
8 GOING BEYOND THE BASICS
WITH SPRY AND AJAX

The Spry effects and widgets described in the previous chapter owe their existence to a fun-
damental shift that has taken place in the past few years in the way that JavaScript is used
to generate dynamic effects in the browser. Traditionally, JavaScript has been used to tackle
specific tasks. For example, if you wanted to change an image on rollover, you would write
a script designed simply for that purpose or use an existing one (Dreamweaver automates
the process for you with Insert ➤ Image Objects ➤ Rollover Image). This has the advantage
of producing lightweight dedicated scripts. For example, Dreamweaver’s image rollover
script is fewer than 20 lines of code. However, improvements in browser capabilities and
better support for the DOM (see Chapter 7) spurred developers to see how far they could
push JavaScript. The Spry effects might look quite simple, but they all involve changing the
state of the target element (its position, transparency, or color) over a specified period. The
amount of scripting required for each effect is considerable. Yet each effect shares com-
mon tasks: the need to identify the target element, a timer to control the transition, ways
of dynamically manipulating the element’s style rules, and so on. Rather than reinvent the
wheel for each new script, it became more efficient to develop a framework or library of
common functions.

The sudden explosion of JavaScript frameworks in recent years is a mixed blessing for web
developers. In one respect, using a framework reduces the amount of code the developer
needs to write because most complex tasks are handled by the framework. On the other
hand, it involves a considerable learning curve. Books about the most popular frameworks,
Prototype, script.aculo.us, jQuery, and Mootools, run to hundreds of pages. Dreamweaver
has tried to reduce the Spry learning curve by automating the insertion and configuration
of a large number of widgets and effects. All the JavaScript coding is handled for you
seamlessly behind the scenes (it might come as a surprise that SpryEffects.js contains
nearly 2,500 lines of code).

If you don’t want to get your hands dirty with JavaScript, you can skip this chapter. On the
other hand, if you do, you might find yourself frustrated at not being able to use Spry to its
full extent. Because Spry is a fully fledged JavaScript framework, it’s capable of doing much
more than you can achieve through the Property inspector or dialog boxes. Doing things
such as opening a panel from a link or making the height of accordion panels expand and
contract depending on the amount of content in them involves diving under the hood and
hand-coding JavaScript. Spry code hints make this a relatively painless process.

In this chapter, you’ll learn about the following:

Passing additional arguments to Spry effects and widgets

Creating an accordion with flexible-height panels

Opening Spry panels from links

Combining Spry effects

Using the Spry selector to manipulate styles on the fly

Saving bandwidth with minified Spry files

Creating unobtrusive JavaScript with the JavaScript Extractor

Using other JavaScript libraries with Dreamweaver CS4

Installing Dreamweaver extensions

Experimenting with jQuery and YUI Library web widgets

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

308

If you have worked previously with JavaScript, you should have little difficulty customizing
Spry effects and widgets. However, for the benefit of readers taking their first steps with
programming, the following section explains some of the basic concepts.

Programming terminology 101
Programming languages like JavaScript and PHP (which you’ll use in the second half of this
book) change the output displayed in a web page in response to events or user input.
Since the developer has no way of knowing in advance how users will interact with a page,
programming languages use a variety of mechanisms to produce the required output. The
following are some of the most important.

A variable acts as a placeholder for an unknown or changeable value, which may come
from user input, a database, the result of a calculation, and so on. Although this sounds
abstract, we use variables all the time in everyday life. My name is David, and my editor’s
name is Ben. In this case, “name” plays the same role as a variable—the word “name”
always remains the same, but the value assigned to it can change.

Functions can be regarded as the verbs of programming languages; they do things. Many
functions are built into the language, but you can also build your own functions by
combining a series of commands. In both JavaScript and PHP, function names are always
followed by a pair of parentheses. Often, the parentheses contain variables, known as
parameters or arguments. Passing a value as an argument tells the function to do some-
thing with it, such as perform a calculation or format text.

JavaScript is triggered by events, such as when the page has finished loading or the user
clicks a link. You tell the browser to run a function by assigning it (plus any arguments, if
necessary) to an event handler such as onclick, onmouseover, or onmouseout. To give a
trivial example, the following code pops up an annoying message when the link is clicked:

Click me quick

A string is the name that programming languages give to text. A string is always enclosed
in quotes (single or double). By contrast, numbers should not normally be enclosed in
quotes, unless they’re part of a string.

An array is a variable that can hold multiple values, rather like a shopping list.

An object is like a super variable, which can have variables (called properties) and func-
tions (called methods) of its own. New instances of an object are created using the new
keyword followed by a constructor function, which looks and works very much like any
other function.

In spite of the similarity of names, JavaScript is wholly unrelated to
Java. They are different programming languages, and “Java” should
never be used as an abbreviation for JavaScript.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

309

8

Understanding Spry objects
In common with other JavaScript frameworks, Spry uses JavaScript objects. The idea of
using objects is that all the complex coding remains locked away in the object definition,
so you need concern yourself only with parts exposed through the object’s methods and
properties. Methods are functions that can be used to get the object to perform particu-
lar actions. Properties define the state of an object. All Spry effects and widgets are
objects. So, for example, the properties of an accordion determine whether a panel is
open or whether the panels have a fixed height; and to open the panel of a tabbed panels
object, you use its showPanel() method.

Initializing a Spry object

When you insert a Spry tabbed panels widget, Dreamweaver initializes the JavaScript
object at the bottom of the page just before the closing </body> tag like this:

<script type="text/javascript">
<!--
var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1");
//-->
</script>
</body>

The line of JavaScript highlighted in bold creates a new tabbed panels object and stores
a reference to it in a JavaScript variable with the same name as the ID of the <div> that
contains the panels. The ID and the JavaScript variable don’t need to be the same, but
Dreamweaver adopts this convention to make it easy to use Spry properties and methods.

Dreamweaver normally handles all the coding for you, but if you want to get more adven-
turous with Spry widgets, you need to understand what the code means. So, let’s analyze
it piece by piece:

The object definitions aren’t literally locked away. You can study them by opening the
external JavaScript files that Dreamweaver copies to the Spry assets folder. However,
you should never edit the JavaScript in those files unless you really know what you’re
doing. And if you do know what you’re doing, you would probably create your own
methods and properties without touching the original files.

Both JavaScript and PHP are case-sensitive. You must use the right combination of
uppercase and lowercase when typing JavaScript and PHP code. Dreamweaver code
hints are invaluable in helping get the spelling right.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

310

var: This is a JavaScript keyword used to declare a new variable. Variable names in
JavaScript cannot begin with a number and should not contain any spaces or punc-
tuation, except for the underscore (_).

TabbedPanels1: This is the name of the new variable, which can be used elsewhere
in the script to represent whatever value is assigned to it.

The assignment operator (=): This assigns the value on the right to the variable on
the left. Try not to think of it as an equal sign, because both JavaScript and PHP use
two equal signs to indicate equality.

new: This is a JavaScript keyword that creates an instance of an object.

Spry.Widget: This is the object of which a new instance is being created.

TabbedPanels("TabbedPanels1"): This is the constructor method of the object. In
this case, it creates a tabbed panels widget. The value in quotes between the paren-
theses is an argument being passed to the new object. Arguments set the values of
specific properties. In the case of Spry objects, the first argument is always the ID
of the target element.

If you change the value of the Default panel in the Property inspector to Tab2,
Dreamweaver changes the initialization code like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1", ➥

{defaultTab:1});

The format of the second argument is important. Unlike the first argument, it’s not
enclosed in quotes but in a pair of curly braces. In JavaScript, this is called an object
literal. An object literal is simply a shorthand way of creating a new object. It consists of
name/value pairs surrounded by curly braces. Each name/value pair defines a property,
with a colon separating the value from the property name. This object literal contains a
single name/value pair: defaultTab, which is a property of a tabbed panels widget, and 1,
which is the value assigned to that property. No, it’s not a mistake. Like most programming
languages, JavaScript counts from zero, so the number of the second tab is 1, not 2.

The second argument in most Spry constructor methods sets various options. Since an
object literal can accept multiple name/value pairs as a comma-separated list, using an
object literal as the second argument makes it easy to pass multiple options to the Spry
effect or widget like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1", ➥

{property1:value1, property2:value2, property3:value3});

You can put whitespace around the colons and insert new lines after the commas for ease
of reading. Don’t worry if all this terminology sounds intimidating. As you’ll see in the fol-
lowing exercises, hand-coding Spry is relatively painless.

Changing accordion defaults
As explained in Chapter 7, the Property inspector for an accordion lets you change only the
ID and the number and order of panels. Unlike Spry tabbed panels, there’s no option to
select a panel to be displayed by default when the page first loads. What’s more, changing

GOING BEYOND THE BASICS WITH SPRY AND AJAX

311

8

the default behavior of using fixed-height panels isn’t just a question of tweaking the style
sheet. To make both changes, you need to pass options to the accordion object constructor.

By default, an accordion is always displayed with the first panel open. This exercise shows
how to display a different panel when the page first loads. This technique always displays
the same panel. It cannot be used to open a specific panel from a link in a different page.

1. Create a new folder called ch08 in your workfiles folder, copy accordion_
start.html from examples/ch08, and save it in the new folder as accordion.html.
Update the links when prompted. The page should look like this in Design view:

The accordion contains the same material as used in Chapter 7. However, I have left
the accordion unstyled apart from constraining its width.

2. To change the default open panel, open the page in Code view, and scroll down to
the bottom. Locate the following line of code, which initializes the accordion object:

var Accordion1 = new Spry.Widget.Accordion("Accordion1");

3. Insert your cursor just before the closing parenthesis, and type a comma.
Dreamweaver displays the following code hint:

Changing an accordion’s default open panel

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

312

This tells you that Spry expects the constructor method to take two arguments:
element (the ID of the <div> that houses the accordion) and options. Because
options is highlighted in bold, that’s what Dreamweaver now expects you to enter.
The curly braces remind you that options must be a JavaScript object literal.

4. Type an opening curly brace. This pops up a second code hint, as shown here:

This shows you some of the available options. Double-click defaultPanel, or use the
down arrow key to select it and press Enter/Return. Dreamweaver inserts the
defaultPanel property followed by a colon ready for you to insert the value.
JavaScript numbers the panels from 0, so to open the third panel, type 2 followed
by a closing curly brace. The code should now look like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{defaultPanel:2});

5. Save accordion.html, and load it in a browser (or activate Live view). The third
panel (Water bus) should open instead of the first one.

Check your code, if necessary, with accordion_default.html in examples/ch08.

Using a fixed height for an accordion is very useful when you need to keep different parts
of a page in alignment, but the scrollbars tend to look unsightly (only Internet Explorer for
Windows supports the nonstandard CSS properties for styling scrollbars).

Converting an accordion to flexible height involves two stages: editing the CSS and passing
an option to the accordion object’s constructor method. Continue using accordion.html
from the preceding exercise.

1. With accordion.html open in the Document window, select SpryAccordion.css in
the Related Files toolbar. Then select File ➤ Save As, and save the style sheet as
SpryAccordion_flexible.css. This opens the style sheet in a new tab. Close the
new tab straightaway, because you’ll work with it as a related file.

2. Although you have saved the style sheet with a different name, the original style
sheet is still attached to accordion.html. The quickest way to attach the new style
sheet is to select Source Code in the Related Files toolbar to reveal the HTML code
of accordion.html. Change SpryAccordion.css to SpryAccordion_flexible.css in the

Converting an accordion to flexible height

GOING BEYOND THE BASICS WITH SPRY AND AJAX

313

8

<link> tag in the <head> of the document, save the page, and press F5 to update
the Related Files toolbar, as shown here:

3. You need to change the properties in the .AccordionPanelContent selector of the
style sheet. There are several ways you can do it, but a quick way to find the right
section of code to edit is to switch to Design view, hold down the Alt key (or
Opt+Cmd on a Mac), and click anywhere inside the accordion. Click the link for the
.AccordionPanelContent selector in the Code Navigator, as shown in the following
screenshot:

4. Change the value of overflow from auto to hidden. If you leave the overflow
property set to auto, some longer panels still spawn a scrollbar. You need to set it
to hidden so that only the currently open panel is visible. Also delete the height
property from the rule, which should now look like this:

.AccordionPanelContent {
overflow: hidden;
margin: 0px;
padding: 0px;

}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

314

That takes care of the CSS. Now you need to tell the Accordion object to use flex-
ible height.

5. Select Source Code in the Related Files toolbar to return to the HTML code for
accordion.html, and then scroll right to the bottom of the page and locate the
code that initializes the Accordion object (see step 2 in the preceding exercise).

6. If you changed the default open panel in the preceding exercise, amend the con-
structor function like this (new code is in bold):

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{defaultPanel:2, useFixedPanelHeights:false});

If you just want to remove the fixed panel heights, amend the code like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{useFixedPanelHeights:false});

Make sure you don’t omit the comma after "Accordion1".

7. Select File ➤ Save All to save the changes to both accordion.html and the style
sheet, and test the page in your browser. You now have a flexible-height accordion
and no ugly scrollbars.

Check your code, if necessary, with accordion_flexible.html in examples/ch08.
The style sheet, SpryAccordion_flexible.css, is in the SpryAssets folder.

Using an object’s methods

Once you have created an object, you can use its methods. You do this by adding a period
to the end of the variable that contains the object, followed by the method name and
any arguments. So, to open the second panel of a tabbed panels widget stored in
TabbedPanels1, you use its showPanel() method like this:

TabbedPanels1.showPanel(1)

Opening panels from a link on the same page
The technique for opening a specific panel differs not only for each type of Spry widget
but also depending on whether the link is located in the same page. This section contains
instructions for opening a panel from links within the same page as the widget. There are
separate instructions for tabbed panels, accordions, and collapsible panels.

This exercise shows you how to open a specific panel in a tabbed panels widget from a link
in the same page.

1. Copy tabbed_start.html from examples/ch08 to workfiles/ch08, and save the
file as tabbed.html. Update the links when Dreamweaver prompts you to do so.

Opening a tabbed panel from a link on the same page

GOING BEYOND THE BASICS WITH SPRY AND AJAX

315

8

The page contains a tabbed panels widget, as shown in the following screenshot:

As with the accordion in the previous exercises, the panels are unstyled apart from
a rule that constrains their width.

2. In Design view, select the tab named Bus in the Property inspector, or click its eye
icon to reveal the panel content.

3. Select the words Oyster Card in the final sentence, and type javascript:; in the Link
field of the HTML view of the Property inspector to create a dummy link.

4. With the words Oyster Card still highlighted, open Split view to reveal the underlying
code, and position your cursor just before the closing angle bracket of the <a> tag.

5. Press the spacebar. Code hints should pop up. Type onc, and press Enter/Return
when onclick is highlighted. The link surrounding Oyster Card should now look like
this (with the cursor between the quotes following onclick):

Oyster Card

6. To call one of the Spry methods (functions) on a widget, type the ID of the widget
followed by a period and the name of the method. The ID of this widget is
TabbedPanels1. As soon as you type the period after the ID, Dreamweaver pops up
code hints for the selected widget, showing the available methods (see Figure 8-1).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

316

Figure 8-1. Code hints recognize Spry widgets and display available methods.

Use your mouse or keyboard arrow keys to select showPanel(elementOrIndex), and
double-click or press Enter/Return. This inserts showPanel followed by an opening
parenthesis. Type 3 followed by a closing parenthesis.

Following JavaScript convention, Spry counts the panels from 0, so 3 represents the
fourth panel (Oyster Card). The Oyster Card link code should now look like this:

Oyster ➥

Card

7. Activate Live view. Select the Bus tab, and click the Oyster Card link within the dis-
played panel. The fourth panel should open.

8. The link to open another panel doesn’t need to be inside the widget; it can be any-
where in the page. You can also identify the panel you want to open with an ID
rather than counting its number from zero. This is particularly useful if the order of
the panels is likely to change.

Switch off Live view, and select the Water bus tab. With your cursor anywhere inside
the content of the third panel, select <div.TabbedPanelsContent> in the Tag selector
at the bottom of the Document window. This selects the <div> that contains the
third panel.

9. Enter waterbus in the Div ID field of the Property inspector, and press Tab or
Enter/Return. The ID of the <div> should be added to the selected tag in the Tag
selector, as shown here:

GOING BEYOND THE BASICS WITH SPRY AND AJAX

317

8

10. You can now use this to open the panel from a link. Select the text in the bullet
point at the top of the page, and create a dummy link by entering javascript:; in the
Link field of the HTML view of the Property inspector.

11. Open Split view, and insert an onclick event handler inside the link as you did in
steps 5 and 6. However, this time, use the ID of the panel. The link should look like
this:

 ➥

Water bus

Note that the ID of the panel must be in single quotes. Do not use double quotes.
In programming languages, quotes must always be in matching pairs. The onclick
attribute uses double quotes, so any quotes used inside must be single. Otherwise,
the code won’t work.

12. Activate Live view, and click the Water bus link. The Water bus panel should open.

13. Turn off Live view, select the tabbed panels widget by clicking the turquoise tab at
the top left, and use the up and down arrows in the Property inspector to move the
Water bus and Oyster card panels to different positions.

14. Test the page in Live view again. The Water bus panel should still open correctly.
However, the link that you created in the Bus panel will no longer open the Oyster
card panel. Instead, it opens whatever has been moved to the fourth position.

Check your code, if necessary, against tabbed_link.html in examples/ch08.

Unlike a tabbed panels widget, an accordion doesn’t have a showPanel() method.
However, the process is very similar. Continue working with accordion.html from the
exercises earlier in the chapter. Alternatively, copy accordion_flexible.html from
examples/ch08, and save it as accordion.html in workfiles/ch08. Update the links when
Dreamweaver prompts you to do so.

1. If you did the exercises with the accordion earlier in this chapter, remove the
defaultPanel argument from the options used to initialize the accordion constructor.
Open Code view, and make sure the code at the bottom of the page looks like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{useFixedPanelHeights:false});

2. Back in Design view, highlight the text in the bullet point at the top of
accordion.html, and type javascript:; into the Link field of the HTML view of the
Property inspector to create a dummy link. Open Split view, and add an onclick
attribute to the <a> tag in the same way as in step 5 in the preceding exercise.

3. With your cursor between the quotes of the onclick attribute, type Accordion1 fol-
lowed by a period. As soon as you type the period, Dreamweaver pops up code
hints of the available methods. Scroll down to the bottom of the list, as shown in
the following screenshot:

Opening an accordion panel from a link on the same page

Understanding the use of quotes is vital when working with languages like JavaScript
and PHP. In many circumstances, it doesn’t matter whether you use single or double
quotes, as long as they’re a matching pair. For example, onclick could use single
quotes, but in that case, the ID nested inside would need to use double quotes. When a
programming language sees an opening quote, it grabs the next matching one as the
closing quote. So, you always need to make sure you don’t accidentally end a command
prematurely by using the wrong type of quotation mark.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

318

Note that showPanel() is not listed, but there are four methods that target
specific panels: openFirstPanel(), openLastPanel(), openNextPanel(), and
openPreviousPanel(). Because they target specific panels, you don’t need to add
anything between the parentheses. However, Water bus is the third panel, so none
of these will work. Select openPanel(elementOrIndex).

4. Since Water bus is the third panel, JavaScript counts its position (or index) as 2. So,
add 2, and close the parentheses. The link should look like this:

Water bus

5. Save accordion.html, and load the page into a browser. Click the link at the top of
the page. The Water bus panel slides open. This is a considerable improvement over
the version of Spry in Dreamweaver CS3, which forced you to go through two steps
to open a panel using its index.

6. As you saw in the previous exercise, using a number to identify a panel is risky
because you need to recode everything if the panel’s position changes. Giving the
panel an ID and passing it as an argument to the openPanel() method is more reli-
able. However, you need to make sure you apply the ID to the correct element.

Open the Water bus panel in Design view. Select all or part of it to make it easy to
identify in Split view. Notice that the tab and the panel content are each in a sepa-
rate <div> nested inside another <div> that holds tab and content together like
this:

<div class="AccordionPanel">
<div class="AccordionPanelTab">Water bus</div>
<div class="AccordionPanelContent">
<p>For many years, Londoners . . .</p>
</div>
</div>

</div>

7. The ID must be applied to the outer <div>. Applying it to the <div> that contains
the tab or panel content won’t work. To make sure you get the correct <div>, either
work in Code view or click inside the content of the panel in Design view and select
<div.AccordionPanel> from the Tag selector, as shown in the following screenshot:

After selecting the correct tag, enter the ID in the Div ID field of the Property
inspector. For this exercise, enter waterbus.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

319

8

8. Amend the argument passed to the openPanel() method in step 3 like this (using
single quotes around the ID):

 ➥

Water bus

9. Select the turquoise tab at the top left of the accordion widget to open its details
in the Property inspector, and use the up or down arrow to move the Water bus
panel to a different position.

10. Save the page, and test it in a browser. When you click the Water bus link, the cor-
rect panel should still open.

You can check your code, if necessary, against accordion_link.html in
examples/ch08.

Since collapsible panels work independently, opening one from a link is simply a matter of
applying the open() method to the JavaScript variable that identifies the target panel. By
default, Dreamweaver names the first panel on a page CollapsiblePanel1 and increments
the number by one for each subsequent panel.

This exercise shows how to open collapsible panels from a link on the same page.

1. Copy collapsible_start.html from examples/ch08, and save it in workfiles/ch08
as collapsible.html. Update the links when Dreamweaver prompts you to do so.

The page contains four collapsible panels with the same content as before. The first
panel is set to display open, while the others remain closed. Again, the only styling
on the page limits the width of the panels.

2. Select Water bus at the top of the page, and create a dummy link as you have done
in all previous exercises.

3. Switch to Code view, and scroll to the bottom of the page. The code that initializes
the collapsible panel objects looks like this:

As you can see, there are four separate objects. The first argument passed to the
constructor method of a Spry object is always the ID of the target element, so
CollapsiblePanel3 is a unique identifier for the Water bus panel. Even if you move
the panels about on the page, each one retains its original ID.

4. Scroll back up to the dummy link, and add an onclick attribute to the <a> tag.

5. With your cursor between the quotes of the onclick attribute, type CollapsiblePanel3
followed by a period. As soon as you type the period, Dreamweaver pops

Opening a collapsible panel from a link in the same page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

320

up code hints of the available methods. Scroll down until you locate open(), as
shown here:

GOING BEYOND THE BASICS WITH SPRY AND AJAX

321

8

6. Double-click open(), or press Enter/Return. That’s it.

7. Save the page, and test it in a browser. When you click the Water bus link at the top
of the page, the Water bus panel opens. Because collapsible panels are independent
of each other, this has no effect on any other panels that are open.

You can check your code with collapsible_link.html in examples/ch08.

Although it’s useful to open a collapsible panel from a link, wouldn’t it be nice to be able
to close it as well? As you scrolled down the list of code hints in step 5 of the previous
exercise, you probably noticed that there’s a close() method, too. Although you can use
that with a different link, how about toggling a panel open and closed from the same link?

This next exercise shows you how to build a custom function to toggle any collapsible
panel open and closed from a link on the same page. Continue working with
collapsible.html from the preceding exercise.

The instructions in this exercise are deliberately verbose to help readers who are new to
JavaScript. If you already have experience writing your own JavaScript, you might prefer
to skim over most of the explanations and study the finished (very simple) script in
collapsible_toggle.html.

1. As you have already learned, a collapsible panel object has both an open() method
and a close() method. To toggle a panel open and closed, you need a way of find-
ing out its current state. Take a closer look at the screenshot in step 5 of the pre-
ceding exercise. Among the code hints is another method called isOpen() (it’s the
third one down in the screenshot). There isn’t an equivalent method that tells you
whether a panel is closed, but that’s not important. If a panel’s not open, it must be
closed.

2. Open Code view, and scroll up to the closing </head> tag (it should be around
line 24). Create some space before the closing </head> tag, and insert a <script>
block like this (the new code is shown in bold):

</style>
<script type="text/javascript">
</script>
</head>

Toggling a collapsible panel open and closed from a remote link

3. To create a custom function, you type the keyword function followed by the name
you want to use for the function. The name is followed by a pair of parentheses.
The body of the function goes between a pair of curly braces. So, amend the code
like this:

<script type="text/javascript">
function togglePanel()
{
}
</script>

4. Since we have been working with the Water bus panel (CollapsiblePanel3), let’s
continue doing so. Decisions in programming languages are made by determining
whether a condition is true or false. The isOpen() method produces a Boolean
value (true or false). So, CollapsiblePanel3.isOpen() will equate to true if it’s
open. Otherwise, it equates to false. In programming terms, a function or method
is said to return a value. So, what we’re interested in is whether it returns true or
false.

Conditional decisions are handled by using the keyword if followed by the condi-
tion in parentheses. Any code you want to run only if the condition is true goes
inside a pair of curly braces.

If the panel is open, you want to close it, but if it’s closed, you want to open it. To
run different code when a condition is false, you use the else keyword and put the
code in another pair of curly braces.

Put everything together, and it looks like this:

<script type="text/javascript">
function togglePanel()
{
if (CollapsiblePanel3.isOpen()) {
CollapsiblePanel3.close();

} else {
CollapsiblePanel3.open();

}
}
</script>

5. To use this function, you now need to change the code in the dummy link. It cur-
rently looks like this:

Water bus

Change it to this:

Water bus

6. Save collapsible.html, and test the page in a browser. When you click the Water
bus link, the panel should now open or close depending on its current state.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

322

Check your code, if necessary, with collapsible_toggle_waterbus.html in
examples/ch08. JavaScript is intolerant of mistakes, so use the File Compare fea-
ture, as described in Chapter 2, if you’re having problems. A missing period, quota-
tion mark, parenthesis, or curly brace will prevent the function from working.

7. This works fine, but it’s very inflexible, because it works only with
CollapsiblePanel3. This is where passing an argument to a function makes it far
more useful. The argument is a variable that goes between the parentheses at the
end of the function name. You then use that variable inside the function to repre-
sent the actual value that’s passed when the function is used. We’re toggling the
open and closed states of a panel, so let’s call the variable panel.

Change the function like this (the changes are in bold):

function togglePanel(panel)
{
if (panel.isOpen()) {
panel.close();

} else {
panel.open();

}
}

8. Finally, you need to pass the ID of the panel you want to open as an argument to
togglePanel() like this:

Water ➥

bus

Note that the ID is not in quotes because you’re passing the object, and not a
string.

9. Save collapsible.html, and test the page in a browser again. It should toggle the
Water bus panel open and closed as before.

10. Now, the real test. Copy and paste the Water bus link, and change it like this:

<p> ➥

Water bus</p>
<p> ➥

Oyster card</p>

11. Save the page, and test the new link, which should toggle the Oyster card panel
open and closed.

Check your code, if necessary, against collapsible_toggle.html in examples/ch08.

That solves the problem of toggling a single panel open and closed. How about opening
and closing all panels with a single click? Actually, this feature is already built into the
external JavaScript file that controls collapsible panels, but you need to implement it man-
ually. It’s very easy, as the next exercise shows.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

323

8

This exercise shows you how to group collapsible panels so they can be opened or closed
as a single unit. Each panel, however, can be opened or closed independently.

1. Continue working with the file from the preceding exercise. Alternatively, copy
collapsible_toggle.html from examples/ch08, and save it as collapsible.html
in workfiles/ch08.

2. To open and close all panels simultaneously, you need to wrap them in an outer
<div>. Selecting multiple elements in Design view can be tricky, so the safest way to
do this is in Code view. Insert a new <div> tag just before the first collapsible panel.
It needs both an ID and a class. The ID can be anything you like, as long as it’s
unique on the page (I used panelgroup). The class must be CollapsiblePanelGroup.
The amended code looks like this (it should be around line 40):

<p>Open all | Close all</p>
<div id="panelgroup" class="CollapsiblePanelGroup">
<div id="CollapsiblePanel1" class="CollapsiblePanel">

3. Scroll to the end of the last panel, and insert a closing </div> tag. It should go
immediately above the <script> block around line 70, like this:

more than two years).</p>
</div>

</div>
</div>
<script type="text/javascript">

4. When you create a collapsible panel group like this, it’s no longer necessary to
initialize each panel individually. You just need to create an instance of the
CollapsiblePanelGroup object.

The <script> block at the bottom of the page currently looks like this:

5. Delete the code shown on lines 73–76 of the preceding screenshot, and replace it
with this single line of code:

var panelgroup = new Spry.Widget.CollapsiblePanelGroup("panelgroup");

You can combine CollapsiblePanelGroup with other classes in the same class
attribute, but you need to do this in Code view or the Tag Inspector panel,
because Dreamweaver doesn’t support assigning multiple classes through the
Property inspector.

Opening and closing all collapsible panels simultaneously

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

324

6. Save collapsible.html, and test the page in Live view or in a browser. The first
thing you should notice is that all the panels are open when the page loads, but
you can open and close them independently.

7. You probably don’t want all of them open when the page loads, so amend the code
at the bottom of the page like this:

var panelgroup = new Spry.Widget.CollapsiblePanelGroup("panelgroup", ➥

{contentIsOpen: false});

This passes the contentIsOpen property to the constructor and makes sure that all
panels are closed when the page first loads.

8. What’s that? You don’t want them all closed? No problem. Remember that the
code at the bottom of the page initializes Spry widgets when the page loads, so all
you need to do is open one of the closed panels.

Insert a new line after the one you entered in the last step, and type panelgroup
followed by a period. Since panelgroup is the variable to which you assigned the
CollapsiblePanelGroup object, Dreamweaver displays code hints for the avail-
able properties and methods. Scroll down until you find openPanel(panelIndex), as
shown here:

9. Double-click the code hint, or press Enter/Return to insert it. Then type the num-
ber of the panel you want to open (counting from zero), followed by a closing
parenthesis and a semicolon. To open the first panel, the code looks like this:

panelgroup.openPanel(0);

10. Save collapsible.html, and test it again. This time, the first panel should slide
open as the page loads (it might not render correctly in Live view, so test it in a
browser).

11. As you can see in the preceding screenshot, the code hints for a
CollapsiblePanelGroup object show that it has a closeAllPanels() method and
an openAllPanels() one, too. So, to wire up the links to open and close all panels,
all you need to do is create a dummy link on each one and add an onclick attrib-
ute to call the appropriate method on the panelgroup object. You have done this
plenty of times before, so I’ll just show the final code, which looks like this:

<p>Open ➥

all | <a href="javascript:;" onclick="panelgroup. ➥

closeAllPanels()">Close all</p>

GOING BEYOND THE BASICS WITH SPRY AND AJAX

325

8

12. Save the page, and test it. The panels now work both individually and as a group.
There’s just one problem: the togglePanel() function created in the preceding
exercise no longer works because the individual objects identifying each panel no
longer exist. Let’s fix that.

13. To be able to toggle an individual panel open and closed, you need to know which
panel group it belongs to and its position within the group. So, I have renamed the
function toggleGroupPanel(), and the function will now take two arguments:
group and num.

To find the individual panel, you first need to use the getPanels() method of the
CollapsiblePanelsGroup object. This gets an array of all panels within the group.
However, you can’t just use the array index to get the panel. You need to pass the
array element to the getElementWidget() method. Once you have identified the
panel, the rest of the function remains the same. Here’s the rewritten function with
the amended parts highlighted in bold:

function toggleGroupPanel(group, num)
{
var allPanels = group.getPanels();
var panel = group.getElementWidget(allPanels[num-1]);
if (panel.isOpen()) {
panel.close();

} else {
panel.open();

}
}

In the fourth line, I have subtracted 1 from the value of num, so the second argu-
ment passed to toggleGroupPanel() can use the more intuitive practice of count-
ing the panels from one rather than zero.

14. Finally, amend the links that toggle the Water bus and Oyster card panels like this:

<p> ➥

Water bus</p>
<p> ➥

Oyster card</p>

Check your code, if necessary, against collapsible_all.html in examples/ch08.

So far, all the methods of opening panels have been confined to links on the same page.
While that’s useful, it’s arguably more useful to be able to target a particular tab or panel
to open when linked to from a different page. It can be done, but it requires part of the

A restriction with the CollapsiblePanelsGroup object in Spry 1.6.1 appears to
be that nothing else should be inside the outer <div> that’s wrapped around the
panels. Although everything works correctly to start with, the code rapidly gets
confused and behaves erratically.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

326

Spry framework that’s not included with Dreamweaver. I’ll come back to that later in the
chapter, but before that I’ll show you how to combine different Spry effects to make cus-
tom effects of your own.

Using the Cluster object to combine effects

Spry effects bring together several complex actions to create a smooth transition
onscreen. The secret weapon that makes this possible is the Spry.Effect.Cluster object,
which determines whether to run each part of the effect simultaneously or in sequence.
Since the built-in effects rely on the Cluster object, it’s automatically at your disposal.

The Cluster object has many methods, but the following four are the ones that interest us:

call(): This initiates the object. It expects two arguments: the effect’s target ele-
ment and an object literal containing any options.

addNextEffect(): This chains effects in sequence. It takes an effect object as its
sole argument.

addParallelEffect(): This runs an effect in parallel with other effects. It takes an
effect object as its sole argument.

start(): This runs the effect. It takes no arguments.

To create a new effect, you need to extend the Spry.Effect.Cluster object. You do this
by defining a function with the name of the new effect. Then you define a new JavaScript
class using the same name and assigning its prototype object as Spry.Effect.Cluster.
Finally, you assign the function as the constructor of the new class. It sounds more com-
plicated than it really is. The basic syntax looks like this:

NewEffect = function(element, {options})
{
Spry.Effect.Cluster.call(this, options);
// details of effect go here

};
NewEffect.prototype = new Spry.Effect.Cluster();
NewEffect.prototype.constructor = NewEffect;

The best way to show you how to use the Cluster object is through a couple of practical
examples. The next two exercises create a dissolve effect that can be used to fade one
image into another, and an extension of the Spry highlight effect that makes a smooth
transition to the final color.

This exercise demonstrates the use of the addParallelEffect() method of the Cluster
object to fade out one image at the same time as another is faded in. Although images are
used in this exercise, the effect could be applied to any elements on a page.

Dissolving one image into another

GOING BEYOND THE BASICS WITH SPRY AND AJAX

327

8

1. Copy dissolve_start.html from examples/ch08, and save it in workfiles/ch08 as
dissolve.html. The page contains a dummy link at the top and two images along-
side each other inside a paragraph, as shown in the following screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

328

The two images will eventually be superimposed on each other. The image on the
left has an ID called pond, and the other has an ID called duck. If you have a small
monitor and the second image is pushed down below the first one, use two smaller
images of your own.

2. Click the Live View button. The image of the duck should disappear.

3. Turn off Live view, and look in Code view to see why the duck vanished. The fol-
lowing <style> block embedded in the <head> of the page reduces the opacity of
the duck image to zero when the page is displayed. In other words, whatever is
behind it shows through.

<style type="text/css">
#duck {
opacity: 0;
filter: alpha(opacity=0);

}
</style>

The filter property is nonstandard CSS but is required by Internet Explorer.

4. Create an external JavaScript file by selecting File ➤ New. In the Blank Page section
of the New Document dialog box, select JavaScript as Page Type, and click Create.
Save the new page as clusters.js in workfiles/ch08.

5. Following the basic syntax outlined earlier, let’s call the new effect Dissolve. Add
the following code to clusters.js:

Dissolve = function(elem1, elem2, duration)
{
Spry.Effect.Cluster.call(this, {duration: duration});

};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

Notice that I am using three arguments to be passed to the Dissolve effect: the
first two are the IDs of the elements to be cross-faded, and the last one is for
the duration in milliseconds. This is the only option, so it is passed to
Spry.Effect.Cluster.call() as an object literal.

6. The Dissolve() function needs to instantiate two effects: one to reduce the opacity
of the first element to zero and the other to increase the opacity of the second ele-
ment from zero to fully opaque. The Spry effects library contains an object for pre-
cisely this purpose: Opacity. Amend the Dissolve() function definition like this:

Dissolve = function(elem1, elem2, duration)
{
Spry.Effect.Cluster.call(this, {duration: duration});
var fadeOut = new Spry.Effect.Opacity(elem1, 1, 0, {duration: ➥

duration, toggle: true});
var fadeIn = new Spry.Effect.Opacity(elem2, 0, 1, {duration: ➥

duration, toggle: true});
};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

The Opacity object takes four arguments: the target element, the starting opac-
ity (1 is fully opaque, 0 is fully transparent), the ending opacity, and an object
specifying any options. So, the Opacity object stored as fadeOut fades the first
element from total opacity to total transparency, while fadeIn does the reverse
to the second element. The same options are passed to both: they take the value
of the duration property from the third argument passed to Dissolve() and set
the toggle property to true. This last option reverses the effect the next time it
is triggered.

7. With both effects stored as variables, you can now use the addParallelEffect()
method to attach them to the target element (identified by this) as follows:

Dissolve = function(elem1, elem2, duration)
{
Spry.Effect.Cluster.call(this, {duration: duration});
var fadeOut = new Spry.Effect.Opacity(elem1, 1, 0, {duration: ➥

duration, toggle: true});
var fadeIn = new Spry.Effect.Opacity(elem2, 0, 1, {duration: ➥

duration, toggle: true});
this.addParallelEffect(fadeOut);
this.addParallelEffect(fadeIn);

};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

GOING BEYOND THE BASICS WITH SPRY AND AJAX

329

8

8. Save clusters.js, and switch back to dissolve.html in the Document window.
The code you have just created is dependent on the SpryEffects.js external file,
so both JavaScript files need to be attached to the HTML page.

9. A quick way to add external JavaScript files to a page is to display a representation
of the page’s <head> content in Design view. Select View ➤ Head Content, or press
Ctrl+Shift+H/Shift+Cmd+H. This opens a section at the top of the Document win-
dow with icons representing HTML elements in the <head> of the page, as shown in
Figure 8-2.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

330

Figure 8-2.
The <head> isn’t visible in
Design view, but you can

inspect its contents by
displaying them as icons.

The icons are displayed in the same order as in the <head>, and you can drag them
to the left or right to reposition them. You can also inspect and edit most elements
by selecting an icon and viewing its contents in the Property inspector.

10. Click to the right of the last icon in the Head Content bar (it represents the embed-
ded <style> block that you inspected in step 3). The Head Content bar should turn
white to indicate that it has focus. Click the Script button in the Insert bar, or select
Insert ➤ HTML ➤ Script Objects ➤ Script.

In the Script dialog box, click the folder icon alongside the Source field, navigate to
SpryAssets/SpryEffects.js, and select it. Dreamweaver automatically selects
text/javascript as the value for Type. Leave the Content and No script fields empty
(these are for embedding JavaScript directly into the body of a page). The values
should look like the following screenshot:

11. Click OK to close the Script dialog box. Dreamweaver will display the following
message:

Like the Content and No script fields, this applies only when you are embedding
JavaScript directly into a page. You can safely ignore the message.

12. Repeat steps 10 and 11 to attach clusters.js to the page. There should now be
two script icons in the Head Content bar, and both external files should be listed in
the Related Files toolbar, as shown here:

GOING BEYOND THE BASICS WITH SPRY AND AJAX

331

8
13. Close the separate tab that contains clusters.js. You’ll work with it through the

Related Files feature from now on, so having two versions open in the Document
window is likely to lead to confusion. You can also close the Head Content bar by
selecting Head Content in the View menu or by pressing Ctrl+Shift+H/Shift+Cmd+H.

14. Switch to Code view, and create a <script> block at the foot of the page, just
before the closing </body> tag. Create a Dissolve object like this:

var myDissolve = new Dissolve('pond', 'duck', 2000);

As soon as you type the opening parenthesis after Dissolve, Dreamweaver should
display code hints for your newly defined effect like this:

This is Dreamweaver CS4’s new code introspection at work.

15. Add an onclick event to the dummy link at the top of the page, and set it to apply
the start() method to the effect you have just created like this (you refer to it
through the variable in which it is stored):

Dissolve images

16. Save the page, and activate Live view. Click the Dissolve images link at the top of
the page, and the two images should begin a simultaneous transition: the pond fad-
ing out and the duck fading in, as shown in Figure 8-3.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

332

Figure 8-3. The new Dissolve effect switches the transparency of both images simultaneously.

17. If the effect doesn’t work, load the page into a browser, such as Firefox, and use
Tools ➤ Error Console (or a debugging extension, such as Firebug) to troubleshoot
any JavaScript errors. You can also compare your files with dissolve_01.html and
clusters_01.js in examples/ch08.

18. Amend the style rule for the duck image like this:

#duck {
opacity: 0;
filter: alpha(opacity=0);
position: relative;
left: -400px;

}

Both images are 400 pixels wide, so this simply moves the duck image the same dis-
tance to the left so that both images are superimposed. Note that this won’t work
if the browser window is less than 800 pixels wide, because the second image will
drop down and be pushed too far left. If this happens, you might need to use
absolute positioning instead.

If you test the page now, the images should dissolve from one to the other.

19. There’s just one refinement that needs to be made to clusters.js. It’s a good idea
to set a default duration property. Then, the effect can be instantiated with just

two arguments: the IDs of the elements you want to dissolve. Amend the code in
clusters.js like this:

Dissolve = function(elem1, elem2, duration)
{
var dur = 2000;
if (duration != null) dur = duration;
Spry.Effect.Cluster.call(this, {duration: dur});
var fadeOut = new Spry.Effect.Opacity(elem1, 1, 0, {duration: dur, ➥

toggle: true});
var fadeIn = new Spry.Effect.Opacity(elem2, 0, 1, {duration: dur, ➥

toggle: true});
this.addParallelEffect(fadeOut);
this.addParallelEffect(fadeIn);

};
Dissolve.prototype = new Spry.Effect.Cluster();
Dissolve.prototype.constructor = Dissolve;

The two new lines added at the top of the function create a variable, dur, with a
default value of 2000. If the third variable passed to the Dissolve() constructor is
omitted, it uses the default value. Note that the variable, dur, is now used as the
value for the duration property in all the option objects.

20. Remove the duration from the code that instantiates the Dissolve object at the
bottom of dissolve.html like this:

var myDissolve = new Dissolve('pond', 'duck');

21. Save both dissolve.html and clusters.js, and test them. The effect should now
use the default duration of 2000 milliseconds. If you add a different value, it will
use that instead.

Check your code, if necessary, against dissolve.html and clusters_dissolve.js
in examples/ch08.

The next exercise shows how to create a custom effect that chains effects one after
another. Rather than go through everything step by step, I’ll just explain the main points,
because the principles are the same as when running effects in parallel.

The default Spry highlight effect uses three colors: a start color, the end color, and the
color to which the background reverts at the end of the transition. I find this sudden
switch at the end rather jarring, so this exercise creates a new effect that runs two color
transitions in sequence.

1. Add the following code to clusters.js from the preceding exercise:

HighlightTransition = function(element, options)
{
Spry.Effect.Cluster.call(this, options);
var col1 = '#FFFFFF';

Creating a smooth highlight transition

GOING BEYOND THE BASICS WITH SPRY AND AJAX

333

8

var col2 = '#DCBD7D';
var col3 = '#FFFFFF';
var dur1 = 2000;
var dur2 = 2000;
if (options.col1 != null) col1 = options.col1;
if (options.col2 != null) col2 = options.col2;
if (options.col3 != null) col3 = options.col3;
if (options.dur1 != null) dur1 = options.dur1;
if (options.dur2 != null) dur2 = options.dur2;
var transition1 = new Spry.Effect.Color(element, col1, col2, ➥

{duration: dur1, transition: Spry.sinusoidalTransition});
var transition2 = new Spry.Effect.Color(element, col2, col3, ➥

{duration: dur2, transition: Spry.sinusoidalTransition});
this.addNextEffect(transition1);
this.addNextEffect(transition2);

};
HighlightTransition.prototype = new Spry.Effect.Cluster();
HighlightTransition.prototype.constructor = HighlightTransition;

This defines a new HighlightTransition object using the same syntax as before
to extend the Spry.Effect.Cluster object. The important lines are highlighted in
bold. They create two Spry Color objects and then add them to the current object
using the addNextEffect() method. This runs the effects in sequence one after the
other, instead of running them in parallel like the Dissolve effect.

The Spry Color object is another basic effect in the Spry effects library. It takes four
arguments: the target element, the starting color, the end color, and an object lit-
eral with any options. I have used two options: the duration of the effect and the
type of transition. The Spry.sinusoidalTransition starts slowly, speeds up in the
middle, and then slows down again at the end. Table 8-1 lists the available transi-
tion options for Spry effects.

The first effect, stored as transition1, changes the background color of the target
element from col1 to col2, and the second effect (transition2) changes the
background color from col2 to col3.

The rest of the code sets defaults for all the colors and durations. This means you
need set only those options that you want to change from the default, although
you must set at least one option for the effect to work.

Table 8-1. Transition options for Spry effects

Transition Description

Spry.linearTransition Progresses evenly throughout

Spry.circleTransition Rapid start followed by a long easing

Spry.fifthTransition Similar to Spry.linearTransition but eases
toward the end

Spry.growSpecificTransition Starts gently, then dips back before rapid
finish

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

334

Transition Description

Spry.pulsateTransition Rapid pulsation between start and finish values,
ending with finish value

Spry.sinusoidalTransition Starts slowly, speeds up, then eases toward the end

Spry.squareTransition Starts slowly and gradually speeds up

Spry.squarerootTransition Starts quickly and gradually eases

2. Copy highlight_transition_start.html from examples/ch08, and save it as
highlight_transition.html in workfiles/ch08.

3. Link SpryEffects.js and clusters.js to highlight_transition.html in the
same way as in steps 10–12 of the preceding exercise.

4. The image has 20 pixels of padding that can be used as a test for the new highlight
effect. The image’s ID is goldenpav, so add the following code to the bottom of the
page to initialize a HighlightTransition object:

<script type="text/javascript">
var myHighlight = new HighlightTransition('goldenpav', {dur2: 1000});
</script>

The options must be passed to the constructor method as an object literal, using
the same names as in HighlightTransition definition in step 1 (col1, col2, col3,
dur1, and dur2). You must pass at least one option to the constructor in this way.
This example changes the duration of the second color change from the default
2000 milliseconds to 1000.

5. Add an onclick attribute to the dummy link at the top of the page to trigger the
effect like this:

<p>Highlight ➥

image</p>

6. Test the page. The image should be surrounded by a golden brown border that
fades in and out smoothly. Experiment with other colors and durations.

Check your code, if necessary, with highlight_transition.html and clusters.js
in examples/ch08.

Using Spry utilities
As I explained in Chapter 7, Spry is software neutral. You can download the latest copy of
the Spry framework from Adobe Labs at http://labs.adobe.com/technologies/spry/
home.html and use it with any script editor. At the time of this writing, the current version
is 1.6.1, which is the same as Dreamweaver CS4, although newer versions will be posted
when available. In addition to the same external JavaScript files that Dreamweaver uses,

GOING BEYOND THE BASICS WITH SPRY AND AJAX

335

8

the Spry framework contains a lot of documentation and samples. If you’re interested in
getting the most out of Spry, it’s well worth downloading. The drawback for inexperienced
developers is that most examples assume a good understanding of JavaScript. Often the
explanation of how something works is lurking in comments in the source code.

The full Spry framework also includes several useful files that are missing from
Dreamweaver. Two of the most useful are SpryDOMUtils.js, which makes it easy to
manipulate the DOM (see Chapter 7), and SpryURLUtils.js, which lets you pass options
to Spry objects through a URL—essential for opening a specific panel from a link on a
different page.

To continue with the exercises in this section, you need to download the most recent
version of the Spry framework from http://labs.adobe.com/technologies/spry/
home.html and unzip the compressed file. The Readme.html and docs.html files contain
links to all the documentation and samples. I’ll leave you to explore them at your leisure.
The files you need for the following exercises are in the includes folder. Copy
SpryDOMUtils.js and SpryURLUtils.js to the SpryAssets folder in the site you’re using
for this book.

Passing information to a Spry widget through a URL

When you link from one page to another, you can pass information to the target page by
adding parameters to the end of the URL. There are two ways of doing this:

A query string: This is a series of name/value pairs following a question mark, like
this: ?variable1=value1&variable2=value2. Each name is separated from its value
by an equal sign, and each pair is separated by an ampersand (in XHTML, the
ampersand needs to be embedded in the link as &).

A fragment identifier: This is the hash (or pound) symbol followed by the name of
an ID or anchor tag, indicating the section of the page you want the browser to go
to, for example, #thisSection.

The SpryURLUtils.js file contains a method called getLocationParamsAsObject(), which
extracts this information from a URL. You can then pass this information to the code that
initializes the Spry widget when the page loads.

Opening a tab or accordion panel from another page
To open a specific tab or panel in a Spry widget on a different page, you need to pass the
information as a query string. For example, to open the second accordion panel, you
would add this to the end of the URL: ?panel=1. If the panel is identified by an ID, you pass
the ID as the value instead, for example, ?panel=waterbus.

To open a specific tab or panel—and go straight to it—you need to combine both meth-
ods like this: ?panel=waterbus#waterbus.

It's important to get the order right. The query string must come before the fragment
identifier. If you put them the other way round, both sets of information will be ignored.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

336

In the page that contains the Spry widget, you use the getLocationParamsAsObject()
method in SpryURLUtils.js like this:

var params = Spry.Utils.getLocationParamsAsObject();

This stores the query string as an object called params, enabling you to pass the values it
contains to the widget’s constructor method. Since the page might be accessed directly,
the values passed to the constructor need to use the JavaScript conditional (or ternary)
operator like this:

{defaultTab: params.tab ? params.tab : 0}

If the URL used to access the page has a query string that contains a variable called tab, its
value will be held in params.tab. This rather cryptic piece of code means “If params.tab
exists, assign its value to defaultTab; but if params.tab doesn’t exist, use 0 instead.”

That’s the theory. Now, let’s get coding.

This exercise demonstrates how to open a specific tab of a tabbed panels widget from a
link in another page. The same technique applies to an accordion.

1. Copy tabbed_start.html from examples/ch08 to workfiles/ch08, and rename it
tabbed_other.html.

2. Attach SpryURLUtils.js by adding it to the <head> of tabbed_other.html. If
you’re not sure how to do this, use the same technique as described in steps 10 and
11 of the “Dissolving one image into another” exercise earlier in the chapter.

3. Switch to Code view, and add the following code block inside the <head> section. It
doesn’t matter where it goes, but it must come after the <script> tag that attaches
SpryURLUtils.js to the page. Spry code hints should help you get the spelling and
combination of uppercase and lowercase correct.

<script type="text/javascript">
var params = Spry.Utils.getLocationParamsAsObject();
</script>

This calls the getLocationParamsAsObject() method from SpryURLUtils.js,
which converts all the information passed to the page through the URL into a
JavaScript object called params. You can now use params to retrieve the values from
the URL.

4. Scroll down to the bottom of the page until you come to the code that initializes
the tabbed panels. It currently looks like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1");

5. To open a specific panel, you need to pass a second argument to the constructor
method. As explained in “Initializing a Spry object” earlier in this chapter, this
needs to be in the form of an object literal. For a tabbed panels widget, the

Preparing the target page

GOING BEYOND THE BASICS WITH SPRY AND AJAX

337

8

property that controls the default panel is called defaultTab. For an accordion,
it’s defaultPanel.

If the value of the tab or panel you want to open is passed through the URL, it will
be a property of the params object you created in step 3. You can call the proper-
ties sent through the URL anything you like, but it makes sense to use tab for a
tabbed panels widget and panel for an accordion. So, the selected value will be
params.tab or params.panel.

However, you need to take into account the likelihood that nothing is passed
through the URL (for example, when a user accesses the page directly). So, change
the code in step 4 like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1",
{defaultTab: params.tab ? params.tab : 0});

If you’re using an accordion, the code should look like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1",
{defaultPanel: params.panel ? params.panel : 0});

This uses the conditional (ternary) operator, which is the same in both JavaScript
and PHP, to determine the value assigned to defaultTab or defaultPanel. When
used like this with an object literal, the conditional operator can seem confusing
because it also uses a colon. The first colon is part of the object literal syntax and
separates the object property from its value. The second colon is part of the con-
ditional operator, which comprises a question mark and a colon.

If the expression to the left of the question mark equates to true, the value imme-
diately to the right of the question mark is used. However, if the expression equates
to false, the value following the colon is used instead.

So if params.tab or params.panel has a value, it will equate to true, and its value
will be assigned to the defaultTab or defaultPanel property. If params.tab or
params.panel doesn’t have a value, 0 is used instead, making the first tab or panel
the default.

6. Tabs and panels can be identified either by their index (position within the widget
counted from zero) or by an ID. When linking from another page, it’s safer to use
an ID in case the order of tabs/panels changes. Instructions on how to add an ID
were given in the exercises on creating links from the same page earlier in this
chapter.

For the purposes of this exercise, give the third panel an ID of waterbus.

7. Save tabbed_other.html, and test it in a browser. The first tab should be displayed
when the page loads.

You can check your code, if necessary, against tabbed_other.html in examples/ch08.

That finishes the changes to the target page. There is no need to create named anchors for
the tabbed panels or accordion, because you can use the ID Dreamweaver automatically
assigns to each set of tabbed panels or accordion.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

338

All that’s necessary now is to create a link to the target page using a query string, as
described at the beginning of this section.

1. Create a new HTML page, and save it as link_to_tab.html in workfiles/ch08.

2. Type some text in the page to use as a link to the Water bus tab of
tabbed_other.html.

3. Highlight the text you plan to use as a link, and select the HTML view of the
Property inspector. You can type the link and query string directly into the Link
field. However, if you prefer to let Dreamweaver create the correct syntax for you,
click the folder icon to the right of the Link field.

4. In the Select File dialog box, select tabbed_other.html, and click the Parameters
button, as shown in the following screenshot:

5. In the Parameters dialog box, enter tab in the Name field. Then use the Tab key or
mouse to open the Value field, and enter waterbus, as shown here:

Creating the link from the other page

GOING BEYOND THE BASICS WITH SPRY AND AJAX

339

8

On this occasion, the query string consists of a single name/value pair, but a query
string can contain several pairs. Use the plus and minus keys to add or remove
name/value pairs. You can also change their order with the up and down arrows.

6. Click OK to close the Parameters dialog box, and then click OK again (Choose on a
Mac) to close the Select File dialog box.

The value in the Link field of the Property inspector should now look like this:

tabbed_other.html?tab=waterbus

7. Save link_to_tab.html, and load it in a browser. Click the link. This time, when
tabbed_other.html loads, the Water bus tab should be displayed instead of the
first tab.

Check your code, if necessary, against link_to_tab.html and tabbed_other.html
in examples/ch08.

Opening a collapsible panel from another page
The principle behind opening a collapsible panel through a URL is identical to opening a
tab or accordion panel. The main difference is that each panel is independent. Its open or
closed state is determined by the contentIsOpen option. Consequently, the ID is not
important when sending a query string. All you need is a name to identify the panel and to
give it a value of true or false.

You can see a working example of this in collapsible_other.html and link_to_
collapsible.html in examples/ch08. The query string in link_to_collapsible.html
looks like this:

Oyster Card

The code that initializes the fourth collapsible panel in collapsible_other.html looks
like this:

var CollapsiblePanel4 = new Spry.Widget.CollapsiblePanel(➥

"CollapsiblePanel4", {contentIsOpen: params.oyster ? ➥

params.oyster : false});

This means that if the URL contains a variable called oyster, its value will be used for the
contentIsOpen option. Otherwise, contentIsOpen is set to false.

You could, in fact, dispense with a value for oyster and use this instead:

var CollapsiblePanel4 = new Spry.Widget.CollapsiblePanel(➥

"CollapsiblePanel4", {contentIsOpen: params.oyster ? ➥

true : false});

Selecting and manipulating page elements with Spry.$$

If you thought Spry was just about widgets and effects, think again. In common with other
JavaScript frameworks like Prototype and jQuery, Spry uses CSS selectors to manipulate
the DOM and change the look or behavior of targeted page elements. Table 8-2 describes

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

340

the selectors supported by Spry 1.6.1. If you’re familiar with either Prototype or jQuery,
you’ll immediately recognize them. They’re based on the proposed selectors for CSS3
(http://www.w3.org/TR/css3-selectors). Although CSS3 is still a long way from becom-
ing a reality, the selectors have basically been agreed upon, so learning them for use with
a JavaScript framework serves a dual purpose.

While the Spry selector utility matches Prototype and jQuery in its ability to select ele-
ments on a page, it currently has only ten methods (listed in Table 8-3) that manipulate
the DOM. They’re mainly useful for changing the CSS styles of an element in response to a
JavaScript event.

The Spry selector utility uses the Prototype convention of two dollar signs to select ele-
ments but avoids conflict with other frameworks by prefixing them with Spry. The follow-
ing code selects all elements that use a class called optional:

Spry.$$('.optional')

As a simple example of how you can use the selector utility, you can create a function to
toggle the display of selected elements on and off by creating a class called hideMe with
the property display: none like this:

function toggleOpts()
{
Spry.$$('.optional').toggleClassName('hideMe');

}

GOING BEYOND THE BASICS WITH SPRY AND AJAX

341

8
Table 8-2. CSS selectors supported by Spry.$$, as of Spry 1.6.1

Pattern Meaning Example

* Any element. Spry.$$(*)

E Spry.$$('div')

E.class Spry.$$('img.floatleft')
Spry.$$('.floatleft')

E#id Spry.$$('div#nav')
Spry.$$('#nav')

E F Spry.$$('ul a')

E > F Spry.$$('p > a')

E + F Spry.$$('h1 + p')

Continued

An F element immediately preceded by an E element
(an adjacent sibling), e.g., the first paragraph after a
level 1 heading.

An F element that is a direct child of an E element.

An F element descendant of an E element, e.g., all links
in unordered lists.

An E element with a specified ID (the element is
optional).

An E element with a specified class (the element is
optional).

An element of type E, e.g., an HTML tag.

Table 8-2. Continued

Pattern Meaning Example

E ~ F Spry.$$('h1 ~ p')

E[foo] Spry.$$('a[title]')

E[foo="bar"] Spry.$$('img[width="50"]')

E[foo^="bar"] Spry.$$('img[title^="Art"]')

E[foo$="bar"] Spry.$$('a[href$=".pdf"]')

E[foo*="bar"] Spry.$$('p[class*="left"]')

E[foo~="bar"] Spry.$$('p[class~="warn"]')

E:first-child Spry.$$('tr:first-child')

E:last-child Spry.$$('tr:last-child')

E:only-child Spry.$$('img:only-child')

E:first-of-type Spry.$$('td:first-of-type')

E:last-of-type Spry.$$('td:last-of-type')

E:only-of-type Spry.$$('img:only-of-type')

E:nth-child(n) An E element that is the nth child of its
parent (see main text for an explanation).

An E element that is the only sibling of
its type.

An E element that is the last sibling of its
type, e.g., the last cell in a table row.

An E element that is the first sibling of its
type, e.g., the first cell in a table row.

An E element that is the only child of its
parent, e.g., an image wrapped in a <div>.

An E element that is the last child of its
parent.

An E element that is the first child of its
parent, e.g., the first row in a table.

An E element with a foo attribute that
comprises a list of space-separated values,
one of which is exactly equal to “bar”.

An E element with a foo attribute that
contains the substring “bar”.

An E element with a foo attribute that ends
with the string “bar”.

An E element with a foo attribute that
begins with the string “bar”.

An E element with a foo attribute exactly
equal to “bar”.

An E element with a foo attribute, e.g., all
links with a title attribute. Do not use
E[class] as a bug in Internet Explorer adds
a class attribute to every element.

All F elements preceded by having the
same parent as an E element, e.g., all
paragraphs at the same level as a level 1
heading that precedes them. Other
elements may intervene.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

342

Pattern Meaning Example

E:nth-last-child(n)

E:nth-of-type(n)

E:nth-last-of-type(n)

E:empty Spry.$$('td:empty')

E:not(s) Spry.$$('*:not(p)')

E:checked Spry.$$('input:checked')

E:disabled A form E element that is disabled. Spry.$$('input:disabled')

E:enabled Spry.$$('input:enabled')

E[hreflang|="en"] Spry.$$('link[hreflang|="en"]')An E element with an hreflang
attribute that has a hyphen-separated
list of values beginning with “en”.

Form elements that are not
explicitly disabled.

An E element that is checked (radio
buttons or checkboxes).

An E element that does not match
simple selector s, e.g., everything
except a paragraph.

An E element that has no children
(including text nodes).

An E element that is the nth sibling
of its type, counting from the
last one.

An E element that is the nth sibling
of its type.

An E element that is the nth child
of its parent, counting from the
last one.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

343

8

Attribute selectors do not permit spaces around the operators. For example, the following
is incorrect:

Spry.$$('a[href $= ".pdf"]') // WRONG

It must be like this:

Spry.$$('a[href$=".pdf"]') // RIGHT

The nth-child selectors are designed to select elements in a repeating pattern. The sim-
plest way to use them is for odd and even elements like this:

tr:nth-child(odd) // picks odd rows
tr:nth-child(even) // picks even rows

The following function (in odd_even.html in examples/ch08) adds class names to odd and
even table rows:

function init() {
Spry.$$('tr:nth-child(odd)').addClassName('odd');
Spry.$$('tr:nth-child(even)').addClassName('even');
Spry.$$('tr:first-child').removeClassName('odd'). ➥

addClassName('headerRow');
}

The function runs when the page loads and produces striped table rows, as shown in
Figure 8-4. The final line uses the first-child selector to remove the odd class from the
first row and apply a different class. Spry selector utility methods can be chained in the
same way as with other JavaScript libraries.

Figure 8-4. The alternating background colors are applied automatically to odd and
even rows.

You can achieve even more ambitious effects with nth-child by using the formula
an+b, where a and b are both numbers. The first number represents how many ele-
ments are in the repeat sequence. The second number identifies the element that you
want to select within the sequence. So if you want a repeating pattern of three, the for-
mula works like this:

tr:nth-child(3n+1) // picks rows 1, 4, 7, etc
tr:nth-child(3n+2) // picks rows 2, 5, 8, etc
tr:nth-child(3n+3) // picks rows 3, 6, 9, etc

You can see the effect in Figure 8-5 and nth-child.html in examples/ch08.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

344

Figure 8-5. Using the nth-child selector targets repeating elements in a user-defined
sequence.

Table 8-3. Methods used by the Spry selector utility

Method Argument(s) Description

addClassName() class Adds the specified class to all selected
elements. The argument should be in quotes.

addEventListener() event, handler, capture Adds a listener for the specified event. The
first argument should be a string consisting
of the event name (without “on”). The
second argument is the name of the function
to be used as the event handler. The final
argument is a Boolean (true or false)
that specifies whether the handler should
respond in the capture phase. Internet
Explorer does not support the capture
phase, so you should normally use false.

forEach() function Runs the specified function on each selected
element.

removeAttribute() attribute Removes the specified attribute from the
selected elements. The name of the attribute
should be in quotes.

removeEventListener() event, handler, capture Removes the specified event listener. The
arguments are the same as for
addEventListener().

removeClassName() class Removes the specified class. The class name
should be in quotes.

Continued

GOING BEYOND THE BASICS WITH SPRY AND AJAX

345

8

Table 8-3. Continued

Method Argument(s) Description

setAttribute() attribute, value Adds the attribute and value to all
selected elements. Both arguments
should be in quotes.

setProperty() property, value Sets a property on the selected
object(s). Both arguments should be
in quotes.

setStyle() style Sets the specified styles on the selected
elements. The argument should be a
string consisting of CSS property/value
pairs separated by semicolons.

toggleClassName() class Removes the specified class if it
already exists on the selected elements.
Otherwise, adds it. The class name
should be in quotes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

346

I have included Tables 8-2 and 8-3 to whet the appetite of readers who already have some
experience with JavaScript and encourage them to delve deeper into the Spry application
programming interface (API). If you’re new to JavaScript, all this might seem like impene-
trable gobbledygook, but you should have little difficulty implementing the code in the
following exercise.

This exercise uses the Spry.$$ selector to style alternate items in an ordered list with a dif-
ferent background color. It also uses a class selector to toggle on and off the display of
certain items. The page also gracefully degrades in a browser that has JavaScript disabled.

1. Copy spry_selector_start.html from examples/ch08, and save it in workfiles/
ch08 as spry_selector.html. The page looks like the following screenshot.

Styling on the fly with the Spry selector

To get up to speed on JavaScript, I suggest you read an up-to-date introductory text,
such as Beginning JavaScript with DOM Scripting and Ajax: From Novice to
Professional by Christian Heilmann (Apress, ISBN: 978-1-59059-680-7). Do not read
anything published before, say, 2005. The whole approach to JavaScript has changed
radically since the early days of the Web. It’s important not to get stuck with outdated
concepts and techniques.

It contains an ordered list of books that I have written for friends of ED and Apress
over the past few years. Some of the books were coauthored with other writers. The
dummy link at the top of the page will be used to hide and display those books.

2. Open Code view. You’ll see that, in addition to a few style rules to improve the look
of the text, there are three classes embedded in the <head> of the page: odd, even,
and hideMe.

The only class that’s added to any of the HTML tags is coauthored, but there are no
style rules for the coauthored class. That’s because you’re going to use that class to
identify the books that will be hidden or displayed when the link is clicked at the
top of the page.

3. To use the Spry.$$ selector, you need to attach SpryDOMUtils.js to the page
<head>. You should be familiar with doing this by now, but refer to steps 9–11 of
the “Dissolving one image into another” exercise if you’re still unsure.

4. Let’s start off by giving the list items an alternating background color. Add the fol-
lowing <script> block to the <head> anywhere after the <script> tag that links
SpryDOMUtils.js to the page (code hints will help you a lot with the typing):

<script type="text/javascript">
function init()
{
Spry.$$('li:nth-child(odd)').addClassName('odd');
Spry.$$('li:nth-child(even)').addClassName('even');

}
</script>

This uses the nth-child structural pseudo-selector to select odd and even
tags and adds the appropriate class to each one.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

347

8

5. What you have just created is a function, so you need to trigger it to run when the
page loads. Either you can put a call to the function in a <script> block at the bot-
tom of the page, as Dreamweaver does with the calls to the widget constructors, or
you can add it to the <body> tag as an onload event. Let’s take the latter course, so
amend the <body> tag like this:

<body onload="init()">

6. Switch to Design view, and activate Live view. The list should now look like this:

The list items now have alternating background colors—certainly a lot easier than
adding the odd and even classes manually to each item, because the same code
works however many items are in the list. In fact, it works for any list on a page.
Also, by changing the selector from li to tr, you could easily apply this to a table
with many rows.

7. Now let’s wire up the link that toggles the display of coauthored books. Switch
back to Code view, and add the following function definition inside the same
<script> block as in step 4:

function showCoauthored()
{
Spry.$$('li.coauthored').toggleClassName('hideMe');

}

This selects all elements with the class coauthored and toggles the hideMe
class on and off. As described in Table 8-3, the toggleClassName() method adds a
class if it’s absent and removes it if it’s already applied to an element. So, this will
have the effect of adding or removing a style rule that sets the element’s display
property to none.

8. Add it to the dummy link at the top of the page with the onclick attribute like this:

<p>Show/hide
co-authored books</p>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

348

9. Switch to Design view, and activate Live view. Click the link at the top of the page.
The list of books should display only those books I wrote on my own, as shown in
Figure 8-6.

Figure 8-6. The contents of the list have been dynamically altered without needing to
reload the page.

Click the link again, and the full list is restored.

10. There’s one final improvement: the link should be visible only when JavaScript is
enabled. Switch off Live view, and position your cursor inside the link at the top of
the page. Select the <p> tag in the Tag inspector at the bottom of the Document
window, and choose hideMe from the Class drop-down menu in the HTML view of
the Property inspector. The link will disappear.

11. You want the link to be visible when JavaScript is enabled, so you can use the
Spry.$$ selector to remove the hideMe class. Amend the init() function like this:

function init()
{
Spry.$$('li:nth-child(odd)').addClassName('odd');
Spry.$$('li:nth-child(even)').addClassName('even');
Spry.$$('p.hideMe').removeClassName('hideMe');

}

This removes the hideMe class from any paragraph that has the hideMe class.

12. Save and test the page again. Check your code, if necessary, against spry_
selector.html in examples/ch08.

This has been only a brief example of what you can do with SpryDOMUtils.js, but I hope
it will encourage you to experiment more. Working your way through the samples
included with the Spry framework download should give you further ideas.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

349

8

Reducing download times with smaller files

One drawback with using a JavaScript library is the size of the files. Spry effects make your
pages livelier, but they add 77KB to the download size. That’s quite a lot of code just to
add one or two pleasing effects, particularly if some of your users are still on dial-up con-
nections. Even if your target audience uses broadband, file size remains a consideration
because bigger files consume more bandwidth, and on a popular site, that can cost you or
your clients a lot of money.

However, it’s not quite as bad as it sounds. JavaScript files are stored in the user’s browser
cache, so they are normally downloaded only the first time they are required. Still, if
you’re concerned about the size of the Spry external files, you can replace them with
smaller versions. If you download the full Spry framework from Adobe Labs, as described
earlier, the ZIP file contains two folders, includes_minified and includes_packed. These
contain versions of the library files that have been compressed to reduce their size. The
files have exactly the same names as the versions installed by Dreamweaver, so all you
need to do is swap your existing files for ones of the same name from either
includes_minified or includes_packed. The two folders use different techniques to
reduce file size, but those in includes_packed are considerably smaller. To give just one
example, the version of SpryEffects.js installed by Dreamweaver is 77KB, the one in
includes_minified is 62KB, whereas the one in includes_packed is just 29KB. On a pop-
ular site, the bandwidth savings could be considerable.

Creating unobtrusive JavaScript
If implemented skillfully, CSS separates a page’s content from instructions about how it
should be presented. This has inspired many developers to apply the same principle to
JavaScript, separating behavior from structure. “Wouldn’t it be better,” the argument goes,
“to add JavaScript to a page only if the browser is capable of handling it?”

Since JavaScript lets you manipulate the DOM, you can. This is a technique known as unob-
trusive JavaScript. Instead of embedding onclick and other event handling attributes in
the HTML code, unobtrusive JavaScript uses DOM manipulation to add them on the fly in
just the same way as the previous exercise added the odd and even classes to the list items.

The difficulty with unobtrusive JavaScript is that it requires a lot of careful planning.
Because you can’t see the features being added to the HTML code, you need to work out
exactly how everything can be added dynamically.

Using the JavaScript Extractor to externalize scripts

Dreamweaver CS4 has come up with a feature designed to take all the guesswork out of
creating unobtrusive JavaScript: the JavaScript Extractor. This works on the simple principle
that you embed the JavaScript elements in a page in the normal way. Once you’re happy
with the way the page works, you extract the JavaScript and externalize it. The drawback
with this is that it’s like squeezing toothpaste from a tube: it’s easy to do, but don’t try get-
ting it back in afterward. . .

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

350

This exercise demonstrates how to use the JavaScript Extractor using spry_selector.html
from the preceding section.

1. Because the JavaScript Extractor cannot restore JavaScript once it has been
removed from a page, it’s always a good idea to create a new copy of the file that
you want to work on. Save spry_selector.html from the previous exercise (or
from examples/ch08) as spry_unobtrusive.html in workfiles/ch08.

2. Close the original file and work with spry_unobtrusive.html.

3. Select Commands ➤ Externalize JavaScript. Dreamweaver analyzes the page and
opens the following dialog box:

The radio buttons at the top of the dialog box offer the following two options:

Only externalize JavaScript: This simply moves functions to an external file and
attaches the file to the page.

Externalize JavaScript and attach unobtrusively: This attempts to move everything
and creates the necessary external script to add inline event handlers, such as
onclick, through DOM manipulation.

With the first option selected, Dreamweaver finds only the function definitions in
the <head> of spry_unobtrusive.html.

4. Select the second radio button. Dreamweaver displays a warning that behaviors will
no longer be editable through the Behaviors panel (this includes Spry effects).
When you click OK to dismiss the warning, the Externalize JavaScript dialog box
changes to this:

Moving JavaScript to an external file

GOING BEYOND THE BASICS WITH SPRY AND AJAX

351

8

Dreamweaver lists all the JavaScript that it can find in the page. The checkbox
alongside each proposed edit lets you decide whether to implement a particular
suggestion. In this case, each edit is selected by default. However, Dreamweaver
automatically deselects any scripts that use document.write, because these cannot
be externalized.

To be able to manipulate the DOM, Dreamweaver automatically creates IDs for
inline elements that don’t already have them. As you can see in the preceding
screenshot, it says it will add a1 as the ID for the onclick attribute. If you want to
change the ID, the field is editable.

5. Click OK when you’re happy with your selections. Dreamweaver then presents you
with a report of what it has done, like this:

The important thing about this report is the last section, which tells you the name
of the external JavaScript file that it has created. You must upload this to your web-
site. Otherwise, none of the JavaScript will work.

The external file is given the same name as the file you have just extracted the
JavaScript from, except with a .js filename extension. If a file with that name
already exists, Dreamweaver adds a number just before the filename extension.

The external JavaScript file is created in the same folder, but you can move it to a
dedicated scripts folder through the Files panel. If you move the file, don’t forget
to update the links when Dreamweaver prompts you.

Using other JavaScript libraries
Adobe realizes that not everyone will want to use Spry, so support for all flavors of
JavaScript has been greatly improved in Dreamweaver CS4. As explained in Chapter 1,
Dreamweaver now provides code hints for all the main data types and the DOM. More

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

352

significantly, Dreamweaver constantly analyzes the JavaScript attached to a page, providing
code hints for custom functions and classes. This includes popular JavaScript frameworks,
such as Prototype and jQuery, as shown in Figure 8-7.

Figure 8-7. Dreamweaver’s code introspection provides code hints for Prototype and other
JavaScript libraries.

Code hints normally pop up when you type a period or opening parenthesis. You can also
trigger them by pressing Ctrl+spacebar (the combination is the same on Windows and Mac).

Code hints generated by code introspection are available only in pages that are directly
attached to the file that contains the function or class definition. For example, if you
attach prototype.js to a page, you get Prototype hints in that page. However, if you
attach an external file to the same page, you don’t get any Prototype hints in the external
file. Spry’s code hints, on the other hand, are hardwired into Dreamweaver, so they’re
available in any page. Consequently, if you want to use JavaScript libraries other than
Spry—and you want code hints—you need to attach the external library directly to the
page where you create your JavaScript. The simple way to do this is to build your JavaScript
in the <head> of the page and then use the JavaScript Extractor, as described in the previ-
ous section, to export it to an external file. That’s how I created jquery_selector.html
and jquery_selector.js in examples/ch08.

The other drawback with external libraries is that the level of hinting is determined by the
structure of those libraries. Although you get hints for all the methods available to a
Spry.$$ selector, similar hints are not generated for the Prototype $$ or jQuery $ selectors.
Let’s hope this situation will be improved either in a future version of Dreamweaver or by
the release of a third-party extension to provide code hints for all the main frameworks.

Talking of third-party extensions, perhaps the best support of all for other JavaScript
libraries comes through Adobe’s decision to release the Web Widgets Software
Development Kit (SDK). This enables JavaScript developers to package web widgets as
Dreamweaver extensions. Prior to the release of Dreamweaver CS4, Adobe contacted the
teams behind jQuery (http://jquery.com/) and the Yahoo! User Interface (YUI) Library
(http://developer.yahoo.com/yui/) and asked them to adapt some of their widgets so
they can be easily installed in Dreamweaver. Other leading developers are also being
encouraged to package JavaScript widgets for Dreamweaver. To find out what widgets are
available, open the Extend Dreamweaver control on the Application bar, as shown in
Figure 8-8, and select Browse for Web Widgets.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

353

8

Figure 8-8. The Extend Dreamweaver control on the Application bar is your gateway to JavaScript
widgets.

As long as you’re connected to the Internet, this takes you directly to a dedicated web
widget section on the Adobe Exchange. Choose the widgets you want, download, and
install them.

The next section walks you through the installation process for all Dreamweaver exten-
sions. Then, to round out the chapter, I’ll show you how to use two of the new web widg-
ets, the jQuery Dialog and the YUI calendar.

Installing Dreamweaver extensions
One of the main reasons for Dreamweaver’s enduring dominance as the leading website
development program is its extensibility. Extensions created by third-party developers add
new functionality to the program. Some extensions are quite simple. Others are much
more powerful and are designed to take your productivity to a whole new level. For exam-
ple, Cartweaver (http://www.cartweaver.com), the PHP version of which was created by
my partner in crime on this book, Tom Muck, greatly simplifies the construction of a fully
featured ecommerce site. The following is a short—and by no means exhaustive—list of
some of the most respected third-party developers (the more sophisticated extensions,
such as Cartweaver, are sold on a commercial basis, but many others are free):

Community MX (http://communitymx.com/)

DMXzone (http://dmxzone.com/)

Kaosweaver (http://kaosweaver.com/)

Project Seven (http://www.projectseven.com)

Tom Muck (http://tom-muck.com/)

Adobe has also taken the decision to focus some aspects of Dreamweaver functionality in
extensions, rather than make them part of the core product. This makes it easier to update
that functionality between releases of the program itself. So, you’re likely to see more
extensions in the future.

Regardless of whether an extension is free or commercial, the method of installation is
identical and is done through the Adobe Extension Manager.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

354

Using the Adobe Extension Manager

In previous versions of Dreamweaver, the Extension Manager was installed automatically.
However, the CS4 installer now gives you the option not to install many of the shared pro-
grams, such as Device Central, Bridge, and the Extension Manager. If you accepted the
default selection of programs when installing Dreamweaver CS4, you should see Adobe
Extension Manager CS4 listed among the programs in the Windows Start menu or in your
Applications folder on a Mac. If it’s not there, you need to install it from your
Dreamweaver or Creative Suite DVD. You should also ensure that you have the Adobe
Integrated Runtime (AIR) installed, because the Extension Manager is now an AIR applica-
tion (AIR is included in the default Dreamweaver installation).

You can launch the Extension Manager in several ways, but perhaps the quickest way is by
selecting Extension Manager in the Extend Dreamweaver control on the Application bar (see
Figure 8-8). If you have hidden the Application bar on a Mac, alternative ways of opening
the Extension Manager are by selecting Commands ➤ Manage Extensions or Help ➤

Manage Extensions. You can also open the program directly from the Windows Start menu
or the Applications folder on a Mac. As if that weren’t enough, you can usually also
launch the Extension Manager by double-clicking the .mxp file of the extension you want
to install.

Migrating extensions from a previous version
If you’re upgrading from an earlier version of Dreamweaver, you’ll immediately notice that
the Extension Manager looks completely different. However, most of its functionality is
unchanged. The first time you launch the Extension Manager, it detects any extensions
installed in a previous version of Dreamweaver on the same computer account and pres-
ents you with the following options:

If you click Yes, the Extension Manager copies details of existing extensions to your CS4
configuration folder. It then tells you to relaunch the Extension Manager. Migrating exten-
sions like this does not automatically enable them in CS4. You need to do that manually
for each one, because some older extensions might not be compatible. However, it’s a use-
ful way to preserve functionality between versions.

To enable an extension, put a check mark in the Enabled checkbox to the left of the exten-
sion name, as shown in Figure 8-9. Some extensions require you to restart Dreamweaver,
but you don’t need to do so until you have selected all those you want to migrate.
However, it’s a wise policy to install extensions only one at a time, because this makes it

GOING BEYOND THE BASICS WITH SPRY AND AJAX

355

8

easier to detect which extension is responsible if Dreamweaver starts behaving erratically.
Sometimes changes to Dreamweaver make older extensions incompatible with the latest
version.

Figure 8-9. The Extension Manager provides a simple interface to add and remove Dreamweaver
extensions.

Installing an extension
The Extension Manager is shared by several Creative Suite programs, so it’s important to
check that you have the correct program selected in the Products column on the left of
the Extension Manager (see Figure 8-9). If you launched the Extension Manager from
Dreamweaver CS4, it should automatically select the correct program.

Installing an extension involves the following simple steps:

1. Click the Install button at the top of the Extension Manager.

2. In the Select Extension to Install dialog box, navigate to the folder where you down-
loaded the extension, select the extension’s .mxp file, and click Open.

Unlike previous versions, Extension Manager CS4 cannot be used to manage extensions
in older programs. It recognizes only programs in Creative Suite 4.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

356

3. You’re then presented with a disclaimer notice that tells you Adobe does not offer
technical support for the extension and that any license is between you and its cre-
ator. In addition to a standard disclaimer that applies to all extensions, there might
also be a license specific to the extension. You must click Accept to proceed with
the installation.

4. The extension now installs. Small extensions install almost instantaneously. Larger
ones may take several minutes. Extensions created by the same developer often
share common files, so you might see warnings that an older or newer version of a
particular file already exists. Click Yes to replace older versions and No if the exist-
ing version is newer.

When the process is complete, the Extension Manager will tell you whether you
need to restart Dreamweaver. This usually happens with extensions that need to
rebuild part of the menu system. The pane at the bottom of the Extension Manager
provides a brief description of the extension and how to use it (see Figure 8-9).

Some commercial extensions require registration or activation. Follow the instructions
onscreen the first time you launch Dreamweaver after installing such an extension.

Removing an extension
Removing an extension is easy. Just launch the Extension Manager, and click the Remove
button alongside the name of the extension you want to remove (see Figure 8-9).

If you don’t want to remove an extension completely from Dreamweaver, disable it tem-
porarily by deselecting the Enabled checkbox alongside the extension name. Just select the
checkbox again when you want to restore the extension.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

357

8

Right, after that brief detour, let’s get on with the jQuery and YUI web widgets.

Using jQuery and YUI web widgets
After downloading the extensions from the Adobe Exchange and installing them as
described in the previous section, you need to restart Dreamweaver. The jQuery and YUI
web widgets are then accessible through their own tabs on the Insert bar, as shown in the
following screenshot, or submenus added at the bottom of the Insert menu. The icons and
menu listings appear in the same order as you install each widget.

Both jQuery and YUI have packaged several of their best widgets for Dreamweaver, includ-
ing calendars and sliders. The jQuery collection also includes an accordion and tabbed
panels, which you might want to use in preference to the Spry versions described in
Chapter 7, particularly if you’re already at home with jQuery and want to incorporate
other jQuery features into the widgets. A quick look at the jQuery accordion demonstrates
the difference between the Spry widgets that are a core part of Dreamweaver CS4 and the
third-party widgets.

To install a web widget, just position your cursor where you want to insert the widget, and
click its icon on the Insert bar or select it from the Insert menu. Figure 8-10 shows a default
jQuery UI Accordion widget inserted in stroll.html, the sample page that I showed you
how to create in Chapter 5.

As you can see from the files listed in the Related Files toolbar in Figure 8-10, the jQuery
accordion widget comes complete with three external JavaScript files, including the basic
jQuery library, and a style sheet. However, no styles are applied in Design view, and the
Property inspector simply has a link to online help. To see what the widget will look like
when the page is deployed on the Web and to use the Code Navigator to inspect the wid-
get’s CSS, you need to turn on Live view (see Figure 8-11).

Extensions install files in your personal configuration folder, so they are vis-
ible only to the current user account. If there is more than one user account
on the computer, the extension needs to be installed separately in each
one. Because extensions make changes to your configuration files, you
should install extensions only from sources that you can trust.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

358

Figure 8-10. The jQuery UI accordion widget appears unstyled in Design view.

Figure 8-11. Turn on Live view to see what third-party widgets will look like in the finished page.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

359

8

In spite of the lack of styling in Design view, using one of these web widgets is a huge time-
saver. All the necessary files are attached and stored in a dedicated jQuery or YUI folder
ready to be uploaded to your website. Inserting a widget also creates the necessary code
to initialize it. However, instead of placing the initialization script at the bottom of the
page, as Spry does, the third-party widgets insert it immediately after the HTML portion of
the widget. Selecting the turquoise tab at the top-left of the widget and pressing Delete
removes the widget, its contents, the initialization script, and all links to dependent files.

Adding content to the jQuery accordion is simply a matter of substituting the placeholder
text, so it’s one of the easiest third-party widgets to use. Other widgets require a knowl-
edge of jQuery or the YUI Library API. Using jQuery and the YUI Library API is beyond the
scope of this book, but the following sections give you a brief taster of what’s possible. If
you have a basic understanding of JavaScript, it doesn’t take long to achieve impressive
results.

Inserting a jQuery UI dialog widget

The jQuery UI dialog widget (http://docs.jquery.com/UI/Dialog) creates modeless and
modal floating windows and dialog boxes. A modeless window is a pop-up window that
permits access to the originating page, whereas a modal one blocks access until the pop-
up window is closed. In combination with a modal window, the dialog widget makes it easy
to dim the rest of the page so that the user’s concentration is focused on the content of
the pop-up—a technique that has become popular with image galleries (see Figure 8-13).

The following exercise uses the jQuery UI dialog widget to display a larger version of liv-
ing_statues.jpg in stroll.html. Initially, the widget will be physically inserted into the
page, but it will then be converted to use unobtrusive JavaScript so the page degrades
gracefully in browsers that have JavaScript turned off. The exercise uses some basic jQuery
techniques, but you should be able to follow the instructions even if you have never used
jQuery before.

1. Copy stroll.html from examples/ch08, and save it as stroll_dialog.html in
workfiles/ch08. Also copy stroll.css to the same folder.

2. Position your cursor at the end of the first paragraph, just before the Artists at Work
heading. Insert a jQuery UI dialog widget from the Insert bar or Insert menu. A
widget with some placeholder text is inserted in the page like this:

Displaying a larger image with a dialog widget

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

360

3. Save stroll_dialog.html. Dreamweaver presents you with a dialog box informing
you that it’s copying dependent files to your site. These are all located in a dedi-
cated folder called jQuery.ui-1.5.2 in the site root (the name of the folder is
likely to change when new versions are released).

4. Click the Live View button or load the page into a browser to view the default dia-
log widget (see Figure 8-12). The dialog box loads immediately. It’s both resizable
and draggable, and it closes when you click the close button at the top-right of the
dialog box. It’s not very practicable in its default state, but it doesn’t take much
effort to change.

Figure 8-12. The default widget displays a dialog box in the center of the page as soon as it loads.

5. Close the dialog box, and deactivate Live view. Switch to Code view to examine the
code inserted by the widget. It’s just above the second heading and looks like this:

As you can see, the dialog box is simply a <div>. The text in the dialog box title bar
is taken from the title attribute of the <div>, and the content of the <div> deter-
mines what is displayed inside the dialog box.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

361

8

The code shown on line 53 of the preceding screenshot initializes the widget. To
avoid conflicts with other JavaScript libraries, it uses the jQuery() function instead
of the shorthand $() notation.

6. You’re going to use the dialog box to display a larger version of living_
statues.jpg, so replace the title attribute shown on line 50 with Living Statues on
the South Bank.

7. Delete the placeholder text between the <div> tags, and with your cursor between
the empty tags insert living_statues_680.jpg from the images folder. Add some
alternative text when prompted to do so.

8. Enclose the entire <div> in single quotes, cut it to your clipboard, and paste it as
the argument to the jQuery function in place of "jQueryUIDialog1". You might see
the following warning when you try to select the code, but you can safely ignore it:

The code inside the <script> block should now look like this:

// BeginWebWidget jQuery_UI_Dialog: jQueryUIDialog1
jQuery('<div id="jQueryUIDialog1" class="flora" title="Living Statues ➥

on the South Bank"><img src="../../images/living_statues_680.jpg" ➥

width="680" height="449" alt="Living Statues" /></div>').dialog(➥

{draggable: true, resizable: true});
// EndWebWidget jQuery_UI_Dialog: jQueryUIDialog1

9. If you save the page and test it now, the dialog box still appears immediately. It
remains the same size, but you can resize it to see the larger image. By using the
code for the <div> as the argument to jQuery(), the <div> and its contents are
now being generated on the fly by JavaScript. This means the larger image won’t be
loaded in a browser that has JavaScript disabled.

10. The jQuery UI dialog() constructor method takes an object literal containing the
options you want to set. At the moment, the options object has two properties:
draggable and resizable, both of which are set to true. Let’s set two more, height
and width, so the image fits the dialog box. Amend the object literal like this:

{draggable: true,
resizable: true,
height: 515,
width: 720}

Although adding newlines to JavaScript statements usually causes them to malfunc-
tion, you can use newlines in objects for ease of reading without causing problems.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

362

11. To make the dialog box modal, all you need to do is add modal: true to the
options object like this:

{draggable: true,
resizable: true,
height: 515,
width: 720,
modal:true}

12. To dim the background, you also need to use the overlay property, which expects
its values as an object, so you nest it within the options object like this:

{draggable: true,
resizable: true,
height: 515,
width: 720,
modal:true,
overlay: {
opacity: 0.5,
background: 'black'

}
}

13. Test the page to make sure everything is working as expected. You should see the
larger image displayed fully inside a modal dialog box, with the rest of the window
dimmed (see Figure 8-13 on the next page).

14. To prevent the dialog box from opening automatically when the page loads, you
need to set the autoOpen property of the options object to false. You also need a
reference to the dialog box so that it can be opened when the user clicks the
smaller image. Add the autoOpen property, and assign the whole declaration to a
variable called bigImage. The complete code should look like this:

var bigImage = jQuery('<div id="jQueryUIDialog1" class="flora" ➥

title="Living Statues on the South Bank"><img ➥

src="../../images/living_statues_680.jpg" width="680" height="449" ➥

alt="Living Statues" /></div>').dialog({
draggable: true,
resizable: true,
height: 515,
width: 720,
modal: true,
overlay: {
opacity: 0.5,
background: 'black'

},
autoOpen:false

});

15. You can now attach an onclick event handler dynamically to the smaller image,
which can be identified using the following attribute selector:

jQuery('img[src$=living_statues.jpg]')

GOING BEYOND THE BASICS WITH SPRY AND AJAX

363

8

This looks for an image with a src attribute that ends with living_statues.jpg.
Add the following code immediately after the code in step 14:

jQuery('img[src$=living_statues.jpg]').css('cursor', 'pointer')
.attr('title', 'Click for a larger image')
.click(function(e){bigImage.dialog('open')});

In typical jQuery fashion, this chains several methods and applies them to
living_statues.jpg. First, the css() method converts the cursor to a hand
pointer whenever anyone mouses over the image. Then the attr() method adds a
title attribute, which will be displayed as a tooltip, inviting users to click the
image to see a larger version. Finally, the click() method is passed a function that
references the dialog box using the variable bigImage and passes 'open' as an
argument to its dialog() method.

16. Save stroll_dialog.html, and test it. When you mouse over living_statues.jpg,
the cursor should turn to a hand and display a tooltip inviting you to view a larger
image. Click, and you should see a much bigger version centered in a dialog box
with the rest of the window dimmed, as shown in Figure 8-13.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

364

Figure 8-13. The dialog widget displays the larger image and dims the rest of the page.

17. Finally, to tidy up the page and remove the JavaScript from the middle of the HTML,
cut the script block and paste it into the <head> of the document after the links to
the jQuery external files (or put it in an external file of its own, linked to the page
after the other jQuery files). Once you move the script outside the body of the page,
you need to wrap the script in a jQuery document ready handler like this:

jQuery(function() {
var bigImage = jQuery('<div id="jQueryUIDialog1" class="flora" ➥

title="Living Statues on the South Bank"><img ➥

src="../../images/living_statues_680.jpg" width="680" height="449" ➥

alt="Living Statues" /></div>').dialog({
draggable: true,
resizable: true,
height: 515,
width: 720,
modal: true,
overlay: {
opacity: 0.5,
background: 'black'

},
autoOpen:false

});
jQuery('img[src$=living_statues.jpg]').css('cursor', 'pointer')
.attr('title', 'Click for a larger image')
.click(function(e){bigImage.dialog('open')});

});

I have used jQuery() instead of the shorthand $(), but you can use $() if you’re
not mixing jQuery with other JavaScript libraries that use the same shorthand.

Check your code, if necessary, against stroll_dialog.html in examples/ch08.

Selecting dates with a YUI calendar

The YUI Library is a massive collection of utilities, controls, and components written in
JavaScript. Just to give you a taste of the type of things available, I have chosen the YUI
Calendar, which is one of the first web widgets to have been released for Dreamweaver.
Inserting a calendar requires nothing more than clicking its icon in the YUI tab of the Insert
bar or selecting it from the Insert menu and saving the external files to your site. However,
you need to write your own JavaScript functions to do anything with selected dates.

This exercise shows how to capture the date selected in a YUI calendar and display it as a
JavaScript alert.

1. Create a new page called yui_calendar.html in workfiles/ch08, and insert a YUI
Calendar widget from the Insert bar or Insert menu.

Displaying the selected date

GOING BEYOND THE BASICS WITH SPRY AND AJAX

365

8

2. Save the page to copy the external JavaScript files and style sheet to your site.
Dreamweaver stores them in a dedicated folder called YUI.

3. When you look at the page in Design view, you might be distinctly underwhelmed,
because all you get is a turquoise border and tab with nothing inside.

4. Click the Live View button, and everything comes to life, with the current month
and date selected, as shown in Figure 8-14 (so now you know when I wrote this
part of the book). The calendar is fully functional in the sense that you can move
back and forth through the months and select dates, but nothing happens when
you select a particular date. It’s up to you to add that functionality yourself.

5. Deactivate Live view, and switch to Code view. As you can see in the following
screenshot, the calendar is an empty <div>, and there are just a few lines of script.
The code shown on lines 17–20 initializes the calendar, assigning it to a variable
called oCalendar_YahooCalendar1. The code on line 21 loads the calendar into the
page when the DOM is ready.

Figure 8-14.
The YUI calendar is
generated entirely

dynamically by
JavaScript.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

366

6. When you select one or more dates in the calendar, it dispatches an event called
selectEvent, which contains the selected date(s) as a multidimensional array in
the format [[YYYY, MM, DD], [YYYY, MM, DD] . . .]. So, you can define an event
handler function to capture the selection. You need to add it inside the initializa-
tion function like this:

YAHOO.init_YahooCalendar1 = function() {
function selectHandler(type, args, obj)
{
var dates = args[0];
var date = dates[0];
var months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'July', ➥

'Aug', 'Sep', 'Oct', 'Nov', 'Dec'];
var year = date[0], month = months[date[1]-1], day = date[2];
alert('Selected date is : ' + month + ' ' + day + ', ' + year);

}
var oCalendar_YahooCalendar1 = new YAHOO.widget.Calendar(➥

"YahooCalendar1");
oCalendar_YahooCalendar1.render();

}

The event handler needs to take three arguments: the type of event, the arguments
dispatched by the event, and the object that was the event’s target. The function
needs the first and third arguments to know what to expect, but all you’re inter-
ested in is extracting the value of the arguments passed by the event.

The selectEvent dispatches a single multidimensional array of dates, so there’s
only one argument, which can be extracted as args[0] and is assigned to a variable
called dates.

For the purposes of this exercise, you want to extract just the first date in the dates
array. This can be identified as dates[0] and is assigned to a variable called date.

Since each date is in itself an array in the format [YYYY, MM, DD], you can extract
the day as date[2], the month as date[1], and the year as date[0].

To avoid confusion with different national conventions regarding date formats, I
have created an array of month names. JavaScript counts arrays from zero, so you
get the month name by subtracting one from the month number like this:
months[date[1]-1].

Finally, the function passes the selected date to an alert.

7. The event handler function needs to be registered to listen for the selectEvent
by using the subscribe() method after the calendar object has been instantiated
like this:

var oCalendar_YahooCalendar1 = new YAHOO.widget.Calendar(➥

"YahooCalendar1");
oCalendar_YahooCalendar1.selectEvent.subscribe(selectHandler, ➥

oCalendar_YahooCalendar1, true);
oCalendar_YahooCalendar1.render();

GOING BEYOND THE BASICS WITH SPRY AND AJAX

367

8

The subscribe() method takes three arguments: the event handler function, the
object, and the Boolean variable true.

8. Save yui_calendar.html, and test it in Live view or a browser. Select a date in the
calendar, and you should see its value displayed in a JavaScript alert, as shown in
Figure 8-15.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS4 WITH CSS, AJAX, AND PHP

368

Figure 8-15. The event handler extracts and formats the selected date.

Check your code, if necessary, against yui_calendar.html in examples/ch08.

Of course, displaying the date as a JavaScript alert serves no practical value. The purpose
of this exercise has been to demonstrate how to create an event handler to respond to the
selection of dates. You can use the data gathered by the event handler for a variety of
things, including populating date fields in online forms or triggering a request to display
events related to that date. Your ability to do that depends on your JavaScript skills.

Chapter review
This has been very much a hands-on chapter, digging into the mysteries of JavaScript, Spry,
and other web widgets. However, it has barely managed to scratch the surface of a vast
subject. Spry, jQuery, and the YUI Library have many enthusiastic fans, but JavaScript
remains an uphill struggle for many others. While the web widgets are an attractive addi-
tion, they are not integrated into Dreamweaver to the same extent as Spry. Their principal
advantage is that they speed up the deployment of sophisticated UI components by bring-
ing together all the necessary external files, installing them, and creating the initialization

script with a single mouse click. After that, it’s up to you. I hope this chapter has whetted
your appetite to experiment further with the framework(s) of your choice.

In the next chapter, we take an in-depth look at creating online forms, which lay the foun-
dation for much of the rest of this book. Forms are the principal way of communicating
with a database. You’ll also continue your exploration of Spry, because Dreamweaver
incorporates an impressive set of validation widgets that check user input before submit-
ting it to the server for processing.

GOING BEYOND THE BASICS WITH SPRY AND AJAX

369

8

