
10 INTRODUCING THE
BASICS OF PHP

This chapter is a cross between a crash course in PHP and a handy reference. It’s aimed at
readers who are completely new to PHP or who may have dabbled without really getting to
grips with the language. The intention is not to teach you all there is to know but to arm
you with sufficient knowledge to dig into Code view to customize Dreamweaver code with
confidence. Dreamweaver’s automatic code generation does a lot of the hard work for you,
but you need to tweak the code to get the best out of it, and when it comes to sending an
email from an online form, you have to do everything yourself.

In this chapter, you’ll learn about the following:

Writing and understanding PHP scripts

Using variables to represent changing values

Understanding the difference between single and double quotes

Organizing related information with arrays

Creating pages that make decisions for themselves

Using loops and functions for repetitive work

If you’re already comfortable with PHP, just glance at the section headings to see what’s
covered, because you might find it useful to refer to this chapter if you need to refresh
your memory about a particular subject. Then move straight to the next chapter and start
coding.

If you’re new to PHP, don’t try to learn everything at one sitting, or your brain is likely to
explode from information overload. On the first reading, look at the headings and maybe
the first paragraph or two under each one to get a general overview. Also read the section
“Understanding PHP error messages.”

Understanding what PHP is for
Back in the early 1990s, web pages consisted of nothing but text. Things didn’t stand still
for long, and it soon became possible to add images and scrolling text. But even if some
things moved around the page in an irritating way, everything on the Web was static in the
sense that the content was fixed at the time the developer created the page. Genuinely
dynamic features began to be added around 1995 with the help of two distinct types of
technology: client-side and server-side. The primary distinction between the two is con-
cerned not with how dynamic features are generated but with where.

At its most basic level, the Internet involves a simple request and response between the
user’s computer (the client) and the remote website (the server), as illustrated in
Figure 10-1. JavaScript is the most common example of a client-side technology. The
scripts that control the Spry widgets you used in previous chapters are downloaded with
the web page and loaded into the client’s memory. When a user clicks a collapsible panel
or tabbed interface, all the action takes place in the browser on the client computer.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

426

Figure 10-1. The basic relationship on the Internet is between client
and server.

With server-side technology, on the other hand, all the action takes place on the web
server before it’s sent to the client. PHP is the most widely used server-side language for
web development. In spite of its power, it’s relatively easy to learn, and it has the advan-
tage of being cross-platform. In other words, with only a handful of minor differences, it
works the same on Windows, Mac OS X, and Linux.

Increasing user interactivity with server-side
technology

With a static web page, everything is fixed at the time of design. All text, links, images, and
client-side scripts are hard-coded into the underlying markup. Dynamic web pages built
with a server-side language like PHP work in a very different way. Instead of all content
being embedded in the underlying code, much of it is automatically generated by the
server-side language or drawn from a database. Figure 10-2 illustrates this extra stage in
the process.

Figure 10-2. Server-side technology involves processing on the server before the web page is sent
back to the client.

Generating content dynamically on the server makes it possible to offer the user a much
richer variety of content. Perhaps the best known example is http://www.amazon.com. The
Amazon catalog contains many thousands of items, something that would be impossible if it

Server-side technology encompasses a much broader range, but I’m concerned here
with the way it integrates with the Web.

INTRODUCING THE BASICS OF PHP

427

10

were necessary to create and store a separate web page for every item. International news
providers, such as the BBC (http://www.bbc.com/news) or CNN (http://www.cnn.com), are
able to update their pages constantly in response to breaking news because most of the con-
tent is stored in a database. The web server uses server-side technology to extract the rele-
vant information and build web pages on the fly. Although this involves extra processing, it’s
normally very quick, and the whole sequence appears seamless to the user.

By the end of this book, you will be able to create web pages that do the same: querying
or searching a database, extracting the information, and displaying it as part of your web-
site. You’ll also be able to insert new material in the database and update or delete exist-
ing material. Admittedly, the projects in the remaining chapters won’t be as grandiose as
Amazon or a major news site, but they work on the same principles. It will involve getting
your hands dirty from time to time with code, but Dreamweaver will do most of the hard
work for you.

Writing PHP scripts
The web server processes your PHP code and sends only the results—usually as HTML—to
the browser. Because all the action is on the server, you need to tell it that your pages con-
tain PHP code. This involves two simple steps, namely:

Give every page a PHP filename extension. Do not use anything other than .php
unless you are told to specifically by your hosting company.

Enclose all PHP code within PHP tags.

The opening tag is <?php, and the closing tag is ?>. You may come across <? as a short ver-
sion of the opening tag. However, <? doesn’t work on all servers. Stick with <?php, which is
guaranteed to work.

Embedding PHP in a web page

When somebody visits your site and requests a PHP page, the server sends it to the PHP
engine, which reads the page from top to bottom looking for PHP tags. HTML passes
through untouched, but whenever the PHP engine encounters a <?php tag, it starts pro-
cessing your code and continues until it reaches the closing ?> tag. If the PHP code
produces any output, it’s inserted at that point. Then, any remaining HTML passes through
until another <?php tag is encountered.

PHP doesn’t always produce direct output for the browser. It may, for instance, check the
contents of form input before sending an email message or inserting information into a
database. So, some code blocks are placed above or below the main HTML code. You can

You can have as many PHP code blocks as you like on a page, but they cannot be nested
inside each other.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

428

also store code in external files. Code that produces direct output, however, always goes
where you want the output to be displayed.

A typical PHP page uses some or all of the following elements:

Variables to act as placeholders for unknown or changing values

Arrays to hold multiple values

Conditional statements to make decisions

Loops to perform repetitive tasks

Functions to perform preset tasks

Ending commands with a semicolon

PHP is written as a series of commands or statements. Each statement normally tells the
PHP engine to perform a particular action, and it must always be followed by a semicolon,
like this:

<?php
do this;
now do something else;
finally, do that;
?>

PHP is not like JavaScript or ActionScript. It won’t automatically assume there should be a
semicolon at the end of a line if you leave it out. This has a nice side effect: you can spread
long statements over several lines and lay out your code for ease of reading. PHP, like
HTML, ignores whitespace in code. Instead, it relies on semicolons to indicate where one
command ends and the next one begins.

Using variables to represent changing values

A variable is simply a name you give to something that may change or that you don’t
know in advance. The name that you give to a variable remains constant, but the value
stored in the variable can be changed at any time.

Although this concept sounds abstract, you use variables all the time in everyday life.
When you meet somebody for the first time, one of the first things you ask is, “What’s your
name?” It doesn’t matter whether the person you’ve just met is Tom, Dick, or Harry, name
remains constant, but the value you store in it varies for different people. Similarly, with
your bank account, money goes in and out all of the time (mostly out, it seems), but it
doesn’t matter whether you’re scraping the bottom of the barrel or as rich as Croesus, the
amount of money in your account is always referred to as the balance. In computer terms,
name and balance are variables.

To save space, I won’t always surround code samples with PHP tags.

INTRODUCING THE BASICS OF PHP

429

10

Naming variables
You can choose just about anything you like as the name for a variable, as long as you keep
the following rules in mind:

Variables always begin with $ (a dollar sign).

The first character after the dollar sign cannot be a number.

No spaces or punctuation are allowed, except for the underscore (_).

Variable names are case-sensitive: $name and $Name are not the same.

A variable’s name should give some indication of what it represents: $name, $email, and
$totalPrice are good examples. Because you can’t use spaces in variable names, it’s a
good idea to capitalize the first letter of the second or subsequent words when combining
them (sometimes called camel case). Alternatively, you can use an underscore (for exam-
ple, $total_price).

Don’t try to save time by using really short variables. Using $n, $e, and $tp instead of
descriptive ones makes code harder to understand. More important, it makes errors more
difficult to spot.

Assigning values to variables
Variables get their values from a variety of sources, including the following:

User input through online forms

A database

An external source, such as a news feed or XML file

The result of a calculation

Direct inclusion in the PHP code

Wherever the value comes from, it’s always assigned in the same way with an equal sign
(=), like this:

$variable = value;

Because it assigns a value, the equal sign is called the assignment operator. Although it’s
an equal sign, get into the habit of thinking of it as meaning “is set to” rather than
“equals.” This is because, in common with many other programming languages, PHP uses
two equal signs (==) to mean “equals” when comparing items—something that catches out
a lot of beginners (experienced PHP programmers are not immune to the occasional lapse,
either).

Although you have considerable freedom in the choice of variable names, you can’t use
$this, because it has a special meaning in PHP object-oriented programming. It’s also
advisable to avoid using any of the keywords listed at http://docs.php.net/manual/
en/reserved.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

430

Use the following rules when assigning a value to a variable:

Text must be enclosed in single or double quotes (the distinction between the dif-
ferent types of quotes is explained later in the chapter).

Numbers should not be in quotes—enclosing a number in quotes turns it into a
string.

You can also use a variable to assign a value to another variable, for example:

$name = 'David Powers';
$author = $name; // both $author and $name are now 'David Powers'

If the value of $name changes subsequently, it doesn’t affect the value of $author. As this
example shows, you don’t use quotes around a variable when assigning its value to another.
However, as long as you use double quotes, you can embed a variable in text like this:

$blurb = "$author has written several best-selling books on PHP.";

The value of $blurb is now “David Powers has written several best-selling books on PHP.”
There’s a more detailed description on the use of variables with double quotes in
“Choosing single or double quotation marks” later in the chapter.

Displaying PHP output

The most common ways of displaying dynamic output in the browser are to use echo or
print. The differences between the two are so subtle you can regard them as identical.
I prefer echo, because it’s one fewer letter to type. It’s also the style used by Dreamweaver.

Put echo (or print) in front of a variable, number, or string like this to output it to the
browser:

$name = 'David';
echo $name; // displays David
echo 5; // displays 5
echo 'David'; // displays David

You may see scripts that use parentheses with echo and print, like this:

echo('David'); // displays David
print('David'); // displays David

The parentheses make no difference. Unless you enjoy typing purely for the sake of it,
leave them out.

In common with other computer languages, PHP refers to a block of text as a string.
This comes from the fact that text is a string of characters. From now on, I’ll use the cor-
rect terminology.

INTRODUCING THE BASICS OF PHP

431

10

Commenting scripts for clarity and debugging

Even if you’re an expert programmer, code is not always as immediately understandable as
something written in your own human language. That’s where comments can be a life-
saver. You may understand what the code does five minutes after creating it, but when you
come back to maintain it in six months’ time—or if you have to maintain someone else’s
code—you’ll be grateful for well-commented code.

In PHP, there are three ways to add comments. The first will be familiar to you if you write
JavaScript. Anything on a line following a double slash is regarded as a comment and will
not be processed:

// Display the name
echo $name;

You can also use the hash sign (#) in place of the double slash:

Display the name
echo $name;

Either type of comment can go to the side of the code, as long as it doesn’t go onto the
next line:

echo $name; // This is a comment
echo $name; # This is another comment

The third style allows you to stretch comments over several lines by sandwiching them
between /* and */ (just like CSS comments):

/* You might want to use this sort of comment to explain
the whole purpose of a script. Alternatively, it's a
convenient way to disable part of a script temporarily.
*/

As the previous example explains, comments serve a dual purpose: they not only allow you
to sprinkle your scripts with helpful reminders of what each section of code is for; they can
also be used to disable a part of a script temporarily. This is extremely useful when you are
trying to trace the cause of an error.

Choosing single or double quotation marks

As I mentioned earlier, strings must always be enclosed in single or double quotes. If all
you’re concerned about is what ends up on the screen, most of the time it doesn’t matter

The important thing to remember about echo and print is that they work only with
variables that contain a single value. You cannot use them to display more complex
structures that are capable of storing multiple values.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

432

which quotes you use, but behind the scenes, PHP uses single and double quotes in very
different ways:

Anything between single quotation marks is treated as plain text.

Anything between double quotation marks is processed.

Quotation marks need to be in matching pairs. If a string begins with a single quote, PHP
looks for the next single quote and regards that as the end of the string. Since an apostro-
phe uses the same character as a single quote, this presents a problem. A similar problem
arises when a string in double quotes contains double quotes. The best way to explain this
is with a practical example.

This simple exercise demonstrates the difference between single and double quotes and
what happens when a conflict arises with an apostrophe or double quotes inside a string.

1. Create a new PHP page called quotes.php in workfiles/ch10. If you just want to
look at the finished code, use quotes.php in examples/ch10.

2. Switch to Code view, and type the following code between the <body> tags:

<?php
$name = 'David Powers';
echo 'Single quotes: The author is $name
';
echo "Double quotes: The author is $name";
?>

3. Save the page, and load it into a browser. As you can see from the following
screenshot, $name is treated as plain text in the first line but is processed and
replaced with its value in the second line, which uses double quotes.

4. Slightly change the text in lines 3 and 4 of the code, as follows:

echo 'Single quotes: The author's name is $name
';
echo "Double quotes: The author's name is $name";

To display the output on separate lines, you have to include HTML tags, such as

, because echo outputs only the values passed to it—nothing more.

Experimenting with quotes

INTRODUCING THE BASICS OF PHP

433

10

As you type, the change in Dreamweaver syntax coloring should alert you to a
problem, but save the page nevertheless, and view it in a browser (it’s quotes2.php
in examples/ch10). You should see something like this:

As far as PHP is concerned, an apostrophe and a single quote are the same thing,
and quotes must always be in matching pairs. What’s happened is that the apostro-
phe in author's has been regarded as the closing quote for the first line, what was
intended as the closing quote of the first line becomes a second opening quote,
and the apostrophe in the second line becomes the second closing quote. This is all
quite different from what was intended—and if you’re confused, is it any wonder
that PHP is unable to work out what’s meant to happen?

5. To solve the problem, insert a backslash in front of the apostrophe in the first sen-
tence, like this (see quotes3.php in examples/ch10):

echo 'Single quotes: The author\'s name is $name
';

You should now see the syntax coloring revert to normal. If you view the result in a
browser, it should display correctly like this:

Using escape sequences in strings
Using a backslash like this is called an escape sequence. It tells PHP to treat a character in
a special way. Double quotes within a double-quoted string? You guessed it—escape them
with a backslash:

echo "Swift's \"Gulliver's Travels\""; // displays the double quotes

The meaning of parse error and other error messages is explained in
“Understanding PHP error messages” later in this chapter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

434

The next line of code achieves exactly the same thing, but by using a different combina-
tion of quotes:

echo 'Swift\'s "Gulliver\'s Travels"';

So, what happens when you want to include a literal backslash? You escape it with a back-
slash (\\).

The backslash (\\) and the single quote (\') are the only escape sequences that work in a
single-quoted string. Because double quotes are a signal to PHP to process any variables
contained within a string, there are many more escape sequences for double-quoted
strings. Most of them are to avoid conflicts with characters that are used with variables,
but three of them have special meanings: \n inserts a newline character, \r inserts a car-
riage return (needed mainly for Windows), and \t inserts a tab. Table 10-1 lists the main
escape sequences supported by PHP.

Table 10-1. The main PHP escape sequences

Escape sequence Character represented in double-quoted string

\" Double quote

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Opening curly brace

\} Closing curly brace

\[Opening square bracket

\] Closing square bracket

When creating strings, the outside pair of quotes must match—any quotes of the same
style in the string must be escaped with a backslash. However, putting a backslash in
front of the opposite style of quote will result in the backslash being displayed. To see
the effect, put a backslash in front of the apostrophe in the doubled-quoted string in
the previous exercise.

INTRODUCING THE BASICS OF PHP

435

10

Joining strings together
PHP has a rather unusual way of joining strings. Although many other computer languages
use the plus sign (+), PHP uses a period, dot, or full stop (.), like this:

$firstName = 'David';
$lastName = 'Powers';
echo $firstName.$lastName; // displays DavidPowers

As the comment in the final line of code indicates, when two strings are joined like this,
PHP leaves no gap between them. Don’t be fooled into thinking that adding a space after
the period will do the trick. It won’t. You can put as much space on either side of the
period as you like; the result will always be the same, because PHP ignores whitespace in
code. You must either include a space in one of the strings or insert the space as a string
in its own right, like this:

echo $firstName.' '.$lastName; // displays David Powers

Adding to an existing string
Often you need to add more text at the end of an existing string. One way to do it is like this:

$author = 'David';
$author = $author.' Powers'; // $author is now 'David Powers'

Basically, this concatenates Powers (with a leading space) on the end of $author and then
assigns everything back to the original variable.

Adding something to an existing variable is such a common operation that PHP offers a
shorthand way of doing it—with the combined concatenation operator. Don’t worry
about the highfalutin name; it’s just a period followed by an equal sign. It works like this:

$author = 'David';
$author .= ' Powers'; // $author is now 'David Powers'

There should be no space between the period and equal sign. You’ll find this shorthand
very useful when building the string to form the body of an email message in the next
chapter.

The period—or concatenation operator, to give it its correct name—can be difficult
to spot among a lot of other code. Make sure the font size in Code view is large enough
to read without straining to see the difference between periods and commas. You can
adjust the size in the Fonts category of the Preferences panel (Edit menu on Windows or
Dreamweaver menu on a Mac).

The escape sequences listed in Table 10-1, with the exception of \\, work only in double-
quoted strings. If you use them in a single-quoted string, they are treated as a literal
backslash followed by the second character.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

436

Using quotes efficiently
Award yourself a bonus point if you spotted a better way of adding the space between
$firstName and $lastName in the preceding example. Yes, that’s right . . . Use double
quotes, like this:

echo "$firstName $lastName"; // displays David Powers

Choosing the most efficient combination of quotation marks isn’t easy when you first start
working with PHP, but it can make your code a lot easier to use. The coding standard for
the Zend Framework (http://framework.zend.com/manual/en/coding-standard.html)
lays down the following rules:

Use single quotes for literal strings (ones that contain no variables to be
processed).

When a literal string contains apostrophes, use double quotes around the whole
string.

Use double quotes when the string contains variables that need to be processed.

The Zend Framework is a set of advanced PHP scripts written by leading programmers,
including members of the core PHP development team. By following its rules, you start out
writing scripts the way an expert would. One of the main objectives is to make code effi-
cient and readable, avoiding unnecessary escaping. I frequently see scripts written by inex-
perienced developers that contain lines like this:

echo "";

Compare it with the following line, which wraps the whole literal string in single quotes:

echo '';

It doesn’t take a genius to work out which version is easier to read, not to mention type.

Special cases: true, false, and null
Although text should be enclosed in quotes, three special cases—true, false, and null—
should never be enclosed in quotes unless you want to treat them as strings. The first two
mean what you would expect; the last one, null, means “nothing” or “no value.”

PHP makes decisions on the basis of whether something evaluates to true or false.
Putting quotes around false has surprising consequences. The following code:

$OK = 'false';

does exactly the opposite of what you might expect: it makes $OK true! Why? Because the
quotes around false turn it into a string, and PHP treats strings as true (see “The truth

How long can a string be? As far as PHP is concerned, there’s no limit. In practice, you
are likely to be constrained by other factors, such as server memory; but in theory,
you could store the whole of War and Peace in a string variable.

INTRODUCING THE BASICS OF PHP

437

10

according to PHP” later in this chapter). The other thing to note about true, false, and
null is that they are case-insensitive. The following examples are all valid:

$OK = TRUE;
$OK = tRuE;
$OK = true;

Working with numbers

PHP can do a lot with numbers—from simple addition to complex math. Numbers can
contain a decimal point or use scientific notation, but they must contain no other punctu-
ation. Never use a comma as a thousands separator. The following examples show the
right and wrong ways to assign a large number to a variable:

$million = 1000000; // this is correct
$million = 1,000,000; // this generates an error
$million = 1e6; // this is correct
$million = 1e 6; // this generates an error

When using scientific notation, the letter e can be uppercase or lowercase and optionally
followed by a plus or minus sign. No spaces are permitted.

Negative numbers are preceded by a minus sign (use the hyphen on your keyboard or the
minus key on a numeric keypad) with no space before the first digit, for example:

$loss = -50000;

Performing calculations
The standard arithmetic operators all work the way you would expect, although some of
them look slightly different from those you learned at school. For instance, an asterisk (*)
is used as the multiplication sign, and a forward slash (/) is used to indicate division.

Table 10-2 shows examples of how the standard arithmetic operators work. To demon-
strate their effect, the following variables have been set:

$x = 20;
$y = 10;
$z = 3;

Table 10-2. Arithmetic operators in PHP

Operation Operator Example Result

Addition + $x + $y 30

Subtraction - $x - $y 10

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

438

Operation Operator Example Result

Multiplication * $x * $y 200

Division / $x / $y 2

Modulo division % $x % $z 2

Increment (add 1) ++ $x++ 21

Decrement (subtract 1) -- $y-- 9

You may not be familiar with the modulo operator. This returns the remainder of a divi-
sion, as follows:

26 % 5 // result is 1
26 % 27 // result is 26
10 % 2 // result is 0

A quirk with the modulo operator in PHP is that it converts both numbers to integers
before performing the calculation. Consequently, if $z is 4.5 in Table 10-2, it gets rounded
up to 5, making the result 0, not 2, as you might expect.

A practical use of the modulo operator is to work out whether a number is odd or even.
$number % 2 will always produce 0 or 1.

The increment (++) and decrement (--) operators can come either before or after the
variable. When they come before the variable, 1 is added to or subtracted from the value
before any further calculation is carried out. When they come after the variable, the main
calculation is carried out first, and then 1 is either added or subtracted. Since the dollar
sign is an integral part of the variable name, the increment and decrement operators go
before the dollar sign when used in front:

++$x
--$y

You can set your own values for $x, $y, and $z in calculation.php in examples/ch10 to
test the arithmetic operators in action. The page also demonstrates the difference
between putting the increment and decrement operators before and after the variable.

As noted earlier, numbers should not normally be enclosed in quotes, although PHP will
usually convert to its numeric equivalent a string that contains only a number or that
begins with a number.

Calculations in PHP follow the same rules as standard arithmetic. Table 10-3 summarizes
the precedence of arithmetic operators.

INTRODUCING THE BASICS OF PHP

439

10

Table 10-3. Precedence of arithmetic operators

Precedence Group Operators Rule

Highest Parentheses () Operations contained within
parentheses are evaluated
first. If these expressions are
nested, the innermost is
evaluated foremost.

Next Multiplication and division * / % These operators are
evaluated next. If an
expression contains two
or more operators, they are
evaluated from left to right.

Lowest Addition and subtraction + - These are the final
operators to be evaluated
in an expression. If an
expression contains two or
more operators, they are
evaluated from left to right.

If in doubt, use parentheses all the time to group the parts of a calculation that you want
to make sure are performed as a single unit. For example:

4 * 5 – 2 // result is 18
4 * (5 – 2) // result is 12

Combining calculations and assignment
You will often want to perform a calculation on a variable and assign the result back to the
same variable. PHP offers the same convenient shorthand for arithmetic calculations as for
strings. Table 10-4 shows the main combined assignment operators and their use.

Table 10-4. Combined arithmetic assignment operators used in PHP

Operator Example Equivalent to

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

440

Don’t forget that the plus sign is used in PHP only as an arithmetic operator:

Addition: Use += as the combined assignment operator.

Strings: Use .= as the combined assignment operator.

Using arrays to store multiple values

Arrays are an important—and useful—part of PHP. You met one of PHP’s built-in arrays,
$_POST, in the previous chapter, and you’ll work with it a lot more through the rest of this
book. Arrays are also used extensively with a database, because you fetch the results of a
search in a series of arrays.

An array is a special type of variable that stores multiple values rather like a shopping list.
Although each item might be different, you can refer to them collectively by a single
name. Figure 10-3 demonstrates this concept: the variable $shoppingList refers collec-
tively to all five items—wine, fish, bread, grapes, and cheese.

Figure 10-3. Arrays are variables that store multiple items, just like a shopping list.

Individual items—or array elements—are identified by means of a number in square
brackets immediately following the variable name. PHP assigns the number automatically,
but it’s important to note that the numbering always begins at 0. So, the first item in the
array, wine, is referred to as $shoppingList[0], not $shoppingList[1]. And although
there are five items, the last one (cheese) is $shoppingList[4]. The number is referred to
as the array key or index, and this type of array is called an indexed array.

INTRODUCING THE BASICS OF PHP

441

10

Instead of declaring each array element individually, you can declare the variable name
once and assign all the elements by passing them as a comma-separated list to array(),
like this:

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');

PHP numbers each array element automatically, so this creates the same array as in
Figure 10-3. To add a new element to the end of the array, use a pair of empty square
brackets like this:

$shoppingList[] = 'coffee';

PHP uses the next number available, so this becomes $shoppingList[5].

Using names to identify array elements
Numbers are fine, but it’s often more convenient to give array elements meaningful
names. For instance, an array containing details of this book might look like this:

$book['title'] = 'Essential Guide to Dreamweaver CS4';
$book['author'] = 'David Powers';
$book['publisher'] = 'friends of ED';

This type of array is called an associative array. Note that the array key is enclosed in
quotes (single or double; it doesn’t matter). It mustn’t contain any spaces or punctuation,
except for the underscore.

The shorthand way of creating an associative array uses the => operator (an equal sign fol-
lowed by a greater-than sign) to assign a value to each array key. The basic structure looks
like this:

$arrayName = array('key1' => 'element1', 'key2' => 'element2');

So, this is the shorthand way to build the $book array:

$book = array('title' => 'Essential Guide to Dreamweaver CS4',
'author' => 'David Powers',
'publisher' => 'friends of ED');

It’s not essential to align the => operators like this, but it makes code easier to read and
maintain.

The comma must go outside the quotes, unlike American typo-
graphic practice. For ease of reading, it’s recommended to insert
a space following each comma, but omitting the space is per-
fectly valid.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

442

Inspecting the contents of an array with print_r()
As you saw in the previous chapter, you can inspect the contents of an array using
print_r(). This is the code you inserted at the bottom of feedback.php:

<pre>
<?php if ($_POST) {print_r($_POST);} ?>
</pre>

It displays the contents of the array like this:

The <pre> tags are simply to make the output more readable. What really matters here is
that print_r() displays the contents of an array. As explained earlier, echo and print
work only with variables that contain a single value. However, print_r() is no good in a
live web page; it’s used only to inspect the contents of an array for testing purposes. To
display the contents of an array in normal circumstances, you need to use a loop. This
gives you access to each array element one at a time. Once you get to an element that
contains a single value, you can use echo or print to display its contents. Loops are cov-
ered a little later.

Making decisions

Decisions, decisions, decisions . . . Life is full of decisions. So is PHP. They give it the ability
to display different output according to circumstances. Decision making in PHP uses
conditional statements. The most common of these uses if and closely follows the
structure of normal language. In real life, you may be faced with the following decision
(admittedly not very often if you live in Britain):

If the weather's hot, I'll go to the beach.

In PHP pseudo-code, the same decision looks like this:

if (the weather's hot) {
I'll go to the beach;

}

Technically speaking, all arrays in PHP are associative. This means you can use
both numbers and strings as array keys in the same array. Don’t do it, though,
because it can produce unexpected results. It’s safer to treat indexed and
associative arrays as different types.

INTRODUCING THE BASICS OF PHP

443

10

The condition being tested goes inside parentheses, and the resulting action goes between
curly braces. This is the basic decision-making pattern:

if (condition is true) {
// code to be executed if condition is true

}

The code inside the curly braces is executed only if the condition is true. If it’s false, PHP
ignores everything between the braces and moves on to the next section of code. How
PHP determines whether a condition is true or false is described in the following section.

Sometimes, the if statement is all you need, but you often want a default action to be
invoked. To do this, use else, like this:

if (condition is true) {
// code to be executed if condition is true

} else {
// default code to run if condition is false

}

What if you want more alternatives? One way is to add more if statements. PHP will test
them, and as long as you finish with else, at least one block of code will run. However, it’s
important to realize that all if statements will be tested, and the code will be run in every
single one where the condition equates to true. If you want only one code block to be
executed, use elseif like this:

if (condition is true) {
// code to be executed if first condition is true

} elseif (second condition is true) {
// code to be executed if first condition fails
// but second condition is true

} else {
// default code to run if both conditions are false

}

You can use as many elseif clauses in a conditional statement as you like. It’s important
to note that only the first one that equates to true will be executed; all others will be
ignored, even if they’re also true. This means you need to build conditional statements in
the order of priority that you want them to be evaluated. It’s strictly a first-come, first-
served hierarchy.

Confusion alert: I mentioned earlier that statements must always be followed by a semi-
colon. This applies only to the statements (or commands) inside the curly braces.
Although called a conditional statement, this decision-making pattern is one of PHP’s
control structures, and it shouldn’t be followed by a semicolon. Think of the semicolon
as a command that means “do it.” The curly braces surround the command statements
and keep them together as a group.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

444

The truth according to PHP
Decision making in PHP conditional statements is based on the mutually exclusive
Boolean values, true and false (the name comes from a 19th-century mathematician,
George Boole, who devised a system of logical operations that subsequently became the
basis of much modern-day computing). If the condition equates to true, the code within
the conditional block is executed. If false, it’s ignored. Whether a condition is true or
false is determined in one of the following ways:

A variable set explicitly to true or false

A value PHP interprets implicitly as true or false

The comparison of two values

Explicit true or false values

This is straightforward. If a variable is assigned the value true or false and then used in a
conditional statement, the decision is based on that value. As explained earlier, true and
false are case-insensitive and must not be enclosed in quotes.

Implicit true or false values

PHP regards the following as false:

The case-insensitive keywords false and null

Zero as an integer (0), a floating-point number (0.0), or a string ('0' or "0")

An empty string (single or double quotes with no space between them)

An empty array

A SimpleXML object created from empty tags

All other values equate to true.

How comparisons equate to true or false is described in the next section.

Using comparisons to make decisions
Conditional statements often depend on the comparison of two values. Is this bigger than
that? Are they both the same? If the comparison is true, the conditional statement is exe-
cuted. If not, it’s ignored.

This definition explains why "false" (in quotes) is interpreted by PHP as
true. The value –1 is also treated as true in PHP.

Although elseif is normally written as one word, you can use else if
as separate words.

INTRODUCING THE BASICS OF PHP

445

10

To test for equality, PHP uses two equal signs (==) like this:

if ($status == 'administrator') {
// send to admin page

} else {
// refuse entry to admin area

}

Size comparisons are performed using the mathematical symbols for less than (<) and
greater than (>). Let’s say you’re checking the size of a file before allowing it to be
uploaded to your server. You could set a maximum size of 50KB like this:

if ($bytes > 51200) {
// display error message and abandon upload

} else {
// continue upload

}

If you’re wondering why I used 51200 instead of 50000, it’s because when measuring
computer storage capacity, a kilobyte is traditionally calculated as 1,024 (210) bytes.
International standards organizations insist this should be called a kibibyte (KiB) instead
of a kilobyte, but this doesn’t seem to have caught on in general usage (http://
en.wikipedia.org/wiki/Kilobyte).

Comparison operators

These compare two values (known as operands because they appear on either side of an
operator). If both values pass the test, the result is true (or to use the technical expres-
sion, it returns true). Otherwise, it returns false. Table 10-5 lists the comparison opera-
tors used in PHP.

Table 10-5. PHP comparison operators used for decision-making

Symbol Name Use

== Equality Returns true if both operands have the same value;
otherwise, returns false.

!= Inequality Returns true if both operands have different values;
otherwise, returns false.

Don’t use a single equal sign in the first line like this:

if ($status = 'administrator') {

Doing so will open the admin area of your website to everyone. Why? This automati-
cally sets the value of $status to administrator; it doesn’t compare the two values. To
compare values, you must use two equal signs. It’s an easy mistake to make, but one
with potentially disastrous consequences.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

446

Symbol Name Use

<> Inequality This has the same meaning as !=. It’s rarely used in PHP
but has been included here for the sake of
completeness.

=== Identical Determines whether both operands are identical. To be
considered identical, they must not only have the same
value but also be of the same datatype (for example,
both floating-point numbers).

!== Not identical Determines whether both operands are not identical
(according to the same criteria as the previous
operator).

> Greater than Determines whether the operand on the left is greater
in value than the one on the right.

>= Greater than Determines whether the operand on the left is greater
or equal to in value than or equal to the one on the right.

< Less than Determines whether the operand on the left is less in
value than the one on the right.

<= Less than or Determines whether the operand on the left is less in
equal to value than or equal to the one on the right.

Testing more than one condition
Frequently, comparing two values is not enough. PHP allows you to set a series of condi-
tions using logical operators to specify whether all, or just some, need to be fulfilled.

All the logical operators in PHP are listed in Table 10-6. Negation—testing that the oppo-
site of something is true—is also considered a logical operator, although it applies to indi-
vidual conditions rather than a series.

Table 10-6. Logical operators used for decision-making in PHP

Symbol Name Use

&& Logical AND Evaluates to true if both operands are true. If
the left-hand operand evaluates to false, the
right-hand operand is never tested.

and Logical AND Exactly the same as &&, but it takes lower
precedence.

Continued

INTRODUCING THE BASICS OF PHP

447

10

Table 10-6. Continued

Symbol Name Use

|| Logical OR Evaluates to true if either operand is true;
otherwise, returns false. If the left-hand operand
returns true, the right-hand operand is never
tested.

or Logical OR Exactly the same as ||, but it takes lower
precedence.

xor Exclusive OR Evaluates to true if only one of the two operands
returns true. If both are true or both are false,
it evaluates to false.

! Negation Tests whether something is not true.

Technically speaking, there is no limit to the number of conditions that can be tested. Each
condition is considered in turn from left to right, and as soon as a defining point is reached,
no further testing is carried out. When using && or and, every condition must be fulfilled, so
testing stops as soon as one turns out to be false. Similarly, when using || or or, only one
condition needs to be fulfilled, so testing stops as soon as one turns out to be true.

$a = 10;
$b = 25;
if ($a > 5 && $b > 20) // returns true
if ($a > 5 || $b > 30) // returns true, $b never tested

The implication of this is that when you need all conditions to be met, you should design
your tests with the condition most likely to return false as the first to be evaluated. When
you need just one condition to be fulfilled, place the one most likely to return true first. If
you want a particular set of conditions considered as a group, enclose them in parentheses.

if (($a > 5 && $a < 8) || ($b > 20 && $b < 40))

Operator precedence is a tricky subject. Stick with && and ||, rather than and and or, and
use parentheses to group expressions to which you want to give priority. The xor operator
is rarely used.

Using the switch statement for decision chains
The switch statement offers an alternative to if . . . else for decision making. The
basic structure looks like this:

switch(variable being tested) {
case value1:
statements to be executed
break;

case value2:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

448

statements to be executed
break;

default:
statements to be executed

}

The case keyword indicates possible matching values for the variable passed to switch().
When a match is made, every subsequent line of code is executed until the break keyword
is encountered, at which point the switch statement comes to an end.

You can group several instances of the case keyword together to apply the same block of
code to them. For example:

switch($httpStatus) {
case 200:
$message = 'File OK';
break;

case 301:
case 302:
case 303:
case 307:
case 410:
$message = 'File moved or does not exist';
break;

case 404:
$message = 'File not found';
break;

default:
$message = 'Other error';

}

Dreamweaver uses a switch statement in the GetSQLValueString() function (see Figure 15-1
in Chapter 15), which it inserts into pages that insert or update records in a database.

The main points to note about switch are as follows:

The expression following the case keyword must be a number or a string.

You can’t use comparison operators with case. So, case > 100: isn’t allowed.

Each block of statements should normally end with break, unless you specifically
want to continue executing code within the switch statement.

If no match is made, any statements following the default keyword will be
executed. If no default has been set, the switch statement will exit silently and
continue with the next block of code.

Using the conditional (ternary) operator
The conditional operator (?:) is a shorthand method of representing a simple condi-
tional statement. Because it uses three operands, it’s also called the ternary operator.
The basic syntax looks like this:

condition ? value if true : value if false;

INTRODUCING THE BASICS OF PHP

449

10

What this means is that, if the condition to the left of the question mark is true, the value
immediately to the right of the question mark is used. However, if the condition evaluates
to false, the value to the right of the colon is used instead. Here is an example of it in use:

$age = 17;
$fareType = $age > 16 ? 'adult' : 'child';

The conditional operator can be quite confusing when you first encounter it, so let’s break
down this example section by section.

The first line sets the value of $age to 17.

The second line sets the value of $fareType using the conditional operator. The condition
is between the equal sign and the question mark—in other words, $age > 16.

If $age is greater than 16, the condition evaluates to true, so $fareType is set to the
value between the question mark and the colon—in other words, 'adult'. Otherwise,
$fareType is set to the value to the right of the colon—or 'child'. The equivalent code
using if . . . else looks like this:

if ($age > 16) {
$fareType = 'adult';

} else {
$fareType = 'child';

}

The if . . . else version is much easier to read, but the conditional operator is more
compact, and it’s used frequently by Dreamweaver. Most beginners hate this shorthand,
but you need to understand how it works if you want to customize Dreamweaver code.

Using loops for repetitive tasks

Loops are huge time-savers, because they perform the same task over and over again yet
involve very little code. They’re frequently used with arrays and database results. You can
step through each item one at a time looking for matches or performing a specific task.
Loops frequently contain conditional statements, so although they’re very simple in struc-
ture, they can be used to create code that processes data in often sophisticated ways.

Loops using while and do . . . while
The simplest type of loop is called a while loop. Its basic structure looks like this:

while (condition is true) {
do something

}

The following code displays every number from 1 through 100 in a browser (you can see it
in action in while.php in examples/ch10). It begins by setting a variable ($i) to 1 and then
using the variable as a counter to control the loop, as well as display the current number
onscreen.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

450

$i = 1; // set counter
while ($i <= 100) {
echo "$i
";
$i++; // increase counter by 1

}

A variation of the while loop uses the keyword do and follows this basic pattern:

do {
code to be executed

} while (condition to be tested);

The only difference between a do . . . while loop and a while loop is that the code
within the do block is executed at least once, even if the condition is never true. The fol-
lowing code (in dowhile.php in examples/ch10) displays the value of $i once, even
though it’s greater than the maximum expected.

$i = 1000;
do {
echo "$i
";
$i++; // increase counter by 1

} while ($i <= 100);

Dreamweaver uses a do . . . while loop in its Repeat Region server behavior to loop
through the results of a database query (what Dreamweaver calls a recordset) and display
them on your page.

The danger with creating while and do . . . while loops yourself is forgetting to set a
condition that brings the loop to an end or setting an impossible condition. When this
happens, you create an infinite loop that either freezes your computer or causes the
browser to crash.

The versatile for loop
The for loop is less prone to generating an infinite loop, because you specify in the first
line how you want the loop to work. The for loop uses the following basic pattern:

for (initialize counter; test; increase or decrease the counter) {
code to be executed

}

The three expressions inside the parentheses control the action of the loop (note that they
are separated by semicolons, not commas):

The first expression initializes the counter variable at the start of the loop. You can
use any variable you like, but the convention is to use $i. When more than one
counter is needed, $j and $k are frequently used. This is the exception to the rule
about using descriptive names for variables. The convention of using $i (or another
single letter) as a counter is so deeply entrenched in programming and mathematic
culture, it’s unnecessary to use anything else.

INTRODUCING THE BASICS OF PHP

451

10

The second expression is a test that determines whether the loop should continue
to run. This can be a fixed number, a variable, or an expression that calculates a
value.

The third expression shows the method of stepping through the loop. Most of the
time, you will want to go through a loop one step at a time, so using the increment
(++) or decrement (--) operator is convenient.

The following code does the same as the previous while loop, displaying every number
from 1 to 100 (see forloop.php in examples/ch10):

for ($i = 1; $i <= 100; $i++) {
echo "$i
";

}

There is nothing stopping you from using bigger steps. For instance, replacing $i++ with
$i+=10 in this example would display 1, 11, 21, 31, and so on.

Looping through arrays with foreach
The final type of loop in PHP is used exclusively with arrays. It takes two forms, both of
which use temporary variables to handle each array element. If you need to do something
only with the value of each array element, the foreach loop takes the following form:

foreach (array_name as temporary_variable) {
do something with temporary_variable

}

The following example loops through the $shoppingList array and displays the name of
each item (see shopping_list.php in examples/ch10):

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');
foreach ($shoppingList as $item) {
echo $item.'
';

}

The preceding example accesses only the value of each array element. An alternative form
of the foreach loop gives access to both the key and the value of each element. It takes
this slightly different form:

foreach (array_name as key_variable => value_variable) {
do something with key_variable and value_variable

}

The foreach keyword is one word. Inserting a space between for and
each doesn’t work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

452

This next example uses the $book array from “Using names to identify array elements” ear-
lier in the chapter and incorporates the key and value of each element into a simple string,
as shown in the screenshot (see book.php in examples/ch10):

foreach ($book as $key => $value) {
echo "The value of '$key' is '$value'
";

}

The use of $key and $value as the variables in a foreach loop has also become something
of a convention. In this example, it makes sense because the loop is exposing the keys and
values of array elements. However, it’s a good idea to use descriptive variables where
appropriate. For example, when looping through an array of book titles, it’s much more
meaningful to use something like this:

foreach ($titles as $title) {
echo $title . '
';

}

Descriptive variables make code much easier to read and understand.

Breaking out of a loop
To bring a loop prematurely to an end when a certain condition is met, insert the break
keyword inside a conditional statement. As soon as the script encounters break, it exits the
loop. For example, the following loop comes to an end as soon as a banned word is found
in $input:

foreach ($bannedWords as $word) {
if (strpos($input, $word) !== false) {
$reject = true;
break;

}
}

INTRODUCING THE BASICS OF PHP

453

10

The strpos() function reports the position of a substring inside a longer string, counting
from zero. If the presence of a single banned word is sufficient to reject $input, there’s no
point in looping through the whole array, so break terminates the loop as soon as the con-
dition is met. (The reason for using !== false is to avoid a false negative; a matching word
at the beginning of $input would return 0, which PHP treats as false.)

To skip an iteration of the loop when a certain condition is met, use the continue key-
word. Instead of exiting, it returns to the top of the loop and executes the next iteration.
In the next example, the loop goes through an array of prices, counting how many items
are less than $20.

$total = 0;
foreach ($prices as $price) {
if ($price > 20) {
continue;

}
$total++;

}

The continue keyword forces the script to abandon the rest of the current iteration if
$price is higher than 20, so $total isn’t incremented. Of course, you could achieve the
same result by using the following code:

$total = 0;
foreach ($prices as $price) {
if ($price < 20) {
$total++;

}
}

But then it wouldn’t demonstrate how continue works . . .

Using functions for preset tasks

Functions do things . . . lots of things, mind-bogglingly so in PHP. The last time I counted,
PHP had nearly 3,000 built-in functions, and more have been added since. Don’t worry:
you’ll only ever need to use a handful, but it’s reassuring to know that PHP is a full-
featured language capable of industrial-strength applications.

The functions you’ll be using in this book do really useful things, such as send email, query
a database, format dates, and much, much more. You can identify functions in PHP code,
because they’re always followed by a pair of parentheses. Sometimes the parentheses are
empty. Often, though, the parentheses contain variables, numbers, or strings, like this:

$thisYear = date('Y');

This calculates the current year and stores it in the variable $thisYear. It works by feeding
the string 'Y' to the built-in PHP function date(). Placing a value between the parentheses

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

454

like this is known as passing an argument to a function. The function takes the value in
the argument and processes it to produce (or return) the result. For instance, if you pass
the string 'M' as an argument to date() instead of 'Y', it will return the current month as
a three-letter abbreviation (for example, Mar, Apr, May). The date() function is covered in
detail in Chapter 17.

Some functions take more than one argument. When this happens, separate the argu-
ments with commas inside the parentheses, like this:

$mailSent = mail($to, $subject, $message);

It doesn’t take a genius to work out that this sends an email to the address stored in the
first argument, with the subject line stored in the second argument and the message
stored in the third one. You’ll see how this function works in the next chapter.

As if the 3,000-odd built-in functions weren’t enough, PHP lets you build your own custom
functions. Even if you don’t relish the idea of creating your own, throughout this book
you’ll use some that I have made. You use them in exactly the same way.

Understanding PHP error messages

There’s one final thing you need to know about before savoring the delights of PHP: error
messages. They’re an unfortunate fact of life, but it helps a great deal if you understand
what they’re trying to tell you. The following illustration shows the structure of a typical
error message:

The first thing to realize about PHP error messages is that they report the line where PHP
discovered a problem. Most newcomers—quite naturally—assume that’s where they have
to look for their mistake. Wrong . . .

What PHP is telling you most of the time is that something unexpected has happened. In
other words, the mistake frequently lies before that point. The preceding error message
means that PHP discovered a foreach command where there shouldn’t have been one.
(Error messages always prefix PHP elements with T_, which stands for token. Just ignore it.)

You’ll often come across the term parameter in place of argument.
There is a technical difference between the two words, but for all practi-
cal purposes, they are interchangeable.

INTRODUCING THE BASICS OF PHP

455

10

Instead of worrying what might be wrong with the foreach command (probably nothing),
start working backward, looking for anything that might be missing. Usually, it’s a semi-
colon or closing quote. In this example, the error was caused by omitting the semicolon at
the end of line 27 in book.php. In other words, the error was on the previous line, not the
line in the error message.

Sometimes you’ll see an error message that tells you it found a problem on or after the
last line on the page. That normally means you left out a closing curly brace earlier in the
script. Use the Balance Braces tool, as described in the next chapter, to find the cause of
the problem.

There are five main categories of error, presented here in descending order of importance:

Fatal error: Any HTML output preceding the error will be displayed, but once the
error is encountered—as the name suggests—everything else is killed stone dead.
A fatal error is normally caused by referring to a nonexistent file or function.

Parse error: This means there’s a mistake in your code, such as mismatched
quotes, or a missing semicolon or closing brace. Like a fatal error, it stops the script
in its tracks and doesn’t even allow any HTML output to be displayed.

Warning: This alerts you to a serious problem, such as a missing include file.
(Include files are covered in Chapter 12.) However, the error is not serious enough
to prevent the rest of the script from being executed.

Deprecated: This is a new type of error introduced in PHP 5.3 that warns you
about code that won’t work in future versions. Don’t say you haven’t been warned.

Notice: This advises you about relatively minor issues, such as the use of a nonde-
clared variable. Although you can turn off the display of notices, you should always
try to eliminate the cause, rather than sweep the issue under the carpet. Any error
is a threat to your output.

Hosting companies have different policies about the level of error checking. If error check-
ing is set to a high level and the display of errors is turned off, any mistakes in your code
will result in a blank screen. Even if your hosting company has a more relaxed policy, you
still don’t want mistakes to be displayed for all to see. Test your code thoroughly, and elim-
inate all errors before deploying it on a live website.

Another type of error, strict, was introduced in PHP 5.0, mainly for the benefit of
advanced developers. Strict error messages are not displayed by default, but this will
change in PHP 6. The official definition of a strict message is that it suggests changes to
“ensure the best interoperability and forward compatibility of your code.” Quite how this
differs from deprecated is unclear, although the implication appears to be that depre-
cated means a feature will definitely be removed, whereas strict means a change is under
consideration.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

456

Chapter review
After that crash course, I hope you’re feeling not like a crash victim but invigorated and
raring to go. Although you have been bombarded with a mass of information, you’ll dis-
cover that it’s easy to make rapid progress with PHP. In the next chapter, you’ll use most of
the techniques from this chapter to send user input from an online form to your email
inbox. To begin with, you’ll probably feel that you’re copying code without much compre-
hension, but I’ll explain all the important things along the way, and you should soon find
things falling into place.

INTRODUCING THE BASICS OF PHP

457

10

