweaver just
displays the gold PHP shield.

Avoiding problems with include files

The server incorporates the content of an include file into the page at the point of the
include command. If you pasted all the Spry-related code into menu.inc.php, rather than
just the constructor, you would end up with the link to the external style sheet within the
<body> of stroll_horiz.php. Although some browsers might render the page correctly,
<style> blocks are invalid outside the <head> of a web page. If it doesn’t break now, it
probably will sooner or later as browsers get increasingly standards-compliant.

The most common mistake with include files is adding duplicate <head> and <body> tags.
Keep your include files free of extraneous code, and make sure when everything fits back
together that you have a DOCTYPE declaration, a single <head> and <body>, and that every-
thing is in the right order.

Dreamweaver depends on the DOCTYPE declaration at the top of a page to determine
whether to use XHTML rules. Code added to an include will normally use HTML style, so
when editing an include, you need to keep a close eye on what is happening in Code view.
This is why I recommend extracting code into include files only toward the end of a proj-
ect or if the external file uses mainly dynamic code.

Another common problem is a broken link in an include file. Always use links relative to
the site root inside include files. As explained in Chapter 2, root-relative links provide a
constant reference to a page or an asset, such as an image. If you use document-relative
links inside an include file, the relationship—and therefore the link—is broken if the file is
included at a different level of the site hierarchy than where it was originally designed.

Let’s test that with the menu bar that was extracted to an external file in the preceding
exercise.

This exercise demonstrates the importance of using root-relative links in an include file. It
updates two of the links in menu.inc.php, the include file created in the preceding exer-
cise. Continue working with the same files.

1. With stroll_horiz.php open in the Document window, right-click menu.inc.php
in the Related Files toolbar, and select Open as Separate File, as shown here:

2. This opens menu.inc.php in a separate tab. The menu bar displays as an unstyled
unordered list (see Figure 12-6). In the next section, I’ll show you how you can dis-
play the styles while working on an include file like this. However, that’s not impor-
tant at the moment. What you’re interested in is updating the links.

Updating links in the menu bar

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

514

If you prefer working with the Spry menu bar Property inspector, select the Spry
Menu Bar turquoise tab at the top left of the unordered list. However, I think it’s
quicker to just click inside the individual links and use the HTML view of the
Property inspector.

Whichever method you use, select the Home link, click the Browse for File icon to the
right of the Link field in the Property inspector, and navigate to stroll_horiz.php
in the workfiles/ch12 folder. Make sure Relative to in the Select File dialog box is set
to Document, as shown in the following screenshot (I’m deliberately doing this to
demonstrate what happens when you use document-relative links in an include file):

Figure 12-6.
The menu bar is unstyled
in the include file.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

515

12

3. Click OK to update the link. Then select the London Eye link, and create a link to
eye.php, which is in the examples/ch12/attractions folder. Also make sure
Relative to is set to Document, and click OK to update the link. There is no need to
move eye.php to the workfiles folder. I have created the page so that it automat-
ically includes your version of menu.inc.php from workfiles/includes.

4. Save menu.inc.php, switch back to horiz_stroll.php, and press F12/Opt+F12 to
load the page into a browser. Click Yes when asked whether you want to update
the page on the testing server.

5. Mouse over Attractions in the menu bar to reveal the drop-down menu, and click
London Eye. You should see the page shown in Figure 12-7.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

516

Figure 12-7. The menu navigates successfully to a page at a different level in the site hierarchy.

6. Now click the Home link in the new page. This time, you should see something
similar to Figure 12-8.

Figure 12-8. Document-relative links prevent the menu from navigating back to
the correct location.

If you’re using the same site structure as I am, you’ll see that the menu has tried
to find stroll_horiz.php in the examples folder, rather than return to your
workfiles folder. Not only that, but it’s trying to find two levels of ch12. Although
the browser was able to find the correct file the first time, document-relative links
make it impossible for an include file to navigate through a complex site structure.
Using document-relative links works only if you keep everything in the same folder.

7. Return to menu.inc.php, and update the Home and London Eye links. They should
still point to the same pages, but this time select Site Root as the value for Relative
to. The values in the URL field should look like this:

/workfiles/ch12/stroll_horiz.php
/examples/ch12/attractions/eye.php

This works only if you have set up your testing server as a virtual host in Apache or
as a web site in IIS7.

If you defined your site in a subfolder of the server root, you need to prefix these
values with the name of the subfolder preceded by a forward slash. For example, if
you created the site in a subfolder of the server root called dwcs4 and you use
http://localhost/dwcs4/workfiles/ch12/stroll_horiz.php to display the first
page, you need to manually adjust the preceding values like this:

/dwcs4/workfiles/ch12/stroll_horiz.php
/dwcs4/examples/ch12/attractions/eye.php

If you have built the site in your Sites folder on a Mac, you need to add your user-
name as well, like this:

/~username/dwcs4/workfiles/ch12/stroll_horiz.php
/~username/dwcs4/examples/ch12/attractions/eye.php

8. The script that initializes the menu bar also uses document-relative links like this:

var MenuBar1 = new Spry.Widget.MenuBar("MenuBar1", ➥

{imgDown:"../../SpryAssets/SpryMenuBarDownHover.gif", ➥

imgRight:"../../SpryAssets/SpryMenuBarRightHover.gif"});

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

517

12

Because the include file always remains in the same location relative to the
SpryAssets folder, you don’t need to edit these links. However, for the sake of
consistency, it’s a good idea to do so. Remove the ../.. from the beginning of
both links like this:

var MenuBar1 = new Spry.Widget.MenuBar("MenuBar1", ➥

{imgDown:"/SpryAssets/SpryMenuBarDownHover.gif", ➥

imgRight:"/SpryAssets/SpryMenuBarRightHover.gif"});

9. Save menu.inc.php and reload stroll_horiz.php in a browser. You should now be
able to navigate successfully between the Home and London Eye pages.

Applying styles with design-time style sheets

Although Dreamweaver displays the menu normally in stroll_horiz.php, it looks com-
pletely different in menu.inc.php. As Figure 12-6 shows, the menu is completely unstyled;
all you can see is the underlying series of nested unordered lists. Design-time style sheets
let you apply the styles in an external style sheet to a page or code fragment without the
need to attach the style sheet directly to the page. As the name suggests, the style sheet is
applied only at design time; in other words, it’s applied in Design view.

To apply design-time style sheets to a page or an include file, select CSS Styles ➤ Design-time
from either the Format menu or from the context menu when right-clicking in Design view.
This opens the Design-Time Style Sheets dialog box, as shown in the following screenshot:

The instructions in step 7 for prefixing the links with the server root subfolder are purely for
the benefit of this exercise. When deploying the file on a live site, you would need to
remove the /dwcs4 or /~username/dwcs4 from each link, making the process cumber-
some and prone to error. If you plan to use links in include files, it’s essential to set up your
testing server in a virtual host or a standalone web site in IIS7 (see Chapter 2 for details).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

518

The dialog box has two sections. The first one, Show only at design time, lets you apply a
style sheet without attaching it to the file. The second one, Hide at design time, works with
style sheets that are attached to a file, letting you hide the effect of selected style sheets
while working in Design view. It’s particularly useful when working with style sheets for dif-
ferent media, such as print and screen.

Both sections work the same way: add a style sheet to the list by clicking the plus (+) button
and navigating to the style sheet in the site file system. The rules of the CSS cascade apply, so
add multiple style sheets in the same order as to the original page. To remove a style sheet,
highlight it, and click the minus (–) button. Figure 12-9 shows menu.inc.php after apply-
ing workfiles/ch12/stroll.css and SpryAssets/SpryMenuBarHorizontal_stroll.css
as design-time style sheets. It now looks the same as in the page it was extracted from.

Figure 12-9. After applying design-time style sheets, the include file looks the same as in the
original page.

With the design-time style sheets applied, you can manipulate the styles of the include file
by changing the class or ID of individual elements. You can also change the style rules in
the external style sheets through the CSS Styles panel or the CSS view of the Property
inspector. But—and it’s a rather large one—you should remember that the code fragment
you’re working with is no longer in the context of its parent page. As a result, you cannot
access the Code Navigator by holding down Alt/Opt+Cmd and clicking in the page, nor are
the styles preserved in Live view. More importantly, the full effect of the CSS cascade may
not be accurately reflected if particular styles are dependent on being inside a parent ele-
ment that’s not part of the code fragment. Also, changes made to the external style sheet
may have unexpected consequences on other parts of your design. Although useful,
design-time style sheets have their limitations.

Another drawback is that design-time style sheets can be applied to only one page at a
time. There is a commercial extension available that lets you apply design-time style sheets
to an entire site. See http://www.communitymx.com/abstract.cfm?cid=61265 for details.
Dreamweaver stores details of style sheets applied to a page in this way in a subfolder
called _notes. The subfolder is hidden in the Files panel but can be inspected in Windows
Explorer or Finder.

Adding dynamic code to an include

The footer of a page frequently contains details that might change, such as company
address or telephone number, making it an ideal candidate for an include file.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

519

12

The footer in stroll_horiz.php contains only a copyright notice, which normally changes
only once a year, but with a little PHP magic, you can get it to update automatically at the
stroke of midnight on New Year’s Eve every year. Continue working with the files from the
previous exercise.

1. Create a PHP page, and save it in workfiles/includes as footer.inc.php. Switch to
Code view, and remove all code so the file is completely blank. Switch to Design view.

2. Open stroll_horiz.php in Design view, and click anywhere inside the copyright
notice at the bottom of the page. Select the entire footer by clicking <div#footer>
in the Tag selector, and cut it to your clipboard.

3. Without moving the insertion point, click the Include button on the PHP tab of the
Insert bar. Dreamweaver opens Split view with the cursor placed between the
parentheses of an include() block. Type a single quote, click the Browse icon as
before to insert the path to footer.inc.php, and type a closing quote.

4. Switch to footer.inc.php, and paste the contents of your clipboard into Design
view (do not paste into Code view—remember always to paste back to the same
view as you cut from). The footer is unstyled, but if you save footer.inc.php,
switch to stroll_horiz.php, and click in Design view, then you’ll see the footer
properly styled as though you had never moved it.

5. Close the separate tab containing footer.inc.php. The rest of the work on the
include file needs to be done in Code view, so you can now access it through the
Related Files toolbar. Select footer.inc.php in the Related Files toolbar to open it in
Split view, as shown in the following screenshot:

6. A copyright notice should have a year. You could just type it in, but the PHP date()
function generates the current year automatically. Add the following code like this:

<p>©
<?php
ini_set('date.timezone', 'Europe/London');
echo date('Y');
?>
Footsore in London</p>

Automatically updating a copyright notice

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

520

Chapter 17 explains dates in PHP and MySQL in detail, but let’s take a quick look at
what’s happening here. The core part of the code is this line:

echo date('Y');

This displays the year using four digits. Make sure you use an uppercase Y. If you
use a lowercase y instead, only the final two digits of the year will be displayed.

The reason for the preceding line is because PHP 5.1.0 or higher requires a valid
time-zone setting. This should be set in php.ini, but if your hosting company for-
gets to do this, you may end up with ugly error messages in your page.

What if your hosting company is using an earlier version of PHP? No problem.
Earlier versions simply ignore this line.

Setting the time zone like this is not only good insurance against error messages,
but it also allows you to override the hosting company setting, if your host is in a
different time zone from your own. The second argument for ini_set() must be
one of the time zones listed at http://docs.php.net/manual/en/timezones.php.

7. Save both stroll_horiz.php and footer.inc.php, and click the Live View button.
You should see the current year displayed alongside the copyright symbol, as
shown in Figure 12-10.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

521

12

Figure 12-10. The PHP code generates the current year and displays it in the page.

8. Click the Live Code button, and scroll down to the bottom of the Code view section
of the Document window. This shows you the actual code being sent to the
browser. As you can see in the following screenshot, the PHP code remains on the
server, and only the generated output is visible. The line numbers are different
because Live Code merges the include files into the main page.

9. Copyright notices normally cover a range of years, indicating when a site was first
launched. To improve the copyright notice, you need to know two things: the start
year and the current year. Turn off both Live view and Live Code. Select
footer.inc.php in the Related Files toolbar, if necessary, and change the PHP code
like this:

<p>©
<?php
ini_set('date.timezone', 'Europe/London');
$startYear = 2008;
$thisYear = date('Y');
if ($startYear == $thisYear) {
echo $startYear;

} else {
echo "{$startYear}-{$thisYear}";

}
?>
Footsore in London</p>

This uses simple conditional logic (if you’re new to PHP, see “Using comparisons to
make decisions” in Chapter 10, and take particular note of the use of two equal
signs in the conditional statement). The static value of $startYear is compared to
the dynamically generated value of $thisYear. If both are the same, only the start
year is displayed; if they’re different, you need to display both with a hyphen
between them.

I’ve used curly braces around the variables in the following line:

echo "{$startYear}-{$thisYear}";

This is because they’re in a double-quoted string that contains no whitespace. The
curly braces enable the PHP engine to identify the beginning and end of the vari-
ables. Since hyphens aren’t permitted in variable names, you could omit the curly
braces on this occasion. However, their presence makes the code easier to read.

10. Save footer.inc.php, and toggle Live view on again. Assuming you used the cur-
rent year for $startYear, you’ll see no difference, so experiment by changing the
value of $startYear and alternating between uppercase and lowercase y in the
date() function.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

522

Depending on the value of $startYear and the current date, you should see some-
thing like © 2007–2008 if you used an uppercase Y, and © 2007–08 with a lower-
case y.

The values of $startYear, $thisYear, and the name of the copyright owner are the
only things you need to change, and you have a fully automated copyright notice.
You can check your code against footer.inc.php in examples/includes and
stroll_horiz_footer.php in examples/ch12.

Using includes to recycle frequently used PHP code

Includes become really useful when you create PHP code that can be used in any site. A
simple example is the POST stripslashes snippet you used in the previous chapter. Instead
of putting the code directly inside your script, you could put it in an external file and use
include() to incorporate it.

Let’s take a look at the code again:

// remove escape characters from POST array
if (PHP_VERSION < 6 && get_magic_quotes_gpc()) {

function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;

}
$_POST = array_map('stripslashes_deep', $_POST);

}

It contains nothing but PHP code, and the code itself consists of a conditional statement
that removes backslashes from the $_POST array if magic quotes are enabled on the server.
To use it successfully as an include, you must do the following two things:

The code in the external file must be surrounded by PHP tags. Although include()
and its related commands are part of PHP, the PHP engine treats everything in an
include file as plain text or HTML until it encounters an opening PHP tag. The open-
ing tag must be matched by a closing one at or before the end of the include file.

The code must be included at the point in the script where you want to run it. In
this respect, it’s the same as the text and HTML includes earlier in the chapter.

PHP can be used in two main ways: as a procedural language and as an object-oriented
one. In a procedural language, everything is usually in the same page, and the code is exe-
cuted from top to bottom. However, to avoid the need to retype frequently used sections
of script, you can package them up as custom-built functions. An object-oriented language
takes the concept of functions much further and packages most of the code in libraries
called classes.

For an in-depth look at object-oriented PHP, see my PHP Object-Oriented Solutions
(friends of ED, ISBN: 978-1-4302-1011-5).

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

523

12

That’s a vast oversimplification, but in both approaches, unless the contents of an external
file define functions or classes, the include command must come at the point in the code
where you want to run it. The POST stripslashes snippet does include the definition of the
stripslashes_deep() function, but it’s buried inside a conditional statement. So, the snip-
pet itself is a chunk of procedural code that must be included at the point of the script
where it’s needed.

However, you can convert the snippet into a new function called nukeMagicQuotes()
like this:

<?php
function nukeMagicQuotes() {
// remove escape characters from POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value): stripslashes($value);
return $value;

}
$_POST = array_map('stripslashes_deep', $_POST);

}
}
?>

If you save this as nukequotes.inc.php, you can include the external file at the beginning
of your script and run this function at any stage in your script like this (you can see the
code in feedback_nuke.php in examples/ch12 and nukequotes.inc.php in examples/
includes):

nukeMagicQuotes();

The difference of this approach is that the include file initializes the function, but the func-
tion doesn’t actually run until it’s called in the main body of the script. Since this particu-
lar piece of code runs only once, there’s no immediate advantage of doing it this way.
However, let’s say you find a way of improving this script; the changes need to be made
only in the external file, saving you the effort of hunting through every page where it
might have been used. External files can define more than one function, so you can store
frequently used functions together. In this respect, includes are the PHP equivalent of link-
ing external JavaScript files or style sheets.

Although building your own function library is an important use of includes, you shouldn’t
ignore the opportunity to recycle procedural code.

When functions or classes are stored in an external file, the include
command must come before you use the functions or classes in your
main script.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

524

Adapting the mail processing script as an
include

The mail processing script in the previous chapter performs a series of tasks, some of them
specific to the feedback form, others more generic in nature. The next section shows you
how to adapt the script and make it generic so that it can handle the output of any feed-
back form. If you glance ahead at the next few pages, you’ll see there’s a lot of PHP code.
Don’t despair. Most of the work involves cutting and pasting from one page to another. At
the end, you will have an include file that can be used with just about any online form to
process the input and send it by email. This considerably reduces the amount of coding
that needs to be done in the page that contains the form itself.

Analyzing the script

To make the script reusable, you need to identify what’s specific, what’s generic, and
whether any of the specific tasks can be made generic. Once you have identified the
nature of each task, you need to concentrate the generic ones into a single unit that can
be exported to an external file.

Table 12-1 lists the tasks in the order they are currently performed and identifies their
roles. You can study the code in feedback_orig.php in examples/ch12.

Table 12-1. Analysis of the mail processing script

Step Description Type

1 Check whether form has been submitted. Specific

2 Remove magic quotes. Generic

3 Set to address and subject. Specific

4 List expected and required fields. Specific

5 Initialize $missing array. Generic

6 Set default values for checkbox group and multiple-choice list. Specific

7 Filter suspect content. Generic

8 Process $_POST variables and check for missing fields. Generic

9 Validate email address. Generic

10 Build the message body. Specific

11 Create additional headers. Specific

12 Send email. Generic

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

525

12

As you can see from Table 12-1, most tasks are generic, but they don’t form a single block.
However, step 2 can easily be moved after step 6. That leaves just steps 6, 10, and 11 that
get in the way. The easy way to deal with step 6 is to initialize the $missing array as part
of the specific script. After all, it’s only one line.

So, what about step 10? This builds the body of the message, which would appear to be
something that’s always specific to each form. Let’s take another look at that part of
the script:

// build the message
$message = "Name: $name\r\n\r\n";
$message .= "Email: $email\r\n\r\n";
$message .= "Comments: $comments\r\n\r\n";
$message .= 'Interests: '.implode(', ', $interests)."\r\n\r\n";
$message .= "Subscribe: $subscribe\r\n\r\n";
$message .= "Visited: $visited\r\n\r\n";
$message .= 'Impressions of London: '.implode(', ', $views);

It doesn’t take a genius to work out that the message is built using text labels followed by
variables with the same name as the label. Since the variable names come from the name
attributes in the form, all you need is a way of displaying the name attributes as well as the
values of each input field. That’s easily done with PHP. It’s also easy to set default values for
variables that contain nothing.

That leaves just step 11, the creation of additional headers. With the exception of the
return email address, it doesn’t matter when you specify the additional headers. They sim-
ply need to be passed to the mail() function in step 12. So, you can move the creation of
most headers to the form-specific section at the beginning of the script. Table 12-2 shows
the revised order of tasks.

Table 12-2. The revised mail processing script

Where defined Step Description

Main script

1 Check whether form has been submitted.

2 Set to address and subject.

3 Set form-specific email headers.

4 List expected and required fields.

5 Initialize missing array.

6 Set default values for checkbox group and multiple-
choice list.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

526

Where defined Step Description

Include file

1 Remove magic quotes.

2 Filter suspect content.

3 Process $_POST variables, and check for missing fields.

4 Validate email address.

5 Build the message body.

6 Add return email address to headers.

7 Send email.

Building the message body with a generic script

Loops and arrays take a lot of the hard work out of PHP scripts, although they can be dif-
ficult to understand when you’re new to PHP. You may prefer just to use the completed
script, but if you’re interested in the details, take a look at the following code, and I’ll
explain how it works:

// initialize the $message variable
$message = '';
// loop through the $expected array
foreach($expected as $item) {
// assign the value of the current item to $val
if (isset(${$item}) && !empty(${$item})) {
$val = ${$item};

} else {
// if it has no value, assign 'Not selected'
$val = 'Not selected';

}
// if an array, expand as comma-separated string
if (is_array($val)) {
$val = implode(', ', $val);

}
// add label and value to the message body
$message .= ucfirst($item).": $val\r\n\r\n";

}

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

527

12

This replaces the code for step 10 that was listed in the preceding section. It begins by ini-
tializing $message as an empty string. Everything else is inside a foreach loop (see
“Looping through arrays with foreach” in Chapter 10), which iterates through the
$expected array. This array consists of the name attributes of each form field (name, email,
and so on).

A foreach loop assigns each element of an array to a temporary variable. In this case, I
have used $item. So, the first time the loop runs, $item is name; the next time it’s email,
and so on. This means you can use $item as the text label for each form field, but before
you can do that, you need to know whether the field contains any value. The code that
processes the $_POST variables assigns the value of each field to a variable based on its
name attribute ($name, $email, and so on). The rather odd-looking ${$item} is what’s
known as a variable variable (the repetition is deliberate, not a misprint). Since the value
of $item is name the first time the loop runs, ${$item} refers to $name. On the next pass
through the loop, it refers to $email, and so on.

In effect, what happens is that on the first iteration the following conditional statement

if (isset(${$item}) && !empty(${$item})) {
$val = ${$item};

}

becomes this:

if (isset($name) && !empty($name)) {
$val = $name;

}

If the variable doesn’t exist (which would happen if nothing was selected in a checkbox
group) or if it doesn’t contain a value, the else clause assigns $val the string Not selected.

So, you now have $item, which contains the label for the field, and $val, which contains
the field’s value.

The next conditional statement uses is_array() to check whether the field value is an
array (as in the case of checkboxes or a multiple-choice list). If it is, the values are con-
verted into a comma-separated string by implode().

Finally, the label and field value are added to $message using the combined concatenation
operator (.=). The label ($item) is passed to the ucfirst() function, which converts the
first character to uppercase. The concatenation operator (.) joins the label to a double-
quoted string, which contains a colon followed by the field value ($val) and two pairs of
carriage returns and newline characters.

This code handles all types and any number of form fields. All it needs is for the name
attributes to make suitable labels and to be added to the $expected array.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

528

The following instructions show you how to adapt feedback.php from the previous chap-
ter so that it can be recycled for use with most forms. If you don’t have a copy of the file
from the previous chapter, copy feedback_orig.php from examples/ch12 to work-
files/ch12, and save it as feedback.php.

1. Create a new PHP file, and save it as process_mail.inc.php in workfiles/
includes. Switch to Code view, and strip out all existing code.

2. Insert the following code:

<?php
if (isset($_SERVER['SCRIPT_NAME']) && strpos($_SERVER['SCRIPT_NAME'],➥

'.inc.php')) exit;

?>

This uses the predefined variable $_SERVER['SCRIPT_NAME'] and the strpos()
function to check the name of the current script. If it contains .inc.php, that
means somebody is trying to access the include file directly through a browser, so
the exit command brings the script to a halt. When accessed correctly as an
include file, $_SERVER['SCRIPT_NAME'] contains the name of the parent file, so
unless you also give that the .inc.php file name extension, the conditional state-
ment returns false and runs the rest of the script as normal.

Calling process_mail.inc.php directly shouldn’t have any negative effect, but if
display_errors is enabled on your server, it generates error messages that might
be useful to a malicious attacker. This simple security measure prevents the script
running unless it’s accessed correctly.

3. Cut the POST stripslashes code from the top of feedback.php, and paste it on the
blank line before the closing PHP tag in process_mail.inc.php.

4. Leave $to, $subject, $expected, and $required in feedback.php. Cut the remaining
PHP code above the DOCTYPE declaration (DTD), except for the closing curly brace
and PHP tag. The following code should be left above the DTD in feedback.php:

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments', 'interests', ➥

'subscribe', 'visited', 'views');
// set required fields
$required = array('name', 'comments', 'interests', 'visited', ➥

'views');

Converting feedback.php to use the generic script

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

529

12

// create empty array for any missing fields
$missing = array();
// set default values for variables that might not exist
if (!isset($_POST['interests'])) {
$_POST['interests'] = array();

}
if (!isset($_POST['views'])) {
$_POST['views'] = array();

}
// minimum number of required checkboxes
$minCheckboxes = 2;
// if fewer than required, add to $missing array
if (count($_POST['interests']) < $minCheckboxes) {
$missing[] = 'interests';

}
}
?>

5. Paste into process_mail.inc.php just before the closing PHP tag the code you cut
from feedback.php.

6. Cut the following two lines from process_mail.inc.php:

// create additional headers
$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';

7. Paste them into feedback.php just before the closing curly brace of the code
shown in step 4 like this:

if (count($_POST['interests']) < $minCheckboxes) {
$missing[] = 'interests';

}
// create additional headers
$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';

}
?>

8. Replace the code that builds the message with the generic version shown at the
beginning of this section. The full listing for process_mail.inc.php follows, with
the new code highlighted in bold:

<?php
if (isset($_SERVER['SCRIPT_NAME']) && strpos($_SERVER['SCRIPT_NAME'],➥

'.inc.php')) exit;
// remove escape characters from POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

530

return $value;
}
$_POST = array_map('stripslashes_deep', $_POST);

}

// assume that there is nothing suspect
$suspect = false;
// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// function to check for suspect phrases
function isSuspect($val, $pattern, &$suspect) {
// if the variable is an array, loop through each element
// and pass it recursively back to the same function
if (is_array($val)) {
foreach ($val as $item) {
isSuspect($item, $pattern, $suspect);

}
} else {
// if one of the suspect phrases is found, set Boolean to true
if (preg_match($pattern, $val)) {
$suspect = true;

}
}

}

// check the $_POST array and any subarrays for suspect content
isSuspect($_POST, $pattern, $suspect);

if ($suspect) {
$mailSent = false;
unset($missing);

} else {
// process the $_POST variables
foreach ($_POST as $key => $value) {
//assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);

} elseif (in_array($key, $expected)) {
// otherwise, assign to a variable of the same name as $key
${$key} = $temp;

}
}

}

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

531

12

// validate the email address
if (!empty($email)) {
// regex to identify illegal characters in email address
$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';
// reject the email address if it deosn't match
if (!preg_match($checkEmail, $email)) {
$suspect = true;
$mailSent = false;
unset($missing);

}
}

// go ahead only if not suspsect and all required fields OK
if (!$suspect && empty($missing)) {
// initialize the $message variable
$message = '';
// loop through the $expected array
foreach($expected as $item) {
// assign the value of the current item to $val
if (isset(${$item}) && !empty(${$item})) {
$val = ${$item};

} else {
// if it has no value, assign 'Not selected'
$val = 'Not selected';

}
// if an array, expand as comma-separated string
if (is_array($val)) {
$val = implode(', ', $val);

}
// add label and value to the message body
$message .= ucfirst($item).": $val\r\n\r\n";

}

// limit line length to 70 characters
$message = wordwrap($message, 70);

// create Reply-To header
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";
}

// send it
$mailSent = mail($to, $subject, $message, $headers);
if ($mailSent) {
// $missing is no longer needed if the email is sent, so unset it
unset($missing);
}

}
?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

532

9. All that remains is to include the mail processing script. Since the form won’t work
without it, it’s a wise precaution to check that the file exists and is readable before
attempting to include it. The following is a complete listing of the amended code
above the DOCTYPE declaration in feedback.php. The new code, including the
$header pasted in the previous step, is highlighted in bold.

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments', 'interests', ➥

'subscribe', 'visited', 'views');
// set required fields
$required = array('name', 'comments', 'interests', 'visited', ➥

'views');
// create empty array for any missing fields
$missing = array();
// set default values for variables that might not exist
if (!isset($_POST['interests'])) {
$_POST['interests'] = array();

}
if (!isset($_POST['views'])) {
$_POST['views'] = array();

}
// minimum number of required checkboxes
$minCheckboxes = 2;
// if fewer than required, add to $missing array
if (count($_POST['interests']) < $minCheckboxes) {
$missing[] = 'interests';

}
$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Content-Type: text/plain; charset=utf-8';
$process = '../includes/process_mail.inc.php';
if (file_exists($process) && is_readable($process)) {
include($process);

} else {
$mailSent = false;

}
}
?>

The path to process_mail.inc.php is stored in $process. This avoids the need
to type it three times. The conditional statement uses two functions with self-
explanatory names: file_exists() and is_readable(). If the file is OK, it’s
included. If not, $mailSent is set to false. This displays the warning that there was
a problem sending the message.

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

533

12

10. To be super-efficient, send yourself an email alerting you to the problem with the
include file by amending the conditional statement like this:

if (file_exists($process) && is_readable($process)) {
include($process);

} else {
$mailSent = false;
mail($to, 'Server problem', "$process cannot be read", $headers);

}

You can check the final code in feedback_process.php in examples/ch12 and
process_mail.inc.php in examples/includes.

Because process_mail.inc.php uses generic variables, you can slot this include file into
any page that processes a form and sends the results by email. The only proviso is that you
must use the same variables as in step 9, namely, $to, $subject, $expected, $required,
$missing, $minCheckboxes, $headers, and $mailSent. If you don’t want to set a minimum
number of checkboxes, set $minCheckboxes to 0.

Programming purists would criticize this use of procedural code, arguing that a more
robust solution should be built with object-oriented code. An object-oriented solution
would be better. In fact, I have created one in my book, PHP Object-Oriented Solutions,
but it would be more difficult for a PHP beginner to adapt. It also requires a minimum
of PHP 5.2. The purpose of this exercise has been to demonstrate how even procedural
code can be recycled with relatively little effort. It also prepares the ground for cus-
tomizing the PHP code automatically generated by Dreamweaver. With the exception of
the XSL Transformations server behavior (covered in Chapter 18), Dreamweaver uses
procedural code.

Avoiding the “headers already sent” error
A problem that you’re bound to encounter sooner or later is this mysterious error
message:

Warning: Cannot add header information - headers already sent

It happens when you use header() to redirect a page, as described in the previous chap-
ter, or with PHP sessions (covered in Chapter 15). Frequently, the cause of the problem lies
in an include file. The other main culprit lurks inside the main file just before you include
the external file.

Using header() or starting a PHP session must be done before any output is sent to the
browser. This includes not only HTML but also any whitespace. As far as PHP is concerned,
whitespace means any space, tab, carriage return, or newline character outside a PHP
block. Why the error message is so mysterious—and causes so much head banging—is
because the whitespace is often at the end of an include file. Use the line numbers in Code

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

534

view, as shown in Figure 12-11, to make sure there are no blank lines at the end of an
include file. Also make sure that there is no whitespace after the closing PHP tag on the
final line.

Whitespace inside the PHP tags is unimportant, but the PHP code must not generate any
HTML output before using header() or starting a session. The same applies to the parent
page: there must be no whitespace before the opening PHP tag.

On rare occasions, the error is triggered by an invisible control character at the beginning
of the file. Use View ➤ Code View Options ➤ Hidden Characters to check, and delete the
character.

Figure 12-11. Eliminate whitespace outside the PHP tags to avoid the “headers already sent” error.

Since Dreamweaver CS3 adopted UTF-8 as its default encoding, an increasing
number of people have reported problems with headers being already sent,
even if they’ve removed all of the whitespace as specified earlier. The reason is
because they have selected Include Unicode Signature (BOM) in the New
Document category of Preferences (Edit ➤ Preferences, or Dreamweaver ➤

Preferences on a Mac) or in the Title/Encoding category of Page Properties (see
Chapter 4). BOM stands for byte-order mark, which is used by some versions of
Unicode to indicate how the data is stored. PHP interprets a BOM as output,
preventing the use of header() or sessions. UTF-8 does not require a BOM.
Make sure the option to include it is deselected in all PHP pages (this is the
Dreamweaver default setting).

REDUCING YOUR WORKLOAD WITH PHP INCLUDES

535

12

Chapter review
This chapter has given you a thorough overview of PHP includes, their advantages, and
their pitfalls. Once you understand the potential pitfalls, includes are very easy to use. The
PHP code generated by Dreamweaver uses them all the time, so at a minimum you need
to know how to deal with the “headers already sent” error even if you don’t yet have the
confidence to start creating your own include files.

When you first start working with PHP, the idea of splitting a page into its various compo-
nent parts can be a difficult concept to come to terms with, particularly if you come from
a nonprogramming background. So, in the next chapter, we’re going to take a brief respite
from PHP coding to look at Dreamweaver templates and a new feature called Adobe
InContext Editing. Templates are a way of building a master page that contains all the com-
mon elements for a site, spawning child pages from the master, and updating all the child
pages automatically whenever changes are made to the master. InContext Editing bears
many similarities to templates but is an online hosted service that lets authorized users
update the content in certain parts of a page.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

536

