1. General Characteristics of Blood

Write the answers that match the statements in the spaces at the right.

1) pH range of the blood. __________
 7.35–7.45

2) Liquid portion of blood. __________
 Plasma

3) Blood cells and platelets. __________
 Formed elements

4) Percentage of blood formed by liquid portion. __________
 55%

5) Percentage of blood formed by RBCs, WCBs, and platelets. __________
 45%; <1%

6) Average range of blood volume in males. __________
 5–6 liters

7) Average range of blood volume in females. __________
 4–5 liters

8) Basic function of blood. __________
 Transport of materials

2. Red Blood Cells

Write the answers that match the statements in the spaces at the right.

1) Shape of erythrocytes. __________
 Biconcave disks

2) Red pigment in erythrocytes. __________
 Hemoglobin

3) Primary function of RBCs is transport of _____. __________
 Oxygen and carbon dioxide

4) Iron-containing portion of hemoglobin. __________
 Heme

5) Normal range of RBCs/mm³ in males. __________
 4.6–6.0 million

6) Normal range of RBCs/mm³ in females. __________
 4.2–5.0 million

7) Tissue-forming RBCs in children and adults. __________
 Red bone marrow

8) Hormone-stimulating RBC production. __________
 Erythropoietin

9) Organs releasing the hormone that stimulates RBC production. __________
 Kidneys, liver

10) Organ producing intrinsic factor. __________
 Stomach

11) Vitamins required for RBC production. __________
 B₁₂, folic acid

12) Intrinsic factor enables absorption of _____. __________
 Vitamin B₁₂

13) Cells from which RBCs originate. __________
 Hemocytoblasts

14) Average life span of RBCs. __________
 120 days

15) Organs where old RBCs are destroyed. __________
 Spleen; liver

16) Phagocytic cells destroying RBCs. __________
 Macrophages

17) Portion of heme that is recycled. __________
 Iron-containing portion

18) Portion of heme that is excreted. __________
 Non-iron portion

19) Organ where heme breakdown occurs. __________
 Liver
3. White Blood Cells

a. Write the answers that match the statements in the spaces at the right.

1) Cell from which WBCs originate. __

2) Normal range of WBCs/mm3 of blood. _______________________________________

3) Basic function of WBCs is defense against _______. ____________________________

4) Where most functions of WBCs occur. ___

5) Group of WBCs with cytoplasmic granules. _____________________________________

6) Group of WBCs lacking these granules. ___

7) WBCs with lavender-staining granules. ___

8) WBCs with blue-staining granules. __

9) Largest leukocytes. __

10) Smallest leukocytes. __

11) WBCs with red-staining granules. __

12) Form 20% to 25% of WBCs. __

13) Migrate into tissues to become macrophages. _________________________________

14) First WBCs attracted from blood into damaged tissues. _______________________

15) WBCs that move into tissues to complete clean-up of tissue damage. ___________

16) Form 60% to 70% of leukocytes. ___

17) Release histamine in allergic reactions. ______________________________________

18) WBCs that neutralize histamine. ___

19) Become mast cells after entering tissues. ______________________________________

20) Destroy parasitic worms. __

21) Produce antibodies. __

22) Compose 3% to 8% of leukocytes. __

23) Compose 0.5% to 1.0% of leukocytes. ___

24) Compose 2% to 4% of leukocytes. ___

25) Two major phagocytic WBCs. __

b. Use colored pencils to draw these white blood cells as they appear after staining.
4. Platelets

Write the answers that match the statements in the spaces at the right.

1) Alternate name for platelets.
 Thrombocytes

2) Size compared to size of RBCs.
 Much smaller

3) Number of platelets per mm3 of blood.
 256,000–500,000

4) Cells that fragment to form platelets.
 Megakaryocytes

5) Two functions of platelets.
 Plug broken vessels
 Start clot formation

5. Plasma

Write the answers that match the statements in the spaces at the right.

1) Constitutes over 90% of plasma.
 Water

2) General term for dissolved substances.
 Solute

3) Most abundant plasma proteins.
 Albumins

4) Plasma proteins that are antibodies.
 Globulins

5) Plasma protein converted into fibrin.
 Fibrinogen

6) Plasma proteins transporting lipids.
 Globulins

7) Plasma proteins helping to regulate pH and osmotic pressure of the blood.
 Albumins

8) Organ forming most plasma proteins.
 Liver

9) Nitrogenous wastes of protein breakdown.
 Urea; uric acid

10) Collective term for inorganic ions in the blood plasma.
 Electrolytes

6. Hemostasis

Write the answers that match the statements in the spaces at the right.

1) Three processes of hemostasis in order of occurrence.
 Blood vessel spasm
 Platelet plug formation
 Blood clot formation

2) Constriction of damaged blood vessel.
 Blood vessel spasm

3) Formed elements that temporarily plug break in damaged blood vessel.
 Platelets

4) Substance released by platelets and damaged tissues that starts clotting process.
 Prothrombin activator

5) Electrolyte required for clotting to occur.
 Ca$^{++}$

6) Threadlike strands forming a blood clot.
 Fibrin

7) Cells that enter clot to form new connective tissue and repair damage.
 Fibroblasts

8) Enzyme converting fibrinogen into fibrin.
 Thrombin
7. Human Blood Types

Write the answers that match the statements in the spaces at the right.

1) Location of antigens used in blood typing. On RBCs
 - A
 - AB
 - None
 - Anti-A
 - Anti-A, anti-B
 - Anti-Rh

2) Location of antibodies against blood typing antigens. In Plasma
 - Anti-A
 - Anti-B

3) Antigen(s) in type A blood. None
4) Antigen(s) in type AB blood. None
5) Antigen(s) in type O blood. None
6) Antibodies in type B blood. Anti-A
7) Antibodies in type AB blood. Anti-A, anti-B
8) Antibodies in type O blood. Anti-Rh
9) Antibodies in Rh− blood of person sensitized to the Rh antigen. Erythroblastosis fetalis
10) Caused by maternal anti-Rh antibodies binding with Rh antigens on fetal RBCs.

8. Disorders of the Blood

Write the answers that match the statements in the spaces at the right.

1) Reduced ability to form blood clots. Hemophilia
2) Reduced capacity to carry oxygen. Anemia
3) An excessive concentration of erythrocytes. Polycythemia
4) Infection of lymphocytes by Epstein-Barr virus. Infectious mononucleosis
5) Anemia due to a deficiency of iron. Nutritional anemia
6) Cancer producing excess of leukocytes. Leukemia
7) Anemia due to inability to absorb vitamin B₁₂. Pernicious anemia
8) Anemia due to excessive bleeding. Hemorrhagic anemia
9) Anemia due to sickling of erythrocytes. Sickle-cell anemia
10) Anemia due to premature rupture of RBCs. Hemolytic anemia
11) Anemia due to loss of red bone marrow. Aplastic anemia
12) Fetal blood contains erythroblasts. Erythroblastosis fetalis

9. Clinical Applications
 a. A person can receive platelets from anyone, no matter the blood type. How is this possible? _______
 Platelets do not have antigens on their surfaces.
 b. Chemotherapy is often used to destroy the rapidly dividing cells of a cancer. What impact would chemotherapy have on the production of blood cells? Blood cell production would decrease.
 Explain. Some dividing cells in red bone marrow would be killed by the chemotherapy.
 c. Mary’s blood type is A, Rh−. She is at the hospital for delivery of her second child, and her first child is Rh+. The attending physician wants blood available in case the baby exhibits erythroblastosis fetalis upon delivery. What blood type should he order? O, Rh−
 Explain. O, Rh− is acceptable by all blood types. Maternal anti-Rh antibodies in fetal blood will not destroy O, Rh− RBCs.